ZeroTierOne/node/Node.cpp
2024-09-26 08:52:29 -04:00

1191 lines
41 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2026-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Node.hpp"
#include "../version.h"
#include "Address.hpp"
#include "Buffer.hpp"
#include "Constants.hpp"
#include "ECC.hpp"
#include "Identity.hpp"
#include "Metrics.hpp"
#include "Multicaster.hpp"
#include "Network.hpp"
#include "NetworkController.hpp"
#include "Packet.hpp"
#include "PacketMultiplexer.hpp"
#include "RuntimeEnvironment.hpp"
#include "SelfAwareness.hpp"
#include "SharedPtr.hpp"
#include "Switch.hpp"
#include "Topology.hpp"
#include "Trace.hpp"
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// FIXME: remove this suppression and actually fix warnings
#ifdef __GNUC__
#pragma GCC diagnostic ignored "-Wsign-compare"
#endif
namespace ZeroTier {
/****************************************************************************/
/* Public Node interface (C++, exposed via CAPI bindings) */
/****************************************************************************/
Node::Node(void* uptr, void* tptr, const struct ZT_Node_Callbacks* callbacks, int64_t now)
: _RR(this)
, RR(&_RR)
, _uPtr(uptr)
, _networks(8)
, _now(now)
, _lastPingCheck(0)
, _lastGratuitousPingCheck(0)
, _lastHousekeepingRun(0)
, _lastMemoizedTraceSettings(0)
, _lowBandwidthMode(false)
{
if (callbacks->version != 0) {
throw ZT_EXCEPTION_INVALID_ARGUMENT;
}
memcpy(&_cb, callbacks, sizeof(ZT_Node_Callbacks));
// Initialize non-cryptographic PRNG from a good random source
Utils::getSecureRandom((void*)_prngState, sizeof(_prngState));
_online = false;
memset(_expectingRepliesToBucketPtr, 0, sizeof(_expectingRepliesToBucketPtr));
memset(_expectingRepliesTo, 0, sizeof(_expectingRepliesTo));
memset(_lastIdentityVerification, 0, sizeof(_lastIdentityVerification));
memset((void*)(&_stats), 0, sizeof(_stats));
uint64_t idtmp[2];
idtmp[0] = 0;
idtmp[1] = 0;
char tmp[2048];
int n = stateObjectGet(tptr, ZT_STATE_OBJECT_IDENTITY_SECRET, idtmp, tmp, sizeof(tmp) - 1);
if (n > 0) {
tmp[n] = (char)0;
if (RR->identity.fromString(tmp)) {
RR->identity.toString(false, RR->publicIdentityStr);
RR->identity.toString(true, RR->secretIdentityStr);
}
else {
throw ZT_EXCEPTION_INVALID_IDENTITY;
}
if (! RR->identity.locallyValidate()) {
throw ZT_EXCEPTION_INVALID_IDENTITY;
}
}
if (n <= 0) {
RR->identity.generate();
RR->identity.toString(false, RR->publicIdentityStr);
RR->identity.toString(true, RR->secretIdentityStr);
idtmp[0] = RR->identity.address().toInt();
idtmp[1] = 0;
stateObjectPut(tptr, ZT_STATE_OBJECT_IDENTITY_SECRET, idtmp, RR->secretIdentityStr, (unsigned int)strlen(RR->secretIdentityStr));
stateObjectPut(tptr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, idtmp, RR->publicIdentityStr, (unsigned int)strlen(RR->publicIdentityStr));
}
else {
idtmp[0] = RR->identity.address().toInt();
idtmp[1] = 0;
n = stateObjectGet(tptr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, idtmp, tmp, sizeof(tmp) - 1);
if ((n > 0) && (n < (int)sizeof(RR->publicIdentityStr)) && (n < (int)sizeof(tmp))) {
if (memcmp(tmp, RR->publicIdentityStr, n)) {
stateObjectPut(tptr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, idtmp, RR->publicIdentityStr, (unsigned int)strlen(RR->publicIdentityStr));
}
}
}
char* m = (char*)0;
try {
const unsigned long ts = sizeof(Trace) + (((sizeof(Trace) & 0xf) != 0) ? (16 - (sizeof(Trace) & 0xf)) : 0);
const unsigned long sws = sizeof(Switch) + (((sizeof(Switch) & 0xf) != 0) ? (16 - (sizeof(Switch) & 0xf)) : 0);
const unsigned long mcs = sizeof(Multicaster) + (((sizeof(Multicaster) & 0xf) != 0) ? (16 - (sizeof(Multicaster) & 0xf)) : 0);
const unsigned long topologys = sizeof(Topology) + (((sizeof(Topology) & 0xf) != 0) ? (16 - (sizeof(Topology) & 0xf)) : 0);
const unsigned long sas = sizeof(SelfAwareness) + (((sizeof(SelfAwareness) & 0xf) != 0) ? (16 - (sizeof(SelfAwareness) & 0xf)) : 0);
const unsigned long bcs = sizeof(Bond) + (((sizeof(Bond) & 0xf) != 0) ? (16 - (sizeof(Bond) & 0xf)) : 0);
const unsigned long pms = sizeof(PacketMultiplexer) + (((sizeof(PacketMultiplexer) & 0xf) != 0) ? (16 - (sizeof(PacketMultiplexer) & 0xf)) : 0);
m = reinterpret_cast<char*>(::malloc(16 + ts + sws + mcs + topologys + sas + bcs + pms));
if (! m) {
throw std::bad_alloc();
}
RR->rtmem = m;
while (((uintptr_t)m & 0xf) != 0) {
++m;
}
RR->t = new (m) Trace(RR);
m += ts;
RR->sw = new (m) Switch(RR);
m += sws;
RR->mc = new (m) Multicaster(RR);
m += mcs;
RR->topology = new (m) Topology(RR, tptr);
m += topologys;
RR->sa = new (m) SelfAwareness(RR);
m += sas;
RR->bc = new (m) Bond(RR);
m += bcs;
RR->pm = new (m) PacketMultiplexer(RR);
}
catch (...) {
if (RR->sa) {
RR->sa->~SelfAwareness();
}
if (RR->topology) {
RR->topology->~Topology();
}
if (RR->mc) {
RR->mc->~Multicaster();
}
if (RR->sw) {
RR->sw->~Switch();
}
if (RR->t) {
RR->t->~Trace();
}
if (RR->bc) {
RR->bc->~Bond();
}
if (RR->pm) {
RR->pm->~PacketMultiplexer();
}
::free(m);
throw;
}
postEvent(tptr, ZT_EVENT_UP);
}
Node::~Node()
{
{
Mutex::Lock _l(_networks_m);
_networks.clear(); // destroy all networks before shutdown
}
if (RR->sa) {
RR->sa->~SelfAwareness();
}
if (RR->topology) {
RR->topology->~Topology();
}
if (RR->mc) {
RR->mc->~Multicaster();
}
if (RR->sw) {
RR->sw->~Switch();
}
if (RR->t) {
RR->t->~Trace();
}
if (RR->bc) {
RR->bc->~Bond();
}
if (RR->pm) {
RR->pm->~PacketMultiplexer();
}
::free(RR->rtmem);
}
ZT_ResultCode Node::processWirePacket(void* tptr, int64_t now, int64_t localSocket, const struct sockaddr_storage* remoteAddress, const void* packetData, unsigned int packetLength, volatile int64_t* nextBackgroundTaskDeadline)
{
_now = now;
RR->sw->onRemotePacket(tptr, localSocket, *(reinterpret_cast<const InetAddress*>(remoteAddress)), packetData, packetLength);
return ZT_RESULT_OK;
}
ZT_ResultCode Node::processVirtualNetworkFrame(
void* tptr,
int64_t now,
uint64_t nwid,
uint64_t sourceMac,
uint64_t destMac,
unsigned int etherType,
unsigned int vlanId,
const void* frameData,
unsigned int frameLength,
volatile int64_t* nextBackgroundTaskDeadline)
{
_now = now;
SharedPtr<Network> nw(this->network(nwid));
if (nw) {
RR->sw->onLocalEthernet(tptr, nw, MAC(sourceMac), MAC(destMac), etherType, vlanId, frameData, frameLength);
return ZT_RESULT_OK;
}
else {
return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
}
void Node::initMultithreading(unsigned int concurrency, bool cpuPinningEnabled)
{
RR->pm->setUpPostDecodeReceiveThreads(concurrency, cpuPinningEnabled);
}
// Closure used to ping upstream and active/online peers
class _PingPeersThatNeedPing {
public:
_PingPeersThatNeedPing(const RuntimeEnvironment* renv, void* tPtr, Hashtable<Address, std::vector<InetAddress> >& alwaysContact, int64_t now)
: RR(renv)
, _tPtr(tPtr)
, _alwaysContact(alwaysContact)
, _now(now)
, _bestCurrentUpstream(RR->topology->getUpstreamPeer())
{
}
inline void operator()(Topology& t, const SharedPtr<Peer>& p)
{
const std::vector<InetAddress>* const alwaysContactEndpoints = _alwaysContact.get(p->address());
if (alwaysContactEndpoints) {
ZT_PeerRole role = RR->topology->role(p->address());
// Contact upstream peers as infrequently as possible
int roleBasedTimerScale = (role == ZT_PEER_ROLE_LEAF) ? 2 : 16;
// Unless we don't any have paths to the roots, then we shouldn't wait a long time to contact them
bool hasPaths = p->paths(RR->node->now()).size() > 0;
roleBasedTimerScale = (role != ZT_PEER_ROLE_LEAF && ! hasPaths) ? 0 : roleBasedTimerScale;
if ((RR->node->now() - p->lastSentFullHello()) <= (ZT_PATH_HEARTBEAT_PERIOD * roleBasedTimerScale)) {
return;
}
const unsigned int sent = p->doPingAndKeepalive(_tPtr, _now);
bool contacted = (sent != 0);
if ((sent & 0x1) == 0) { // bit 0x1 == IPv4 sent
for (unsigned long k = 0, ptr = (unsigned long)RR->node->prng(); k < (unsigned long)alwaysContactEndpoints->size(); ++k) {
const InetAddress& addr = (*alwaysContactEndpoints)[ptr++ % alwaysContactEndpoints->size()];
if (addr.ss_family == AF_INET) {
p->sendHELLO(_tPtr, -1, addr, _now);
contacted = true;
break;
}
}
}
if ((sent & 0x2) == 0) { // bit 0x2 == IPv6 sent
for (unsigned long k = 0, ptr = (unsigned long)RR->node->prng(); k < (unsigned long)alwaysContactEndpoints->size(); ++k) {
const InetAddress& addr = (*alwaysContactEndpoints)[ptr++ % alwaysContactEndpoints->size()];
if (addr.ss_family == AF_INET6) {
p->sendHELLO(_tPtr, -1, addr, _now);
contacted = true;
break;
}
}
}
if ((! contacted) && (_bestCurrentUpstream)) {
const SharedPtr<Path> up(_bestCurrentUpstream->getAppropriatePath(_now, true));
if (up) {
p->sendHELLO(_tPtr, up->localSocket(), up->address(), _now);
}
}
_alwaysContact.erase(p->address()); // after this we'll WHOIS all upstreams that remain
}
else if (p->isActive(_now)) {
p->doPingAndKeepalive(_tPtr, _now);
}
}
private:
const RuntimeEnvironment* RR;
void* _tPtr;
Hashtable<Address, std::vector<InetAddress> >& _alwaysContact;
const int64_t _now;
const SharedPtr<Peer> _bestCurrentUpstream;
};
ZT_ResultCode Node::processBackgroundTasks(void* tptr, int64_t now, volatile int64_t* nextBackgroundTaskDeadline)
{
_now = now;
Mutex::Lock bl(_backgroundTasksLock);
// Process background bond tasks
unsigned long bondCheckInterval = ZT_PING_CHECK_INTERVAL;
if (RR->bc->inUse()) {
bondCheckInterval = std::max(RR->bc->minReqMonitorInterval(), ZT_CORE_TIMER_TASK_GRANULARITY);
if ((now - _lastGratuitousPingCheck) >= ZT_CORE_TIMER_TASK_GRANULARITY) {
_lastGratuitousPingCheck = now;
RR->bc->processBackgroundTasks(tptr, now);
}
}
unsigned long timeUntilNextPingCheck = _lowBandwidthMode ? (ZT_PING_CHECK_INTERVAL * 5) : ZT_PING_CHECK_INTERVAL;
const int64_t timeSinceLastPingCheck = now - _lastPingCheck;
if (timeSinceLastPingCheck >= timeUntilNextPingCheck) {
try {
_lastPingCheck = now;
// Get designated VL1 upstreams
Hashtable<Address, std::vector<InetAddress> > alwaysContact;
RR->topology->getUpstreamsToContact(alwaysContact);
// Uncomment to dump stats
/*
for(unsigned int i=0;i<32;i++) {
if (_stats.inVerbCounts[i] > 0)
printf("%.2x\t%12lld %lld\n",i,(unsigned long long)_stats.inVerbCounts[i],(unsigned long long)_stats.inVerbBytes[i]);
}
printf("\n");
*/
// Check last receive time on designated upstreams to see if we seem to be online
int64_t lastReceivedFromUpstream = 0;
{
Hashtable<Address, std::vector<InetAddress> >::Iterator i(alwaysContact);
Address* upstreamAddress = (Address*)0;
std::vector<InetAddress>* upstreamStableEndpoints = (std::vector<InetAddress>*)0;
while (i.next(upstreamAddress, upstreamStableEndpoints)) {
SharedPtr<Peer> p(RR->topology->getPeerNoCache(*upstreamAddress));
if (p) {
lastReceivedFromUpstream = std::max(p->lastReceive(), lastReceivedFromUpstream);
}
}
}
// Clean up any old local controller auth memorizations.
{
_localControllerAuthorizations_m.lock();
Hashtable<_LocalControllerAuth, int64_t>::Iterator i(_localControllerAuthorizations);
_LocalControllerAuth* k = (_LocalControllerAuth*)0;
int64_t* v = (int64_t*)0;
while (i.next(k, v)) {
if ((*v - now) > (ZT_NETWORK_AUTOCONF_DELAY * 3)) {
_localControllerAuthorizations.erase(*k);
}
}
_localControllerAuthorizations_m.unlock();
}
// Get peers we should stay connected to according to network configs
// Also get networks and whether they need config so we only have to do one pass over networks
int timerScale = _lowBandwidthMode ? 64 : 1;
std::vector<std::pair<SharedPtr<Network>, bool> > networkConfigNeeded;
{
Mutex::Lock l(_networks_m);
Hashtable<uint64_t, SharedPtr<Network> >::Iterator i(_networks);
uint64_t* nwid = (uint64_t*)0;
SharedPtr<Network>* network = (SharedPtr<Network>*)0;
while (i.next(nwid, network)) {
(*network)->config().alwaysContactAddresses(alwaysContact);
networkConfigNeeded.push_back(std::pair<SharedPtr<Network>, bool>(*network, (((now - (*network)->lastConfigUpdate()) >= ZT_NETWORK_AUTOCONF_DELAY * timerScale) || (! (*network)->hasConfig()))));
}
}
// Ping active peers, upstreams, and others that we should always contact
_PingPeersThatNeedPing pfunc(RR, tptr, alwaysContact, now);
RR->topology->eachPeer<_PingPeersThatNeedPing&>(pfunc);
// Run WHOIS to create Peer for alwaysContact addresses that could not be contacted
{
Hashtable<Address, std::vector<InetAddress> >::Iterator i(alwaysContact);
Address* upstreamAddress = (Address*)0;
std::vector<InetAddress>* upstreamStableEndpoints = (std::vector<InetAddress>*)0;
while (i.next(upstreamAddress, upstreamStableEndpoints)) {
RR->sw->requestWhois(tptr, now, *upstreamAddress);
}
}
// Refresh network config or broadcast network updates to members as needed
for (std::vector<std::pair<SharedPtr<Network>, bool> >::const_iterator n(networkConfigNeeded.begin()); n != networkConfigNeeded.end(); ++n) {
if (n->second) {
n->first->requestConfiguration(tptr);
}
if (! _lowBandwidthMode) {
n->first->sendUpdatesToMembers(tptr);
}
}
// Update online status, post status change as event
const bool oldOnline = _online;
_online = (((now - lastReceivedFromUpstream) < ZT_PEER_ACTIVITY_TIMEOUT) || (RR->topology->amUpstream()));
if (oldOnline != _online) {
postEvent(tptr, _online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE);
}
}
catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
else {
timeUntilNextPingCheck -= (unsigned long)timeSinceLastPingCheck;
}
if ((now - _lastMemoizedTraceSettings) >= (ZT_HOUSEKEEPING_PERIOD / 4)) {
_lastMemoizedTraceSettings = now;
RR->t->updateMemoizedSettings();
}
if ((now - _lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) {
_lastHousekeepingRun = now;
try {
RR->topology->doPeriodicTasks(tptr, now);
RR->sa->clean(now);
RR->mc->clean(now);
}
catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
try {
*nextBackgroundTaskDeadline = now + (int64_t)std::max(std::min(bondCheckInterval, std::min(timeUntilNextPingCheck, RR->sw->doTimerTasks(tptr, now))), (unsigned long)ZT_CORE_TIMER_TASK_GRANULARITY);
}
catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
return ZT_RESULT_OK;
}
ZT_ResultCode Node::join(uint64_t nwid, void* uptr, void* tptr)
{
Mutex::Lock _l(_networks_m);
SharedPtr<Network>& nw = _networks[nwid];
if (! nw) {
nw = SharedPtr<Network>(new Network(RR, tptr, nwid, uptr, (const NetworkConfig*)0));
}
return ZT_RESULT_OK;
}
ZT_ResultCode Node::leave(uint64_t nwid, void** uptr, void* tptr)
{
ZT_VirtualNetworkConfig ctmp;
void** nUserPtr = (void**)0;
{
Mutex::Lock _l(_networks_m);
SharedPtr<Network>* nw = _networks.get(nwid);
RR->sw->removeNetworkQoSControlBlock(nwid);
if (! nw) {
return ZT_RESULT_OK;
}
if (uptr) {
*uptr = (*nw)->userPtr();
}
(*nw)->externalConfig(&ctmp);
(*nw)->destroy();
nUserPtr = (*nw)->userPtr();
}
if (nUserPtr) {
RR->node->configureVirtualNetworkPort(tptr, nwid, nUserPtr, ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY, &ctmp);
}
{
Mutex::Lock _l(_networks_m);
_networks.erase(nwid);
}
uint64_t tmp[2];
tmp[0] = nwid;
tmp[1] = 0;
RR->node->stateObjectDelete(tptr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp);
return ZT_RESULT_OK;
}
ZT_ResultCode Node::multicastSubscribe(void* tptr, uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi)
{
SharedPtr<Network> nw(this->network(nwid));
if (nw) {
nw->multicastSubscribe(tptr, MulticastGroup(MAC(multicastGroup), (uint32_t)(multicastAdi & 0xffffffff)));
return ZT_RESULT_OK;
}
else {
return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
}
ZT_ResultCode Node::multicastUnsubscribe(uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi)
{
SharedPtr<Network> nw(this->network(nwid));
if (nw) {
nw->multicastUnsubscribe(MulticastGroup(MAC(multicastGroup), (uint32_t)(multicastAdi & 0xffffffff)));
return ZT_RESULT_OK;
}
else {
return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
}
ZT_ResultCode Node::orbit(void* tptr, uint64_t moonWorldId, uint64_t moonSeed)
{
RR->topology->addMoon(tptr, moonWorldId, Address(moonSeed));
return ZT_RESULT_OK;
}
ZT_ResultCode Node::deorbit(void* tptr, uint64_t moonWorldId)
{
RR->topology->removeMoon(tptr, moonWorldId);
return ZT_RESULT_OK;
}
uint64_t Node::address() const
{
return RR->identity.address().toInt();
}
void Node::status(ZT_NodeStatus* status) const
{
status->address = RR->identity.address().toInt();
status->publicIdentity = RR->publicIdentityStr;
status->secretIdentity = RR->secretIdentityStr;
status->online = _online ? 1 : 0;
}
ZT_PeerList* Node::peers() const
{
std::vector<std::pair<Address, SharedPtr<Peer> > > peers(RR->topology->allPeers());
std::sort(peers.begin(), peers.end());
char* buf = (char*)::malloc(sizeof(ZT_PeerList) + (sizeof(ZT_Peer) * peers.size()));
if (! buf) {
return (ZT_PeerList*)0;
}
ZT_PeerList* pl = (ZT_PeerList*)buf;
pl->peers = (ZT_Peer*)(buf + sizeof(ZT_PeerList));
pl->peerCount = 0;
for (std::vector<std::pair<Address, SharedPtr<Peer> > >::iterator pi(peers.begin()); pi != peers.end(); ++pi) {
ZT_Peer* p = &(pl->peers[pl->peerCount++]);
p->address = pi->second->address().toInt();
p->isBonded = 0;
if (pi->second->remoteVersionKnown()) {
p->versionMajor = pi->second->remoteVersionMajor();
p->versionMinor = pi->second->remoteVersionMinor();
p->versionRev = pi->second->remoteVersionRevision();
}
else {
p->versionMajor = -1;
p->versionMinor = -1;
p->versionRev = -1;
}
p->latency = pi->second->latency(_now);
if (p->latency >= 0xffff) {
p->latency = -1;
}
p->role = RR->topology->role(pi->second->identity().address());
std::vector<SharedPtr<Path> > paths(pi->second->paths(_now));
SharedPtr<Path> bestp(pi->second->getAppropriatePath(_now, false));
p->pathCount = 0;
for (std::vector<SharedPtr<Path> >::iterator path(paths.begin()); path != paths.end(); ++path) {
if ((*path)->valid()) {
memcpy(&(p->paths[p->pathCount].address), &((*path)->address()), sizeof(struct sockaddr_storage));
p->paths[p->pathCount].localSocket = (*path)->localSocket();
p->paths[p->pathCount].localPort = (*path)->localPort();
p->paths[p->pathCount].lastSend = (*path)->lastOut();
p->paths[p->pathCount].lastReceive = (*path)->lastIn();
p->paths[p->pathCount].trustedPathId = RR->topology->getOutboundPathTrust((*path)->address());
p->paths[p->pathCount].expired = 0;
p->paths[p->pathCount].preferred = ((*path) == bestp) ? 1 : 0;
p->paths[p->pathCount].scope = (*path)->ipScope();
if (pi->second->bond()) {
p->paths[p->pathCount].latencyMean = (*path)->latencyMean();
p->paths[p->pathCount].latencyVariance = (*path)->latencyVariance();
p->paths[p->pathCount].packetLossRatio = (*path)->packetLossRatio();
p->paths[p->pathCount].packetErrorRatio = (*path)->packetErrorRatio();
p->paths[p->pathCount].assignedFlowCount = (*path)->assignedFlowCount();
p->paths[p->pathCount].relativeQuality = (*path)->relativeQuality();
p->paths[p->pathCount].linkSpeed = (*path)->givenLinkSpeed();
p->paths[p->pathCount].bonded = (*path)->bonded();
p->paths[p->pathCount].eligible = (*path)->eligible();
std::string ifname = std::string((*path)->ifname());
memset(p->paths[p->pathCount].ifname, 0x0, std::min((int)ifname.length() + 1, ZT_MAX_PHYSIFNAME));
memcpy(p->paths[p->pathCount].ifname, ifname.c_str(), std::min((int)ifname.length(), ZT_MAX_PHYSIFNAME));
}
++p->pathCount;
}
}
if (pi->second->bond()) {
p->isBonded = pi->second->bond();
p->bondingPolicy = pi->second->bondingPolicy();
p->numAliveLinks = pi->second->getNumAliveLinks();
p->numTotalLinks = pi->second->getNumTotalLinks();
}
}
return pl;
}
ZT_VirtualNetworkConfig* Node::networkConfig(uint64_t nwid) const
{
Mutex::Lock _l(_networks_m);
const SharedPtr<Network>* nw = _networks.get(nwid);
if (nw) {
ZT_VirtualNetworkConfig* nc = (ZT_VirtualNetworkConfig*)::malloc(sizeof(ZT_VirtualNetworkConfig));
(*nw)->externalConfig(nc);
return nc;
}
return (ZT_VirtualNetworkConfig*)0;
}
ZT_VirtualNetworkList* Node::networks() const
{
Mutex::Lock _l(_networks_m);
char* buf = (char*)::malloc(sizeof(ZT_VirtualNetworkList) + (sizeof(ZT_VirtualNetworkConfig) * _networks.size()));
if (! buf) {
return (ZT_VirtualNetworkList*)0;
}
ZT_VirtualNetworkList* nl = (ZT_VirtualNetworkList*)buf;
nl->networks = (ZT_VirtualNetworkConfig*)(buf + sizeof(ZT_VirtualNetworkList));
nl->networkCount = 0;
Hashtable<uint64_t, SharedPtr<Network> >::Iterator i(*const_cast<Hashtable<uint64_t, SharedPtr<Network> >*>(&_networks));
uint64_t* k = (uint64_t*)0;
SharedPtr<Network>* v = (SharedPtr<Network>*)0;
while (i.next(k, v)) {
(*v)->externalConfig(&(nl->networks[nl->networkCount++]));
}
return nl;
}
void Node::freeQueryResult(void* qr)
{
if (qr) {
::free(qr);
}
}
int Node::addLocalInterfaceAddress(const struct sockaddr_storage* addr)
{
if (Path::isAddressValidForPath(*(reinterpret_cast<const InetAddress*>(addr)))) {
Mutex::Lock _l(_directPaths_m);
if (std::find(_directPaths.begin(), _directPaths.end(), *(reinterpret_cast<const InetAddress*>(addr))) == _directPaths.end()) {
_directPaths.push_back(*(reinterpret_cast<const InetAddress*>(addr)));
return 1;
}
}
return 0;
}
void Node::clearLocalInterfaceAddresses()
{
Mutex::Lock _l(_directPaths_m);
_directPaths.clear();
}
int Node::sendUserMessage(void* tptr, uint64_t dest, uint64_t typeId, const void* data, unsigned int len)
{
try {
if (RR->identity.address().toInt() != dest) {
Packet outp(Address(dest), RR->identity.address(), Packet::VERB_USER_MESSAGE);
outp.append(typeId);
outp.append(data, len);
outp.compress();
RR->sw->send(tptr, outp, true);
return 1;
}
}
catch (...) {
}
return 0;
}
void Node::setNetconfMaster(void* networkControllerInstance)
{
RR->localNetworkController = reinterpret_cast<NetworkController*>(networkControllerInstance);
if (networkControllerInstance) {
RR->localNetworkController->init(RR->identity, this);
}
}
/****************************************************************************/
/* Node methods used only within node/ */
/****************************************************************************/
bool Node::shouldUsePathForZeroTierTraffic(void* tPtr, const Address& ztaddr, const int64_t localSocket, const InetAddress& remoteAddress)
{
if (! Path::isAddressValidForPath(remoteAddress)) {
return false;
}
if (RR->topology->isProhibitedEndpoint(ztaddr, remoteAddress)) {
return false;
}
{
Mutex::Lock _l(_networks_m);
Hashtable<uint64_t, SharedPtr<Network> >::Iterator i(_networks);
uint64_t* k = (uint64_t*)0;
SharedPtr<Network>* v = (SharedPtr<Network>*)0;
while (i.next(k, v)) {
if ((*v)->hasConfig()) {
for (unsigned int k = 0; k < (*v)->config().staticIpCount; ++k) {
if ((*v)->config().staticIps[k].containsAddress(remoteAddress)) {
return false;
}
}
}
}
}
return ((_cb.pathCheckFunction) ? (_cb.pathCheckFunction(reinterpret_cast<ZT_Node*>(this), _uPtr, tPtr, ztaddr.toInt(), localSocket, reinterpret_cast<const struct sockaddr_storage*>(&remoteAddress)) != 0) : true);
}
uint64_t Node::prng()
{
// https://en.wikipedia.org/wiki/Xorshift#xorshift.2B
uint64_t x = _prngState[0];
const uint64_t y = _prngState[1];
_prngState[0] = y;
x ^= x << 23;
const uint64_t z = x ^ y ^ (x >> 17) ^ (y >> 26);
_prngState[1] = z;
return z + y;
}
ZT_ResultCode Node::setPhysicalPathConfiguration(const struct sockaddr_storage* pathNetwork, const ZT_PhysicalPathConfiguration* pathConfig)
{
RR->topology->setPhysicalPathConfiguration(pathNetwork, pathConfig);
return ZT_RESULT_OK;
}
World Node::planet() const
{
return RR->topology->planet();
}
std::vector<World> Node::moons() const
{
return RR->topology->moons();
}
void Node::ncSendConfig(uint64_t nwid, uint64_t requestPacketId, const Address& destination, const NetworkConfig& nc, bool sendLegacyFormatConfig)
{
_localControllerAuthorizations_m.lock();
_localControllerAuthorizations[_LocalControllerAuth(nwid, destination)] = now();
_localControllerAuthorizations_m.unlock();
if (destination == RR->identity.address()) {
SharedPtr<Network> n(network(nwid));
if (! n) {
return;
}
n->setConfiguration((void*)0, nc, true);
}
else {
Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY>* dconf = new Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY>();
try {
if (nc.toDictionary(*dconf, sendLegacyFormatConfig)) {
uint64_t configUpdateId = prng();
if (! configUpdateId) {
++configUpdateId;
}
const unsigned int totalSize = dconf->sizeBytes();
unsigned int chunkIndex = 0;
while (chunkIndex < totalSize) {
const unsigned int chunkLen = std::min(totalSize - chunkIndex, (unsigned int)(ZT_PROTO_MAX_PACKET_LENGTH - (ZT_PACKET_IDX_PAYLOAD + 256)));
Packet outp(destination, RR->identity.address(), (requestPacketId) ? Packet::VERB_OK : Packet::VERB_NETWORK_CONFIG);
if (requestPacketId) {
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
}
const unsigned int sigStart = outp.size();
outp.append(nwid);
outp.append((uint16_t)chunkLen);
outp.append((const void*)(dconf->data() + chunkIndex), chunkLen);
outp.append((uint8_t)0); // no flags
outp.append((uint64_t)configUpdateId);
outp.append((uint32_t)totalSize);
outp.append((uint32_t)chunkIndex);
ECC::Signature sig(RR->identity.sign(reinterpret_cast<const uint8_t*>(outp.data()) + sigStart, outp.size() - sigStart));
outp.append((uint8_t)1);
outp.append((uint16_t)ZT_ECC_SIGNATURE_LEN);
outp.append(sig.data, ZT_ECC_SIGNATURE_LEN);
outp.compress();
RR->sw->send((void*)0, outp, true);
chunkIndex += chunkLen;
}
}
delete dconf;
}
catch (...) {
delete dconf;
throw;
}
}
}
void Node::ncSendRevocation(const Address& destination, const Revocation& rev)
{
if (destination == RR->identity.address()) {
SharedPtr<Network> n(network(rev.networkId()));
if (! n) {
return;
}
n->addCredential((void*)0, RR->identity.address(), rev);
}
else {
Packet outp(destination, RR->identity.address(), Packet::VERB_NETWORK_CREDENTIALS);
outp.append((uint8_t)0x00);
outp.append((uint16_t)0);
outp.append((uint16_t)0);
outp.append((uint16_t)1);
rev.serialize(outp);
outp.append((uint16_t)0);
RR->sw->send((void*)0, outp, true);
}
}
void Node::ncSendError(uint64_t nwid, uint64_t requestPacketId, const Address& destination, NetworkController::ErrorCode errorCode, const void* errorData, unsigned int errorDataSize)
{
if (destination == RR->identity.address()) {
SharedPtr<Network> n(network(nwid));
if (! n) {
return;
}
switch (errorCode) {
case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
n->setNotFound(nullptr);
break;
case NetworkController::NC_ERROR_ACCESS_DENIED:
n->setAccessDenied(nullptr);
break;
case NetworkController::NC_ERROR_AUTHENTICATION_REQUIRED: {
// fprintf(stderr, "\n\nGot auth required\n\n");
break;
}
default:
break;
}
}
else if (requestPacketId) {
Packet outp(destination, RR->identity.address(), Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
switch (errorCode) {
// case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
// case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
default:
outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND);
Metrics::pkt_error_obj_not_found_out++;
break;
case NetworkController::NC_ERROR_ACCESS_DENIED:
outp.append((unsigned char)Packet::ERROR_NETWORK_ACCESS_DENIED_);
Metrics::pkt_error_network_access_denied_out++;
break;
case NetworkController::NC_ERROR_AUTHENTICATION_REQUIRED:
outp.append((unsigned char)Packet::ERROR_NETWORK_AUTHENTICATION_REQUIRED);
Metrics::pkt_error_authentication_required_out++;
break;
}
outp.append(nwid);
if ((errorData) && (errorDataSize > 0) && (errorDataSize <= 0xffff)) {
outp.append((uint16_t)errorDataSize);
outp.append(errorData, errorDataSize);
}
RR->sw->send((void*)0, outp, true);
} // else we can't send an ERROR() in response to nothing, so discard
}
} // namespace ZeroTier
/****************************************************************************/
/* CAPI bindings */
/****************************************************************************/
extern "C" {
enum ZT_ResultCode ZT_Node_new(ZT_Node** node, void* uptr, void* tptr, const struct ZT_Node_Callbacks* callbacks, int64_t now)
{
*node = (ZT_Node*)0;
try {
*node = reinterpret_cast<ZT_Node*>(new ZeroTier::Node(uptr, tptr, callbacks, now));
return ZT_RESULT_OK;
}
catch (std::bad_alloc& exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
}
catch (std::runtime_error& exc) {
return ZT_RESULT_FATAL_ERROR_DATA_STORE_FAILED;
}
catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
void ZT_Node_delete(ZT_Node* node)
{
try {
delete (reinterpret_cast<ZeroTier::Node*>(node));
}
catch (...) {
}
}
enum ZT_ResultCode
ZT_Node_processWirePacket(ZT_Node* node, void* tptr, int64_t now, int64_t localSocket, const struct sockaddr_storage* remoteAddress, const void* packetData, unsigned int packetLength, volatile int64_t* nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node*>(node)->processWirePacket(tptr, now, localSocket, remoteAddress, packetData, packetLength, nextBackgroundTaskDeadline);
}
catch (std::bad_alloc& exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
}
catch (...) {
return ZT_RESULT_OK; // "OK" since invalid packets are simply dropped, but the system is still up
}
}
enum ZT_ResultCode ZT_Node_processVirtualNetworkFrame(
ZT_Node* node,
void* tptr,
int64_t now,
uint64_t nwid,
uint64_t sourceMac,
uint64_t destMac,
unsigned int etherType,
unsigned int vlanId,
const void* frameData,
unsigned int frameLength,
volatile int64_t* nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node*>(node)->processVirtualNetworkFrame(tptr, now, nwid, sourceMac, destMac, etherType, vlanId, frameData, frameLength, nextBackgroundTaskDeadline);
}
catch (std::bad_alloc& exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
}
catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_processBackgroundTasks(ZT_Node* node, void* tptr, int64_t now, volatile int64_t* nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node*>(node)->processBackgroundTasks(tptr, now, nextBackgroundTaskDeadline);
}
catch (std::bad_alloc& exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
}
catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_join(ZT_Node* node, uint64_t nwid, void* uptr, void* tptr)
{
try {
return reinterpret_cast<ZeroTier::Node*>(node)->join(nwid, uptr, tptr);
}
catch (std::bad_alloc& exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
}
catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_leave(ZT_Node* node, uint64_t nwid, void** uptr, void* tptr)
{
try {
return reinterpret_cast<ZeroTier::Node*>(node)->leave(nwid, uptr, tptr);
}
catch (std::bad_alloc& exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
}
catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node* node, void* tptr, uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi)
{
try {
return reinterpret_cast<ZeroTier::Node*>(node)->multicastSubscribe(tptr, nwid, multicastGroup, multicastAdi);
}
catch (std::bad_alloc& exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
}
catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node* node, uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi)
{
try {
return reinterpret_cast<ZeroTier::Node*>(node)->multicastUnsubscribe(nwid, multicastGroup, multicastAdi);
}
catch (std::bad_alloc& exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
}
catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_orbit(ZT_Node* node, void* tptr, uint64_t moonWorldId, uint64_t moonSeed)
{
try {
return reinterpret_cast<ZeroTier::Node*>(node)->orbit(tptr, moonWorldId, moonSeed);
}
catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_deorbit(ZT_Node* node, void* tptr, uint64_t moonWorldId)
{
try {
return reinterpret_cast<ZeroTier::Node*>(node)->deorbit(tptr, moonWorldId);
}
catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
uint64_t ZT_Node_address(ZT_Node* node)
{
return reinterpret_cast<ZeroTier::Node*>(node)->address();
}
void ZT_Node_status(ZT_Node* node, ZT_NodeStatus* status)
{
try {
reinterpret_cast<ZeroTier::Node*>(node)->status(status);
}
catch (...) {
}
}
ZT_PeerList* ZT_Node_peers(ZT_Node* node)
{
try {
return reinterpret_cast<ZeroTier::Node*>(node)->peers();
}
catch (...) {
return (ZT_PeerList*)0;
}
}
ZT_VirtualNetworkConfig* ZT_Node_networkConfig(ZT_Node* node, uint64_t nwid)
{
try {
return reinterpret_cast<ZeroTier::Node*>(node)->networkConfig(nwid);
}
catch (...) {
return (ZT_VirtualNetworkConfig*)0;
}
}
ZT_VirtualNetworkList* ZT_Node_networks(ZT_Node* node)
{
try {
return reinterpret_cast<ZeroTier::Node*>(node)->networks();
}
catch (...) {
return (ZT_VirtualNetworkList*)0;
}
}
void ZT_Node_freeQueryResult(ZT_Node* node, void* qr)
{
try {
reinterpret_cast<ZeroTier::Node*>(node)->freeQueryResult(qr);
}
catch (...) {
}
}
int ZT_Node_addLocalInterfaceAddress(ZT_Node* node, const struct sockaddr_storage* addr)
{
try {
return reinterpret_cast<ZeroTier::Node*>(node)->addLocalInterfaceAddress(addr);
}
catch (...) {
return 0;
}
}
void ZT_Node_clearLocalInterfaceAddresses(ZT_Node* node)
{
try {
reinterpret_cast<ZeroTier::Node*>(node)->clearLocalInterfaceAddresses();
}
catch (...) {
}
}
int ZT_Node_sendUserMessage(ZT_Node* node, void* tptr, uint64_t dest, uint64_t typeId, const void* data, unsigned int len)
{
try {
return reinterpret_cast<ZeroTier::Node*>(node)->sendUserMessage(tptr, dest, typeId, data, len);
}
catch (...) {
return 0;
}
}
void ZT_Node_setNetconfMaster(ZT_Node* node, void* networkControllerInstance)
{
try {
reinterpret_cast<ZeroTier::Node*>(node)->setNetconfMaster(networkControllerInstance);
}
catch (...) {
}
}
enum ZT_ResultCode ZT_Node_setPhysicalPathConfiguration(ZT_Node* node, const struct sockaddr_storage* pathNetwork, const ZT_PhysicalPathConfiguration* pathConfig)
{
try {
return reinterpret_cast<ZeroTier::Node*>(node)->setPhysicalPathConfiguration(pathNetwork, pathConfig);
}
catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
void ZT_version(int* major, int* minor, int* revision)
{
if (major) {
*major = ZEROTIER_ONE_VERSION_MAJOR;
}
if (minor) {
*minor = ZEROTIER_ONE_VERSION_MINOR;
}
if (revision) {
*revision = ZEROTIER_ONE_VERSION_REVISION;
}
}
} // extern "C"