/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include "Node.hpp" #include "../version.h" #include "Address.hpp" #include "Buffer.hpp" #include "Constants.hpp" #include "ECC.hpp" #include "Identity.hpp" #include "Metrics.hpp" #include "Multicaster.hpp" #include "Network.hpp" #include "NetworkController.hpp" #include "Packet.hpp" #include "PacketMultiplexer.hpp" #include "RuntimeEnvironment.hpp" #include "SelfAwareness.hpp" #include "SharedPtr.hpp" #include "Switch.hpp" #include "Topology.hpp" #include "Trace.hpp" #include #include #include #include #include // FIXME: remove this suppression and actually fix warnings #ifdef __GNUC__ #pragma GCC diagnostic ignored "-Wsign-compare" #endif namespace ZeroTier { /****************************************************************************/ /* Public Node interface (C++, exposed via CAPI bindings) */ /****************************************************************************/ Node::Node(void* uptr, void* tptr, const struct ZT_Node_Callbacks* callbacks, int64_t now) : _RR(this) , RR(&_RR) , _uPtr(uptr) , _networks(8) , _now(now) , _lastPingCheck(0) , _lastGratuitousPingCheck(0) , _lastHousekeepingRun(0) , _lastMemoizedTraceSettings(0) , _lowBandwidthMode(false) { if (callbacks->version != 0) { throw ZT_EXCEPTION_INVALID_ARGUMENT; } memcpy(&_cb, callbacks, sizeof(ZT_Node_Callbacks)); // Initialize non-cryptographic PRNG from a good random source Utils::getSecureRandom((void*)_prngState, sizeof(_prngState)); _online = false; memset(_expectingRepliesToBucketPtr, 0, sizeof(_expectingRepliesToBucketPtr)); memset(_expectingRepliesTo, 0, sizeof(_expectingRepliesTo)); memset(_lastIdentityVerification, 0, sizeof(_lastIdentityVerification)); memset((void*)(&_stats), 0, sizeof(_stats)); uint64_t idtmp[2]; idtmp[0] = 0; idtmp[1] = 0; char tmp[2048]; int n = stateObjectGet(tptr, ZT_STATE_OBJECT_IDENTITY_SECRET, idtmp, tmp, sizeof(tmp) - 1); if (n > 0) { tmp[n] = (char)0; if (RR->identity.fromString(tmp)) { RR->identity.toString(false, RR->publicIdentityStr); RR->identity.toString(true, RR->secretIdentityStr); } else { throw ZT_EXCEPTION_INVALID_IDENTITY; } if (! RR->identity.locallyValidate()) { throw ZT_EXCEPTION_INVALID_IDENTITY; } } if (n <= 0) { RR->identity.generate(); RR->identity.toString(false, RR->publicIdentityStr); RR->identity.toString(true, RR->secretIdentityStr); idtmp[0] = RR->identity.address().toInt(); idtmp[1] = 0; stateObjectPut(tptr, ZT_STATE_OBJECT_IDENTITY_SECRET, idtmp, RR->secretIdentityStr, (unsigned int)strlen(RR->secretIdentityStr)); stateObjectPut(tptr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, idtmp, RR->publicIdentityStr, (unsigned int)strlen(RR->publicIdentityStr)); } else { idtmp[0] = RR->identity.address().toInt(); idtmp[1] = 0; n = stateObjectGet(tptr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, idtmp, tmp, sizeof(tmp) - 1); if ((n > 0) && (n < (int)sizeof(RR->publicIdentityStr)) && (n < (int)sizeof(tmp))) { if (memcmp(tmp, RR->publicIdentityStr, n)) { stateObjectPut(tptr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, idtmp, RR->publicIdentityStr, (unsigned int)strlen(RR->publicIdentityStr)); } } } char* m = (char*)0; try { const unsigned long ts = sizeof(Trace) + (((sizeof(Trace) & 0xf) != 0) ? (16 - (sizeof(Trace) & 0xf)) : 0); const unsigned long sws = sizeof(Switch) + (((sizeof(Switch) & 0xf) != 0) ? (16 - (sizeof(Switch) & 0xf)) : 0); const unsigned long mcs = sizeof(Multicaster) + (((sizeof(Multicaster) & 0xf) != 0) ? (16 - (sizeof(Multicaster) & 0xf)) : 0); const unsigned long topologys = sizeof(Topology) + (((sizeof(Topology) & 0xf) != 0) ? (16 - (sizeof(Topology) & 0xf)) : 0); const unsigned long sas = sizeof(SelfAwareness) + (((sizeof(SelfAwareness) & 0xf) != 0) ? (16 - (sizeof(SelfAwareness) & 0xf)) : 0); const unsigned long bcs = sizeof(Bond) + (((sizeof(Bond) & 0xf) != 0) ? (16 - (sizeof(Bond) & 0xf)) : 0); const unsigned long pms = sizeof(PacketMultiplexer) + (((sizeof(PacketMultiplexer) & 0xf) != 0) ? (16 - (sizeof(PacketMultiplexer) & 0xf)) : 0); m = reinterpret_cast(::malloc(16 + ts + sws + mcs + topologys + sas + bcs + pms)); if (! m) { throw std::bad_alloc(); } RR->rtmem = m; while (((uintptr_t)m & 0xf) != 0) { ++m; } RR->t = new (m) Trace(RR); m += ts; RR->sw = new (m) Switch(RR); m += sws; RR->mc = new (m) Multicaster(RR); m += mcs; RR->topology = new (m) Topology(RR, tptr); m += topologys; RR->sa = new (m) SelfAwareness(RR); m += sas; RR->bc = new (m) Bond(RR); m += bcs; RR->pm = new (m) PacketMultiplexer(RR); } catch (...) { if (RR->sa) { RR->sa->~SelfAwareness(); } if (RR->topology) { RR->topology->~Topology(); } if (RR->mc) { RR->mc->~Multicaster(); } if (RR->sw) { RR->sw->~Switch(); } if (RR->t) { RR->t->~Trace(); } if (RR->bc) { RR->bc->~Bond(); } if (RR->pm) { RR->pm->~PacketMultiplexer(); } ::free(m); throw; } postEvent(tptr, ZT_EVENT_UP); } Node::~Node() { { Mutex::Lock _l(_networks_m); _networks.clear(); // destroy all networks before shutdown } if (RR->sa) { RR->sa->~SelfAwareness(); } if (RR->topology) { RR->topology->~Topology(); } if (RR->mc) { RR->mc->~Multicaster(); } if (RR->sw) { RR->sw->~Switch(); } if (RR->t) { RR->t->~Trace(); } if (RR->bc) { RR->bc->~Bond(); } if (RR->pm) { RR->pm->~PacketMultiplexer(); } ::free(RR->rtmem); } ZT_ResultCode Node::processWirePacket(void* tptr, int64_t now, int64_t localSocket, const struct sockaddr_storage* remoteAddress, const void* packetData, unsigned int packetLength, volatile int64_t* nextBackgroundTaskDeadline) { _now = now; RR->sw->onRemotePacket(tptr, localSocket, *(reinterpret_cast(remoteAddress)), packetData, packetLength); return ZT_RESULT_OK; } ZT_ResultCode Node::processVirtualNetworkFrame( void* tptr, int64_t now, uint64_t nwid, uint64_t sourceMac, uint64_t destMac, unsigned int etherType, unsigned int vlanId, const void* frameData, unsigned int frameLength, volatile int64_t* nextBackgroundTaskDeadline) { _now = now; SharedPtr nw(this->network(nwid)); if (nw) { RR->sw->onLocalEthernet(tptr, nw, MAC(sourceMac), MAC(destMac), etherType, vlanId, frameData, frameLength); return ZT_RESULT_OK; } else { return ZT_RESULT_ERROR_NETWORK_NOT_FOUND; } } void Node::initMultithreading(unsigned int concurrency, bool cpuPinningEnabled) { RR->pm->setUpPostDecodeReceiveThreads(concurrency, cpuPinningEnabled); } // Closure used to ping upstream and active/online peers class _PingPeersThatNeedPing { public: _PingPeersThatNeedPing(const RuntimeEnvironment* renv, void* tPtr, Hashtable >& alwaysContact, int64_t now) : RR(renv) , _tPtr(tPtr) , _alwaysContact(alwaysContact) , _now(now) , _bestCurrentUpstream(RR->topology->getUpstreamPeer()) { } inline void operator()(Topology& t, const SharedPtr& p) { const std::vector* const alwaysContactEndpoints = _alwaysContact.get(p->address()); if (alwaysContactEndpoints) { ZT_PeerRole role = RR->topology->role(p->address()); // Contact upstream peers as infrequently as possible int roleBasedTimerScale = (role == ZT_PEER_ROLE_LEAF) ? 2 : 16; // Unless we don't any have paths to the roots, then we shouldn't wait a long time to contact them bool hasPaths = p->paths(RR->node->now()).size() > 0; roleBasedTimerScale = (role != ZT_PEER_ROLE_LEAF && ! hasPaths) ? 0 : roleBasedTimerScale; if ((RR->node->now() - p->lastSentFullHello()) <= (ZT_PATH_HEARTBEAT_PERIOD * roleBasedTimerScale)) { return; } const unsigned int sent = p->doPingAndKeepalive(_tPtr, _now); bool contacted = (sent != 0); if ((sent & 0x1) == 0) { // bit 0x1 == IPv4 sent for (unsigned long k = 0, ptr = (unsigned long)RR->node->prng(); k < (unsigned long)alwaysContactEndpoints->size(); ++k) { const InetAddress& addr = (*alwaysContactEndpoints)[ptr++ % alwaysContactEndpoints->size()]; if (addr.ss_family == AF_INET) { p->sendHELLO(_tPtr, -1, addr, _now); contacted = true; break; } } } if ((sent & 0x2) == 0) { // bit 0x2 == IPv6 sent for (unsigned long k = 0, ptr = (unsigned long)RR->node->prng(); k < (unsigned long)alwaysContactEndpoints->size(); ++k) { const InetAddress& addr = (*alwaysContactEndpoints)[ptr++ % alwaysContactEndpoints->size()]; if (addr.ss_family == AF_INET6) { p->sendHELLO(_tPtr, -1, addr, _now); contacted = true; break; } } } if ((! contacted) && (_bestCurrentUpstream)) { const SharedPtr up(_bestCurrentUpstream->getAppropriatePath(_now, true)); if (up) { p->sendHELLO(_tPtr, up->localSocket(), up->address(), _now); } } _alwaysContact.erase(p->address()); // after this we'll WHOIS all upstreams that remain } else if (p->isActive(_now)) { p->doPingAndKeepalive(_tPtr, _now); } } private: const RuntimeEnvironment* RR; void* _tPtr; Hashtable >& _alwaysContact; const int64_t _now; const SharedPtr _bestCurrentUpstream; }; ZT_ResultCode Node::processBackgroundTasks(void* tptr, int64_t now, volatile int64_t* nextBackgroundTaskDeadline) { _now = now; Mutex::Lock bl(_backgroundTasksLock); // Process background bond tasks unsigned long bondCheckInterval = ZT_PING_CHECK_INTERVAL; if (RR->bc->inUse()) { bondCheckInterval = std::max(RR->bc->minReqMonitorInterval(), ZT_CORE_TIMER_TASK_GRANULARITY); if ((now - _lastGratuitousPingCheck) >= ZT_CORE_TIMER_TASK_GRANULARITY) { _lastGratuitousPingCheck = now; RR->bc->processBackgroundTasks(tptr, now); } } unsigned long timeUntilNextPingCheck = _lowBandwidthMode ? (ZT_PING_CHECK_INTERVAL * 5) : ZT_PING_CHECK_INTERVAL; const int64_t timeSinceLastPingCheck = now - _lastPingCheck; if (timeSinceLastPingCheck >= timeUntilNextPingCheck) { try { _lastPingCheck = now; // Get designated VL1 upstreams Hashtable > alwaysContact; RR->topology->getUpstreamsToContact(alwaysContact); // Uncomment to dump stats /* for(unsigned int i=0;i<32;i++) { if (_stats.inVerbCounts[i] > 0) printf("%.2x\t%12lld %lld\n",i,(unsigned long long)_stats.inVerbCounts[i],(unsigned long long)_stats.inVerbBytes[i]); } printf("\n"); */ // Check last receive time on designated upstreams to see if we seem to be online int64_t lastReceivedFromUpstream = 0; { Hashtable >::Iterator i(alwaysContact); Address* upstreamAddress = (Address*)0; std::vector* upstreamStableEndpoints = (std::vector*)0; while (i.next(upstreamAddress, upstreamStableEndpoints)) { SharedPtr p(RR->topology->getPeerNoCache(*upstreamAddress)); if (p) { lastReceivedFromUpstream = std::max(p->lastReceive(), lastReceivedFromUpstream); } } } // Clean up any old local controller auth memorizations. { _localControllerAuthorizations_m.lock(); Hashtable<_LocalControllerAuth, int64_t>::Iterator i(_localControllerAuthorizations); _LocalControllerAuth* k = (_LocalControllerAuth*)0; int64_t* v = (int64_t*)0; while (i.next(k, v)) { if ((*v - now) > (ZT_NETWORK_AUTOCONF_DELAY * 3)) { _localControllerAuthorizations.erase(*k); } } _localControllerAuthorizations_m.unlock(); } // Get peers we should stay connected to according to network configs // Also get networks and whether they need config so we only have to do one pass over networks int timerScale = _lowBandwidthMode ? 64 : 1; std::vector, bool> > networkConfigNeeded; { Mutex::Lock l(_networks_m); Hashtable >::Iterator i(_networks); uint64_t* nwid = (uint64_t*)0; SharedPtr* network = (SharedPtr*)0; while (i.next(nwid, network)) { (*network)->config().alwaysContactAddresses(alwaysContact); networkConfigNeeded.push_back(std::pair, bool>(*network, (((now - (*network)->lastConfigUpdate()) >= ZT_NETWORK_AUTOCONF_DELAY * timerScale) || (! (*network)->hasConfig())))); } } // Ping active peers, upstreams, and others that we should always contact _PingPeersThatNeedPing pfunc(RR, tptr, alwaysContact, now); RR->topology->eachPeer<_PingPeersThatNeedPing&>(pfunc); // Run WHOIS to create Peer for alwaysContact addresses that could not be contacted { Hashtable >::Iterator i(alwaysContact); Address* upstreamAddress = (Address*)0; std::vector* upstreamStableEndpoints = (std::vector*)0; while (i.next(upstreamAddress, upstreamStableEndpoints)) { RR->sw->requestWhois(tptr, now, *upstreamAddress); } } // Refresh network config or broadcast network updates to members as needed for (std::vector, bool> >::const_iterator n(networkConfigNeeded.begin()); n != networkConfigNeeded.end(); ++n) { if (n->second) { n->first->requestConfiguration(tptr); } if (! _lowBandwidthMode) { n->first->sendUpdatesToMembers(tptr); } } // Update online status, post status change as event const bool oldOnline = _online; _online = (((now - lastReceivedFromUpstream) < ZT_PEER_ACTIVITY_TIMEOUT) || (RR->topology->amUpstream())); if (oldOnline != _online) { postEvent(tptr, _online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE); } } catch (...) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } else { timeUntilNextPingCheck -= (unsigned long)timeSinceLastPingCheck; } if ((now - _lastMemoizedTraceSettings) >= (ZT_HOUSEKEEPING_PERIOD / 4)) { _lastMemoizedTraceSettings = now; RR->t->updateMemoizedSettings(); } if ((now - _lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) { _lastHousekeepingRun = now; try { RR->topology->doPeriodicTasks(tptr, now); RR->sa->clean(now); RR->mc->clean(now); } catch (...) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } try { *nextBackgroundTaskDeadline = now + (int64_t)std::max(std::min(bondCheckInterval, std::min(timeUntilNextPingCheck, RR->sw->doTimerTasks(tptr, now))), (unsigned long)ZT_CORE_TIMER_TASK_GRANULARITY); } catch (...) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } return ZT_RESULT_OK; } ZT_ResultCode Node::join(uint64_t nwid, void* uptr, void* tptr) { Mutex::Lock _l(_networks_m); SharedPtr& nw = _networks[nwid]; if (! nw) { nw = SharedPtr(new Network(RR, tptr, nwid, uptr, (const NetworkConfig*)0)); } return ZT_RESULT_OK; } ZT_ResultCode Node::leave(uint64_t nwid, void** uptr, void* tptr) { ZT_VirtualNetworkConfig ctmp; void** nUserPtr = (void**)0; { Mutex::Lock _l(_networks_m); SharedPtr* nw = _networks.get(nwid); RR->sw->removeNetworkQoSControlBlock(nwid); if (! nw) { return ZT_RESULT_OK; } if (uptr) { *uptr = (*nw)->userPtr(); } (*nw)->externalConfig(&ctmp); (*nw)->destroy(); nUserPtr = (*nw)->userPtr(); } if (nUserPtr) { RR->node->configureVirtualNetworkPort(tptr, nwid, nUserPtr, ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY, &ctmp); } { Mutex::Lock _l(_networks_m); _networks.erase(nwid); } uint64_t tmp[2]; tmp[0] = nwid; tmp[1] = 0; RR->node->stateObjectDelete(tptr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp); return ZT_RESULT_OK; } ZT_ResultCode Node::multicastSubscribe(void* tptr, uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi) { SharedPtr nw(this->network(nwid)); if (nw) { nw->multicastSubscribe(tptr, MulticastGroup(MAC(multicastGroup), (uint32_t)(multicastAdi & 0xffffffff))); return ZT_RESULT_OK; } else { return ZT_RESULT_ERROR_NETWORK_NOT_FOUND; } } ZT_ResultCode Node::multicastUnsubscribe(uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi) { SharedPtr nw(this->network(nwid)); if (nw) { nw->multicastUnsubscribe(MulticastGroup(MAC(multicastGroup), (uint32_t)(multicastAdi & 0xffffffff))); return ZT_RESULT_OK; } else { return ZT_RESULT_ERROR_NETWORK_NOT_FOUND; } } ZT_ResultCode Node::orbit(void* tptr, uint64_t moonWorldId, uint64_t moonSeed) { RR->topology->addMoon(tptr, moonWorldId, Address(moonSeed)); return ZT_RESULT_OK; } ZT_ResultCode Node::deorbit(void* tptr, uint64_t moonWorldId) { RR->topology->removeMoon(tptr, moonWorldId); return ZT_RESULT_OK; } uint64_t Node::address() const { return RR->identity.address().toInt(); } void Node::status(ZT_NodeStatus* status) const { status->address = RR->identity.address().toInt(); status->publicIdentity = RR->publicIdentityStr; status->secretIdentity = RR->secretIdentityStr; status->online = _online ? 1 : 0; } ZT_PeerList* Node::peers() const { std::vector > > peers(RR->topology->allPeers()); std::sort(peers.begin(), peers.end()); char* buf = (char*)::malloc(sizeof(ZT_PeerList) + (sizeof(ZT_Peer) * peers.size())); if (! buf) { return (ZT_PeerList*)0; } ZT_PeerList* pl = (ZT_PeerList*)buf; pl->peers = (ZT_Peer*)(buf + sizeof(ZT_PeerList)); pl->peerCount = 0; for (std::vector > >::iterator pi(peers.begin()); pi != peers.end(); ++pi) { ZT_Peer* p = &(pl->peers[pl->peerCount++]); p->address = pi->second->address().toInt(); p->isBonded = 0; if (pi->second->remoteVersionKnown()) { p->versionMajor = pi->second->remoteVersionMajor(); p->versionMinor = pi->second->remoteVersionMinor(); p->versionRev = pi->second->remoteVersionRevision(); } else { p->versionMajor = -1; p->versionMinor = -1; p->versionRev = -1; } p->latency = pi->second->latency(_now); if (p->latency >= 0xffff) { p->latency = -1; } p->role = RR->topology->role(pi->second->identity().address()); std::vector > paths(pi->second->paths(_now)); SharedPtr bestp(pi->second->getAppropriatePath(_now, false)); p->pathCount = 0; for (std::vector >::iterator path(paths.begin()); path != paths.end(); ++path) { if ((*path)->valid()) { memcpy(&(p->paths[p->pathCount].address), &((*path)->address()), sizeof(struct sockaddr_storage)); p->paths[p->pathCount].localSocket = (*path)->localSocket(); p->paths[p->pathCount].localPort = (*path)->localPort(); p->paths[p->pathCount].lastSend = (*path)->lastOut(); p->paths[p->pathCount].lastReceive = (*path)->lastIn(); p->paths[p->pathCount].trustedPathId = RR->topology->getOutboundPathTrust((*path)->address()); p->paths[p->pathCount].expired = 0; p->paths[p->pathCount].preferred = ((*path) == bestp) ? 1 : 0; p->paths[p->pathCount].scope = (*path)->ipScope(); if (pi->second->bond()) { p->paths[p->pathCount].latencyMean = (*path)->latencyMean(); p->paths[p->pathCount].latencyVariance = (*path)->latencyVariance(); p->paths[p->pathCount].packetLossRatio = (*path)->packetLossRatio(); p->paths[p->pathCount].packetErrorRatio = (*path)->packetErrorRatio(); p->paths[p->pathCount].assignedFlowCount = (*path)->assignedFlowCount(); p->paths[p->pathCount].relativeQuality = (*path)->relativeQuality(); p->paths[p->pathCount].linkSpeed = (*path)->givenLinkSpeed(); p->paths[p->pathCount].bonded = (*path)->bonded(); p->paths[p->pathCount].eligible = (*path)->eligible(); std::string ifname = std::string((*path)->ifname()); memset(p->paths[p->pathCount].ifname, 0x0, std::min((int)ifname.length() + 1, ZT_MAX_PHYSIFNAME)); memcpy(p->paths[p->pathCount].ifname, ifname.c_str(), std::min((int)ifname.length(), ZT_MAX_PHYSIFNAME)); } ++p->pathCount; } } if (pi->second->bond()) { p->isBonded = pi->second->bond(); p->bondingPolicy = pi->second->bondingPolicy(); p->numAliveLinks = pi->second->getNumAliveLinks(); p->numTotalLinks = pi->second->getNumTotalLinks(); } } return pl; } ZT_VirtualNetworkConfig* Node::networkConfig(uint64_t nwid) const { Mutex::Lock _l(_networks_m); const SharedPtr* nw = _networks.get(nwid); if (nw) { ZT_VirtualNetworkConfig* nc = (ZT_VirtualNetworkConfig*)::malloc(sizeof(ZT_VirtualNetworkConfig)); (*nw)->externalConfig(nc); return nc; } return (ZT_VirtualNetworkConfig*)0; } ZT_VirtualNetworkList* Node::networks() const { Mutex::Lock _l(_networks_m); char* buf = (char*)::malloc(sizeof(ZT_VirtualNetworkList) + (sizeof(ZT_VirtualNetworkConfig) * _networks.size())); if (! buf) { return (ZT_VirtualNetworkList*)0; } ZT_VirtualNetworkList* nl = (ZT_VirtualNetworkList*)buf; nl->networks = (ZT_VirtualNetworkConfig*)(buf + sizeof(ZT_VirtualNetworkList)); nl->networkCount = 0; Hashtable >::Iterator i(*const_cast >*>(&_networks)); uint64_t* k = (uint64_t*)0; SharedPtr* v = (SharedPtr*)0; while (i.next(k, v)) { (*v)->externalConfig(&(nl->networks[nl->networkCount++])); } return nl; } void Node::freeQueryResult(void* qr) { if (qr) { ::free(qr); } } int Node::addLocalInterfaceAddress(const struct sockaddr_storage* addr) { if (Path::isAddressValidForPath(*(reinterpret_cast(addr)))) { Mutex::Lock _l(_directPaths_m); if (std::find(_directPaths.begin(), _directPaths.end(), *(reinterpret_cast(addr))) == _directPaths.end()) { _directPaths.push_back(*(reinterpret_cast(addr))); return 1; } } return 0; } void Node::clearLocalInterfaceAddresses() { Mutex::Lock _l(_directPaths_m); _directPaths.clear(); } int Node::sendUserMessage(void* tptr, uint64_t dest, uint64_t typeId, const void* data, unsigned int len) { try { if (RR->identity.address().toInt() != dest) { Packet outp(Address(dest), RR->identity.address(), Packet::VERB_USER_MESSAGE); outp.append(typeId); outp.append(data, len); outp.compress(); RR->sw->send(tptr, outp, true); return 1; } } catch (...) { } return 0; } void Node::setNetconfMaster(void* networkControllerInstance) { RR->localNetworkController = reinterpret_cast(networkControllerInstance); if (networkControllerInstance) { RR->localNetworkController->init(RR->identity, this); } } /****************************************************************************/ /* Node methods used only within node/ */ /****************************************************************************/ bool Node::shouldUsePathForZeroTierTraffic(void* tPtr, const Address& ztaddr, const int64_t localSocket, const InetAddress& remoteAddress) { if (! Path::isAddressValidForPath(remoteAddress)) { return false; } if (RR->topology->isProhibitedEndpoint(ztaddr, remoteAddress)) { return false; } { Mutex::Lock _l(_networks_m); Hashtable >::Iterator i(_networks); uint64_t* k = (uint64_t*)0; SharedPtr* v = (SharedPtr*)0; while (i.next(k, v)) { if ((*v)->hasConfig()) { for (unsigned int k = 0; k < (*v)->config().staticIpCount; ++k) { if ((*v)->config().staticIps[k].containsAddress(remoteAddress)) { return false; } } } } } return ((_cb.pathCheckFunction) ? (_cb.pathCheckFunction(reinterpret_cast(this), _uPtr, tPtr, ztaddr.toInt(), localSocket, reinterpret_cast(&remoteAddress)) != 0) : true); } uint64_t Node::prng() { // https://en.wikipedia.org/wiki/Xorshift#xorshift.2B uint64_t x = _prngState[0]; const uint64_t y = _prngState[1]; _prngState[0] = y; x ^= x << 23; const uint64_t z = x ^ y ^ (x >> 17) ^ (y >> 26); _prngState[1] = z; return z + y; } ZT_ResultCode Node::setPhysicalPathConfiguration(const struct sockaddr_storage* pathNetwork, const ZT_PhysicalPathConfiguration* pathConfig) { RR->topology->setPhysicalPathConfiguration(pathNetwork, pathConfig); return ZT_RESULT_OK; } World Node::planet() const { return RR->topology->planet(); } std::vector Node::moons() const { return RR->topology->moons(); } void Node::ncSendConfig(uint64_t nwid, uint64_t requestPacketId, const Address& destination, const NetworkConfig& nc, bool sendLegacyFormatConfig) { _localControllerAuthorizations_m.lock(); _localControllerAuthorizations[_LocalControllerAuth(nwid, destination)] = now(); _localControllerAuthorizations_m.unlock(); if (destination == RR->identity.address()) { SharedPtr n(network(nwid)); if (! n) { return; } n->setConfiguration((void*)0, nc, true); } else { Dictionary* dconf = new Dictionary(); try { if (nc.toDictionary(*dconf, sendLegacyFormatConfig)) { uint64_t configUpdateId = prng(); if (! configUpdateId) { ++configUpdateId; } const unsigned int totalSize = dconf->sizeBytes(); unsigned int chunkIndex = 0; while (chunkIndex < totalSize) { const unsigned int chunkLen = std::min(totalSize - chunkIndex, (unsigned int)(ZT_PROTO_MAX_PACKET_LENGTH - (ZT_PACKET_IDX_PAYLOAD + 256))); Packet outp(destination, RR->identity.address(), (requestPacketId) ? Packet::VERB_OK : Packet::VERB_NETWORK_CONFIG); if (requestPacketId) { outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST); outp.append(requestPacketId); } const unsigned int sigStart = outp.size(); outp.append(nwid); outp.append((uint16_t)chunkLen); outp.append((const void*)(dconf->data() + chunkIndex), chunkLen); outp.append((uint8_t)0); // no flags outp.append((uint64_t)configUpdateId); outp.append((uint32_t)totalSize); outp.append((uint32_t)chunkIndex); ECC::Signature sig(RR->identity.sign(reinterpret_cast(outp.data()) + sigStart, outp.size() - sigStart)); outp.append((uint8_t)1); outp.append((uint16_t)ZT_ECC_SIGNATURE_LEN); outp.append(sig.data, ZT_ECC_SIGNATURE_LEN); outp.compress(); RR->sw->send((void*)0, outp, true); chunkIndex += chunkLen; } } delete dconf; } catch (...) { delete dconf; throw; } } } void Node::ncSendRevocation(const Address& destination, const Revocation& rev) { if (destination == RR->identity.address()) { SharedPtr n(network(rev.networkId())); if (! n) { return; } n->addCredential((void*)0, RR->identity.address(), rev); } else { Packet outp(destination, RR->identity.address(), Packet::VERB_NETWORK_CREDENTIALS); outp.append((uint8_t)0x00); outp.append((uint16_t)0); outp.append((uint16_t)0); outp.append((uint16_t)1); rev.serialize(outp); outp.append((uint16_t)0); RR->sw->send((void*)0, outp, true); } } void Node::ncSendError(uint64_t nwid, uint64_t requestPacketId, const Address& destination, NetworkController::ErrorCode errorCode, const void* errorData, unsigned int errorDataSize) { if (destination == RR->identity.address()) { SharedPtr n(network(nwid)); if (! n) { return; } switch (errorCode) { case NetworkController::NC_ERROR_OBJECT_NOT_FOUND: case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR: n->setNotFound(nullptr); break; case NetworkController::NC_ERROR_ACCESS_DENIED: n->setAccessDenied(nullptr); break; case NetworkController::NC_ERROR_AUTHENTICATION_REQUIRED: { // fprintf(stderr, "\n\nGot auth required\n\n"); break; } default: break; } } else if (requestPacketId) { Packet outp(destination, RR->identity.address(), Packet::VERB_ERROR); outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST); outp.append(requestPacketId); switch (errorCode) { // case NetworkController::NC_ERROR_OBJECT_NOT_FOUND: // case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR: default: outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND); Metrics::pkt_error_obj_not_found_out++; break; case NetworkController::NC_ERROR_ACCESS_DENIED: outp.append((unsigned char)Packet::ERROR_NETWORK_ACCESS_DENIED_); Metrics::pkt_error_network_access_denied_out++; break; case NetworkController::NC_ERROR_AUTHENTICATION_REQUIRED: outp.append((unsigned char)Packet::ERROR_NETWORK_AUTHENTICATION_REQUIRED); Metrics::pkt_error_authentication_required_out++; break; } outp.append(nwid); if ((errorData) && (errorDataSize > 0) && (errorDataSize <= 0xffff)) { outp.append((uint16_t)errorDataSize); outp.append(errorData, errorDataSize); } RR->sw->send((void*)0, outp, true); } // else we can't send an ERROR() in response to nothing, so discard } } // namespace ZeroTier /****************************************************************************/ /* CAPI bindings */ /****************************************************************************/ extern "C" { enum ZT_ResultCode ZT_Node_new(ZT_Node** node, void* uptr, void* tptr, const struct ZT_Node_Callbacks* callbacks, int64_t now) { *node = (ZT_Node*)0; try { *node = reinterpret_cast(new ZeroTier::Node(uptr, tptr, callbacks, now)); return ZT_RESULT_OK; } catch (std::bad_alloc& exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch (std::runtime_error& exc) { return ZT_RESULT_FATAL_ERROR_DATA_STORE_FAILED; } catch (...) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } void ZT_Node_delete(ZT_Node* node) { try { delete (reinterpret_cast(node)); } catch (...) { } } enum ZT_ResultCode ZT_Node_processWirePacket(ZT_Node* node, void* tptr, int64_t now, int64_t localSocket, const struct sockaddr_storage* remoteAddress, const void* packetData, unsigned int packetLength, volatile int64_t* nextBackgroundTaskDeadline) { try { return reinterpret_cast(node)->processWirePacket(tptr, now, localSocket, remoteAddress, packetData, packetLength, nextBackgroundTaskDeadline); } catch (std::bad_alloc& exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch (...) { return ZT_RESULT_OK; // "OK" since invalid packets are simply dropped, but the system is still up } } enum ZT_ResultCode ZT_Node_processVirtualNetworkFrame( ZT_Node* node, void* tptr, int64_t now, uint64_t nwid, uint64_t sourceMac, uint64_t destMac, unsigned int etherType, unsigned int vlanId, const void* frameData, unsigned int frameLength, volatile int64_t* nextBackgroundTaskDeadline) { try { return reinterpret_cast(node)->processVirtualNetworkFrame(tptr, now, nwid, sourceMac, destMac, etherType, vlanId, frameData, frameLength, nextBackgroundTaskDeadline); } catch (std::bad_alloc& exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch (...) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_processBackgroundTasks(ZT_Node* node, void* tptr, int64_t now, volatile int64_t* nextBackgroundTaskDeadline) { try { return reinterpret_cast(node)->processBackgroundTasks(tptr, now, nextBackgroundTaskDeadline); } catch (std::bad_alloc& exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch (...) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_join(ZT_Node* node, uint64_t nwid, void* uptr, void* tptr) { try { return reinterpret_cast(node)->join(nwid, uptr, tptr); } catch (std::bad_alloc& exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch (...) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_leave(ZT_Node* node, uint64_t nwid, void** uptr, void* tptr) { try { return reinterpret_cast(node)->leave(nwid, uptr, tptr); } catch (std::bad_alloc& exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch (...) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node* node, void* tptr, uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi) { try { return reinterpret_cast(node)->multicastSubscribe(tptr, nwid, multicastGroup, multicastAdi); } catch (std::bad_alloc& exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch (...) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node* node, uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi) { try { return reinterpret_cast(node)->multicastUnsubscribe(nwid, multicastGroup, multicastAdi); } catch (std::bad_alloc& exc) { return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY; } catch (...) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_orbit(ZT_Node* node, void* tptr, uint64_t moonWorldId, uint64_t moonSeed) { try { return reinterpret_cast(node)->orbit(tptr, moonWorldId, moonSeed); } catch (...) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } enum ZT_ResultCode ZT_Node_deorbit(ZT_Node* node, void* tptr, uint64_t moonWorldId) { try { return reinterpret_cast(node)->deorbit(tptr, moonWorldId); } catch (...) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } uint64_t ZT_Node_address(ZT_Node* node) { return reinterpret_cast(node)->address(); } void ZT_Node_status(ZT_Node* node, ZT_NodeStatus* status) { try { reinterpret_cast(node)->status(status); } catch (...) { } } ZT_PeerList* ZT_Node_peers(ZT_Node* node) { try { return reinterpret_cast(node)->peers(); } catch (...) { return (ZT_PeerList*)0; } } ZT_VirtualNetworkConfig* ZT_Node_networkConfig(ZT_Node* node, uint64_t nwid) { try { return reinterpret_cast(node)->networkConfig(nwid); } catch (...) { return (ZT_VirtualNetworkConfig*)0; } } ZT_VirtualNetworkList* ZT_Node_networks(ZT_Node* node) { try { return reinterpret_cast(node)->networks(); } catch (...) { return (ZT_VirtualNetworkList*)0; } } void ZT_Node_freeQueryResult(ZT_Node* node, void* qr) { try { reinterpret_cast(node)->freeQueryResult(qr); } catch (...) { } } int ZT_Node_addLocalInterfaceAddress(ZT_Node* node, const struct sockaddr_storage* addr) { try { return reinterpret_cast(node)->addLocalInterfaceAddress(addr); } catch (...) { return 0; } } void ZT_Node_clearLocalInterfaceAddresses(ZT_Node* node) { try { reinterpret_cast(node)->clearLocalInterfaceAddresses(); } catch (...) { } } int ZT_Node_sendUserMessage(ZT_Node* node, void* tptr, uint64_t dest, uint64_t typeId, const void* data, unsigned int len) { try { return reinterpret_cast(node)->sendUserMessage(tptr, dest, typeId, data, len); } catch (...) { return 0; } } void ZT_Node_setNetconfMaster(ZT_Node* node, void* networkControllerInstance) { try { reinterpret_cast(node)->setNetconfMaster(networkControllerInstance); } catch (...) { } } enum ZT_ResultCode ZT_Node_setPhysicalPathConfiguration(ZT_Node* node, const struct sockaddr_storage* pathNetwork, const ZT_PhysicalPathConfiguration* pathConfig) { try { return reinterpret_cast(node)->setPhysicalPathConfiguration(pathNetwork, pathConfig); } catch (...) { return ZT_RESULT_FATAL_ERROR_INTERNAL; } } void ZT_version(int* major, int* minor, int* revision) { if (major) { *major = ZEROTIER_ONE_VERSION_MAJOR; } if (minor) { *minor = ZEROTIER_ONE_VERSION_MINOR; } if (revision) { *revision = ZEROTIER_ONE_VERSION_REVISION; } } } // extern "C"