/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "../version.h" #include "Constants.hpp" #include "Peer.hpp" #include "Node.hpp" #include "Switch.hpp" #include "Network.hpp" #include "SelfAwareness.hpp" #include "Cluster.hpp" #include "Packet.hpp" #include #define ZT_PEER_PATH_SORT_INTERVAL 5000 namespace ZeroTier { // Used to send varying values for NAT keepalive static uint32_t _natKeepaliveBuf = 0; Peer::Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Identity &peerIdentity) : RR(renv), _lastUsed(0), _lastReceive(0), _lastUnicastFrame(0), _lastMulticastFrame(0), _lastAnnouncedTo(0), _lastDirectPathPushSent(0), _lastDirectPathPushReceive(0), _lastPathSort(0), _vProto(0), _vMajor(0), _vMinor(0), _vRevision(0), _id(peerIdentity), _numPaths(0), _latency(0), _directPathPushCutoffCount(0), _networkComs(4), _lastPushedComs(4) { if (!myIdentity.agree(peerIdentity,_key,ZT_PEER_SECRET_KEY_LENGTH)) throw std::runtime_error("new peer identity key agreement failed"); } void Peer::received( const InetAddress &localAddr, const InetAddress &remoteAddr, unsigned int hops, uint64_t packetId, Packet::Verb verb, uint64_t inRePacketId, Packet::Verb inReVerb) { #ifdef ZT_ENABLE_CLUSTER bool suboptimalPath = false; if ((RR->cluster)&&(hops == 0)) { // Note: findBetterEndpoint() is first since we still want to check // for a better endpoint even if we don't actually send a redirect. InetAddress redirectTo; if ( (RR->cluster->findBetterEndpoint(redirectTo,_id.address(),remoteAddr,false)) && (verb != Packet::VERB_OK)&&(verb != Packet::VERB_ERROR)&&(verb != Packet::VERB_RENDEZVOUS)&&(verb != Packet::VERB_PUSH_DIRECT_PATHS) ) { if (_vProto >= 5) { // For newer peers we can send a more idiomatic verb: PUSH_DIRECT_PATHS. Packet outp(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS); outp.append((uint16_t)1); // count == 1 outp.append((uint8_t)0); // no flags outp.append((uint16_t)0); // no extensions if (redirectTo.ss_family == AF_INET) { outp.append((uint8_t)4); outp.append((uint8_t)6); outp.append(redirectTo.rawIpData(),4); } else { outp.append((uint8_t)6); outp.append((uint8_t)18); outp.append(redirectTo.rawIpData(),16); } outp.append((uint16_t)redirectTo.port()); outp.armor(_key,true); RR->node->putPacket(localAddr,remoteAddr,outp.data(),outp.size()); } else { // For older peers we use RENDEZVOUS to coax them into contacting us elsewhere. Packet outp(_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS); outp.append((uint8_t)0); // no flags RR->identity.address().appendTo(outp); outp.append((uint16_t)redirectTo.port()); if (redirectTo.ss_family == AF_INET) { outp.append((uint8_t)4); outp.append(redirectTo.rawIpData(),4); } else { outp.append((uint8_t)16); outp.append(redirectTo.rawIpData(),16); } outp.armor(_key,true); RR->node->putPacket(localAddr,remoteAddr,outp.data(),outp.size()); } suboptimalPath = true; } } #endif const uint64_t now = RR->node->now(); _lastReceive = now; if ((verb == Packet::VERB_FRAME)||(verb == Packet::VERB_EXT_FRAME)) _lastUnicastFrame = now; else if (verb == Packet::VERB_MULTICAST_FRAME) _lastMulticastFrame = now; if (hops == 0) { bool pathIsConfirmed = false; unsigned int np = _numPaths; for(unsigned int p=0;pnode->shouldUsePathForZeroTierTraffic(localAddr,remoteAddr))) { if (verb == Packet::VERB_OK) { Path *slot = (Path *)0; if (np < ZT_MAX_PEER_NETWORK_PATHS) { slot = &(_paths[np++]); } else { uint64_t slotLRmin = 0xffffffffffffffffULL; for(unsigned int p=0;preceived(now); #ifdef ZT_ENABLE_CLUSTER slot->setClusterSuboptimal(suboptimalPath); #endif _numPaths = np; } #ifdef ZT_ENABLE_CLUSTER if (RR->cluster) RR->cluster->broadcastHavePeer(_id); #endif } else { TRACE("got %s via unknown path %s(%s), confirming...",Packet::verbString(verb),_id.address().toString().c_str(),remoteAddr.toString().c_str()); if ( (_vProto >= 5) && ( !((_vMajor == 1)&&(_vMinor == 1)&&(_vRevision == 0)) ) ) { Packet outp(_id.address(),RR->identity.address(),Packet::VERB_ECHO); outp.armor(_key,true); RR->node->putPacket(localAddr,remoteAddr,outp.data(),outp.size()); } else { sendHELLO(localAddr,remoteAddr,now); } } } } if ((now - _lastAnnouncedTo) >= ((ZT_MULTICAST_LIKE_EXPIRE / 2) - 1000)) { _lastAnnouncedTo = now; const std::vector< SharedPtr > networks(RR->node->allNetworks()); for(std::vector< SharedPtr >::const_iterator n(networks.begin());n!=networks.end();++n) (*n)->tryAnnounceMulticastGroupsTo(SharedPtr(this)); } } void Peer::sendHELLO(const InetAddress &localAddr,const InetAddress &atAddress,uint64_t now,unsigned int ttl) { Packet outp(_id.address(),RR->identity.address(),Packet::VERB_HELLO); outp.append((unsigned char)ZT_PROTO_VERSION); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR); outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION); outp.append(now); RR->identity.serialize(outp,false); atAddress.serialize(outp); outp.append((uint64_t)RR->topology->worldId()); outp.append((uint64_t)RR->topology->worldTimestamp()); outp.armor(_key,false); // HELLO is sent in the clear RR->node->putPacket(localAddr,atAddress,outp.data(),outp.size(),ttl); } bool Peer::doPingAndKeepalive(uint64_t now,int inetAddressFamily) { Path *p = (Path *)0; if (inetAddressFamily != 0) { p = _getBestPath(now,inetAddressFamily); } else { p = _getBestPath(now); } if (p) { if ((now - p->lastReceived()) >= ZT_PEER_DIRECT_PING_DELAY) { //TRACE("PING %s(%s) after %llums/%llums send/receive inactivity",_id.address().toString().c_str(),p->address().toString().c_str(),now - p->lastSend(),now - p->lastReceived()); sendHELLO(p->localAddress(),p->address(),now); p->sent(now); p->pinged(now); } else if ( ((now - std::max(p->lastSend(),p->lastKeepalive())) >= ZT_NAT_KEEPALIVE_DELAY) && (!p->reliable()) ) { //TRACE("NAT keepalive %s(%s) after %llums/%llums send/receive inactivity",_id.address().toString().c_str(),p->address().toString().c_str(),now - p->lastSend(),now - p->lastReceived()); _natKeepaliveBuf += (uint32_t)((now * 0x9e3779b1) >> 1); // tumble this around to send constantly varying (meaningless) payloads RR->node->putPacket(p->localAddress(),p->address(),&_natKeepaliveBuf,sizeof(_natKeepaliveBuf)); p->sentKeepalive(now); } else { //TRACE("no PING or NAT keepalive: addr==%s reliable==%d %llums/%llums send/receive inactivity",p->address().toString().c_str(),(int)p->reliable(),now - p->lastSend(),now - p->lastReceived()); } return true; } return false; } bool Peer::pushDirectPaths(const InetAddress &localAddr,const InetAddress &toAddress,uint64_t now,bool force) { #ifdef ZT_ENABLE_CLUSTER // Cluster mode disables normal PUSH_DIRECT_PATHS in favor of cluster-based peer redirection if (RR->cluster) return false; #endif if (!force) { if ((now - _lastDirectPathPushSent) < ZT_DIRECT_PATH_PUSH_INTERVAL) return false; else _lastDirectPathPushSent = now; } std::vector dps(RR->node->directPaths()); std::vector sym(RR->sa->getSymmetricNatPredictions()); for(unsigned long i=0,added=0;inode->prng() % sym.size()]); if (std::find(dps.begin(),dps.end(),tmp) == dps.end()) { dps.push_back(tmp); if (++added >= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) break; } } if (dps.empty()) return false; #ifdef ZT_TRACE { std::string ps; for(std::vector::const_iterator p(dps.begin());p!=dps.end();++p) { if (ps.length() > 0) ps.push_back(','); ps.append(p->toString()); } TRACE("pushing %u direct paths to %s: %s",(unsigned int)dps.size(),_id.address().toString().c_str(),ps.c_str()); } #endif std::vector::const_iterator p(dps.begin()); while (p != dps.end()) { Packet outp(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS); outp.addSize(2); // leave room for count unsigned int count = 0; while ((p != dps.end())&&((outp.size() + 24) < 1200)) { uint8_t addressType = 4; switch(p->ss_family) { case AF_INET: break; case AF_INET6: addressType = 6; break; default: // we currently only push IP addresses ++p; continue; } outp.append((uint8_t)0); // no flags outp.append((uint16_t)0); // no extensions outp.append(addressType); outp.append((uint8_t)((addressType == 4) ? 6 : 18)); outp.append(p->rawIpData(),((addressType == 4) ? 4 : 16)); outp.append((uint16_t)p->port()); ++count; ++p; } if (count) { outp.setAt(ZT_PACKET_IDX_PAYLOAD,(uint16_t)count); outp.armor(_key,true); RR->node->putPacket(localAddr,toAddress,outp.data(),outp.size(),0); } } return true; } bool Peer::resetWithinScope(InetAddress::IpScope scope,uint64_t now) { unsigned int np = _numPaths; unsigned int x = 0; unsigned int y = 0; while (x < np) { if (_paths[x].address().ipScope() == scope) { // Resetting a path means sending a HELLO and then forgetting it. If we // get OK(HELLO) then it will be re-learned. sendHELLO(_paths[x].localAddress(),_paths[x].address(),now); } else { _paths[y++] = _paths[x]; } ++x; } _numPaths = y; return (y < np); } void Peer::getBestActiveAddresses(uint64_t now,InetAddress &v4,InetAddress &v6) const { uint64_t bestV4 = 0,bestV6 = 0; for(unsigned int p=0,np=_numPaths;p= bestV4) { bestV4 = lr; v4 = _paths[p].address(); } } else if (_paths[p].address().isV6()) { if (lr >= bestV6) { bestV6 = lr; v6 = _paths[p].address(); } } } } } } bool Peer::networkMembershipCertificatesAgree(uint64_t nwid,const CertificateOfMembership &com) const { Mutex::Lock _l(_networkComs_m); const _NetworkCom *ourCom = _networkComs.get(nwid); if (ourCom) return ourCom->com.agreesWith(com); return false; } bool Peer::validateAndSetNetworkMembershipCertificate(uint64_t nwid,const CertificateOfMembership &com) { // Sanity checks if ((!com)||(com.issuedTo() != _id.address())) return false; // Return true if we already have this *exact* COM { Mutex::Lock _l(_networkComs_m); _NetworkCom *ourCom = _networkComs.get(nwid); if ((ourCom)&&(ourCom->com == com)) return true; } // Check signature, log and return if cert is invalid if (com.signedBy() != Network::controllerFor(nwid)) { TRACE("rejected network membership certificate for %.16llx signed by %s: signer not a controller of this network",(unsigned long long)_id,com.signedBy().toString().c_str()); return false; // invalid signer } if (com.signedBy() == RR->identity.address()) { // We are the controller: RR->identity.address() == controller() == cert.signedBy() // So, verify that we signed th cert ourself if (!com.verify(RR->identity)) { TRACE("rejected network membership certificate for %.16llx self signed by %s: signature check failed",(unsigned long long)_id,com.signedBy().toString().c_str()); return false; // invalid signature } } else { SharedPtr signer(RR->topology->getPeer(com.signedBy())); if (!signer) { // This would be rather odd, since this is our controller... could happen // if we get packets before we've gotten config. RR->sw->requestWhois(com.signedBy()); return false; // signer unknown } if (!com.verify(signer->identity())) { TRACE("rejected network membership certificate for %.16llx signed by %s: signature check failed",(unsigned long long)_id,com.signedBy().toString().c_str()); return false; // invalid signature } } // If we made it past all those checks, add or update cert in our cert info store { Mutex::Lock _l(_networkComs_m); _networkComs.set(nwid,_NetworkCom(RR->node->now(),com)); } return true; } bool Peer::needsOurNetworkMembershipCertificate(uint64_t nwid,uint64_t now,bool updateLastPushedTime) { Mutex::Lock _l(_networkComs_m); uint64_t &lastPushed = _lastPushedComs[nwid]; const uint64_t tmp = lastPushed; if (updateLastPushedTime) lastPushed = now; return ((now - tmp) >= (ZT_NETWORK_AUTOCONF_DELAY / 3)); } void Peer::clean(uint64_t now) { { unsigned int np = _numPaths; unsigned int x = 0; unsigned int y = 0; while (x < np) { if (_paths[x].active(now)) _paths[y++] = _paths[x]; ++x; } _numPaths = y; } { Mutex::Lock _l(_networkComs_m); { uint64_t *k = (uint64_t *)0; _NetworkCom *v = (_NetworkCom *)0; Hashtable< uint64_t,_NetworkCom >::Iterator i(_networkComs); while (i.next(k,v)) { if ( (!RR->node->belongsToNetwork(*k)) && ((now - v->ts) >= ZT_PEER_NETWORK_COM_EXPIRATION) ) _networkComs.erase(*k); } } { uint64_t *k = (uint64_t *)0; uint64_t *v = (uint64_t *)0; Hashtable< uint64_t,uint64_t >::Iterator i(_lastPushedComs); while (i.next(k,v)) { if ((now - *v) > (ZT_NETWORK_AUTOCONF_DELAY * 2)) _lastPushedComs.erase(*k); } } } } bool Peer::_checkPath(Path &p,const uint64_t now) { if (!p.active(now)) return false; /* Dead path detection: if we have sent something to this peer and have not * yet received a reply, double check this path. The majority of outbound * packets including Ethernet frames do generate some kind of reply either * immediately or at some point in the near future. This will occasionally * (every NO_ANSWER_TIMEOUT ms) check paths unnecessarily if traffic that * does not generate a response is being sent such as multicast announcements * or frames belonging to unidirectional UDP protocols, but the cost is very * tiny and the benefit in reliability is very large. This takes care of many * failure modes including crap NATs that forget links and spurious changes * to physical network topology that cannot be otherwise detected. * * Each time we do this we increment a probation counter in the path. This * counter is reset on any packet receive over this path. If it reaches the * MAX_PROBATION threshold the path is considred dead. */ if ( (p.lastSend() > p.lastReceived()) && ((p.lastSend() - p.lastReceived()) >= ZT_PEER_DEAD_PATH_DETECTION_NO_ANSWER_TIMEOUT) && ((now - p.lastPing()) >= ZT_PEER_DEAD_PATH_DETECTION_NO_ANSWER_TIMEOUT) && (!RR->topology->amRoot()) ) { TRACE("%s(%s) does not seem to be answering in a timely manner, checking if dead (probation == %u)",_id.address().toString().c_str(),p.address().toString().c_str(),p.probation()); if ( (_vProto >= 5) && ( !((_vMajor == 1)&&(_vMinor == 1)&&(_vRevision == 0)) ) ) { Packet outp(_id.address(),RR->identity.address(),Packet::VERB_ECHO); outp.armor(_key,true); p.send(RR,outp.data(),outp.size(),now); p.pinged(now); } else { sendHELLO(p.localAddress(),p.address(),now); p.sent(now); p.pinged(now); } p.increaseProbation(); } return true; } Path *Peer::_getBestPath(const uint64_t now) { Path *bestPath = (Path *)0; uint64_t bestPathScore = 0; for(unsigned int i=0;i<_numPaths;++i) { const uint64_t score = _paths[i].score(); if ((score >= bestPathScore)&&(_checkPath(_paths[i],now))) { bestPathScore = score; bestPath = &(_paths[i]); } } return bestPath; } Path *Peer::_getBestPath(const uint64_t now,int inetAddressFamily) { Path *bestPath = (Path *)0; uint64_t bestPathScore = 0; for(unsigned int i=0;i<_numPaths;++i) { const uint64_t score = _paths[i].score(); if (((int)_paths[i].address().ss_family == inetAddressFamily)&&(score >= bestPathScore)&&(_checkPath(_paths[i],now))) { bestPathScore = score; bestPath = &(_paths[i]); } } return bestPath; } } // namespace ZeroTier