ZeroTierOne/node/Multicaster.cpp
2024-09-26 08:52:29 -04:00

452 lines
17 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2026-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Multicaster.hpp"
#include "CertificateOfMembership.hpp"
#include "Constants.hpp"
#include "Network.hpp"
#include "Node.hpp"
#include "Packet.hpp"
#include "Peer.hpp"
#include "RuntimeEnvironment.hpp"
#include "Switch.hpp"
#include "Topology.hpp"
#include <algorithm>
namespace ZeroTier {
Multicaster::Multicaster(const RuntimeEnvironment* renv) : RR(renv), _groups(32)
{
}
Multicaster::~Multicaster()
{
}
void Multicaster::addMultiple(void* tPtr, int64_t now, uint64_t nwid, const MulticastGroup& mg, const void* addresses, unsigned int count, unsigned int totalKnown)
{
const unsigned char* p = (const unsigned char*)addresses;
const unsigned char* e = p + (5 * count);
Mutex::Lock _l(_groups_m);
MulticastGroupStatus& gs = _groups[Multicaster::Key(nwid, mg)];
while (p != e) {
_add(tPtr, now, nwid, mg, gs, Address(p, 5));
p += 5;
}
}
void Multicaster::remove(uint64_t nwid, const MulticastGroup& mg, const Address& member)
{
Mutex::Lock _l(_groups_m);
MulticastGroupStatus* s = _groups.get(Multicaster::Key(nwid, mg));
if (s) {
for (std::vector<MulticastGroupMember>::iterator m(s->members.begin()); m != s->members.end(); ++m) {
if (m->address == member) {
s->members.erase(m);
break;
}
}
}
}
unsigned int Multicaster::gather(const Address& queryingPeer, uint64_t nwid, const MulticastGroup& mg, Buffer<ZT_PROTO_MAX_PACKET_LENGTH>& appendTo, unsigned int limit) const
{
unsigned char* p;
unsigned int added = 0, i, k, rptr, totalKnown = 0;
uint64_t a, picked[(ZT_PROTO_MAX_PACKET_LENGTH / 5) + 2];
if (! limit) {
return 0;
}
else if (limit > 0xffff) {
limit = 0xffff;
}
const unsigned int totalAt = appendTo.size();
appendTo.addSize(4); // sizeof(uint32_t)
const unsigned int addedAt = appendTo.size();
appendTo.addSize(2); // sizeof(uint16_t)
{ // Return myself if I am a member of this group
SharedPtr<Network> network(RR->node->network(nwid));
if ((network) && (network->subscribedToMulticastGroup(mg, true))) {
RR->identity.address().appendTo(appendTo);
++totalKnown;
++added;
}
}
Mutex::Lock _l(_groups_m);
const MulticastGroupStatus* s = _groups.get(Multicaster::Key(nwid, mg));
if ((s) && (! s->members.empty())) {
totalKnown += (unsigned int)s->members.size();
// Members are returned in random order so that repeated gather queries
// will return different subsets of a large multicast group.
k = 0;
while ((added < limit) && (k < s->members.size()) && ((appendTo.size() + ZT_ADDRESS_LENGTH) <= ZT_PROTO_MAX_PACKET_LENGTH)) {
rptr = (unsigned int)RR->node->prng();
restart_member_scan:
a = s->members[rptr % (unsigned int)s->members.size()].address.toInt();
for (i = 0; i < k; ++i) {
if (picked[i] == a) {
++rptr;
goto restart_member_scan;
}
}
picked[k++] = a;
if (queryingPeer.toInt() != a) { // do not return the peer that is making the request as a result
p = (unsigned char*)appendTo.appendField(ZT_ADDRESS_LENGTH);
*(p++) = (unsigned char)((a >> 32) & 0xff);
*(p++) = (unsigned char)((a >> 24) & 0xff);
*(p++) = (unsigned char)((a >> 16) & 0xff);
*(p++) = (unsigned char)((a >> 8) & 0xff);
*p = (unsigned char)(a & 0xff);
++added;
}
}
}
appendTo.setAt(totalAt, (uint32_t)totalKnown);
appendTo.setAt(addedAt, (uint16_t)added);
return added;
}
std::vector<Address> Multicaster::getMembers(uint64_t nwid, const MulticastGroup& mg, unsigned int limit) const
{
std::vector<Address> ls;
Mutex::Lock _l(_groups_m);
const MulticastGroupStatus* s = _groups.get(Multicaster::Key(nwid, mg));
if (! s) {
return ls;
}
for (std::vector<MulticastGroupMember>::const_reverse_iterator m(s->members.rbegin()); m != s->members.rend(); ++m) {
ls.push_back(m->address);
if (ls.size() >= limit) {
break;
}
}
return ls;
}
void Multicaster::send(void* tPtr, int64_t now, const SharedPtr<Network>& network, const Address& origin, const MulticastGroup& mg, const MAC& src, unsigned int etherType, const void* data, unsigned int len)
{
unsigned long idxbuf[4096];
unsigned long* indexes = idxbuf;
// If we're in hub-and-spoke designated multicast replication mode, see if we
// have a multicast replicator active. If so, pick the best and send it
// there. If we are a multicast replicator or if none are alive, fall back
// to sender replication. Note that bridges do not do this since this would
// break bridge route learning. This is sort of an edge case limitation of
// the current protocol and could be fixed, but fixing it would add more
// complexity than the fix is probably worth. Bridges are generally high
// bandwidth nodes.
if (! network->config().isActiveBridge(RR->identity.address())) {
Address multicastReplicators[ZT_MAX_NETWORK_SPECIALISTS];
const unsigned int multicastReplicatorCount = network->config().multicastReplicators(multicastReplicators);
if (multicastReplicatorCount) {
if (std::find(multicastReplicators, multicastReplicators + multicastReplicatorCount, RR->identity.address()) == (multicastReplicators + multicastReplicatorCount)) {
SharedPtr<Peer> bestMulticastReplicator;
SharedPtr<Path> bestMulticastReplicatorPath;
unsigned int bestMulticastReplicatorLatency = 0xffff;
for (unsigned int i = 0; i < multicastReplicatorCount; ++i) {
const SharedPtr<Peer> p(RR->topology->getPeerNoCache(multicastReplicators[i]));
if ((p) && (p->isAlive(now))) {
const SharedPtr<Path> pp(p->getAppropriatePath(now, false));
if ((pp) && (pp->latency() < bestMulticastReplicatorLatency)) {
bestMulticastReplicatorLatency = pp->latency();
bestMulticastReplicatorPath = pp;
bestMulticastReplicator = p;
}
}
}
if (bestMulticastReplicator) {
Packet outp(bestMulticastReplicator->address(), RR->identity.address(), Packet::VERB_MULTICAST_FRAME);
outp.append((uint64_t)network->id());
outp.append((uint8_t)0x0c); // includes source MAC | please replicate
((src) ? src : MAC(RR->identity.address(), network->id())).appendTo(outp);
mg.mac().appendTo(outp);
outp.append((uint32_t)mg.adi());
outp.append((uint16_t)etherType);
outp.append(data, len);
if (! network->config().disableCompression()) {
outp.compress();
}
outp.armor(bestMulticastReplicator->key(), true, false, bestMulticastReplicator->aesKeysIfSupported(), bestMulticastReplicator->identity());
Metrics::pkt_multicast_frame_out++;
bestMulticastReplicatorPath->send(RR, tPtr, outp.data(), outp.size(), now);
return;
}
}
}
}
try {
Mutex::Lock _l(_groups_m);
MulticastGroupStatus& gs = _groups[Multicaster::Key(network->id(), mg)];
if (! gs.members.empty()) {
// Allocate a memory buffer if group is monstrous
if (gs.members.size() > (sizeof(idxbuf) / sizeof(unsigned long))) {
indexes = new unsigned long[gs.members.size()];
}
// Generate a random permutation of member indexes
for (unsigned long i = 0; i < gs.members.size(); ++i) {
indexes[i] = i;
}
for (unsigned long i = (unsigned long)gs.members.size() - 1; i > 0; --i) {
unsigned long j = (unsigned long)RR->node->prng() % (i + 1);
unsigned long tmp = indexes[j];
indexes[j] = indexes[i];
indexes[i] = tmp;
}
}
Address activeBridges[ZT_MAX_NETWORK_SPECIALISTS];
const unsigned int activeBridgeCount = network->config().activeBridges(activeBridges);
const unsigned int limit = network->config().multicastLimit;
if (gs.members.size() >= limit) {
// Skip queue if we already have enough members to complete the send operation
OutboundMulticast out;
out.init(
RR,
now,
network->id(),
network->config().disableCompression(),
limit,
1, // we'll still gather a little from peers to keep multicast list fresh
src,
mg,
etherType,
data,
len);
unsigned int count = 0;
for (unsigned int i = 0; i < activeBridgeCount; ++i) {
if ((activeBridges[i] != RR->identity.address()) && (activeBridges[i] != origin)) {
out.sendOnly(RR, tPtr, activeBridges[i]); // optimization: don't use dedup log if it's a one-pass send
if (++count >= limit) {
break;
}
}
}
unsigned long idx = 0;
while ((count < limit) && (idx < gs.members.size())) {
const Address ma(gs.members[indexes[idx++]].address);
if ((std::find(activeBridges, activeBridges + activeBridgeCount, ma) == (activeBridges + activeBridgeCount)) && (ma != origin)) {
out.sendOnly(RR, tPtr, ma); // optimization: don't use dedup log if it's a one-pass send
++count;
}
}
}
else {
while (gs.txQueue.size() >= ZT_TX_QUEUE_SIZE) {
gs.txQueue.pop_front();
}
const unsigned int gatherLimit = (limit - (unsigned int)gs.members.size()) + 1;
int timerScale = RR->node->lowBandwidthModeEnabled() ? 3 : 1;
if ((gs.members.empty()) || ((now - gs.lastExplicitGather) >= (ZT_MULTICAST_EXPLICIT_GATHER_DELAY * timerScale))) {
gs.lastExplicitGather = now;
Address explicitGatherPeers[16];
unsigned int numExplicitGatherPeers = 0;
SharedPtr<Peer> bestRoot(RR->topology->getUpstreamPeer());
if (bestRoot) {
explicitGatherPeers[numExplicitGatherPeers++] = bestRoot->address();
}
explicitGatherPeers[numExplicitGatherPeers++] = network->controller();
Address ac[ZT_MAX_NETWORK_SPECIALISTS];
const unsigned int accnt = network->config().alwaysContactAddresses(ac);
unsigned int shuffled[ZT_MAX_NETWORK_SPECIALISTS];
for (unsigned int i = 0; i < accnt; ++i) {
shuffled[i] = i;
}
for (unsigned int i = 0, k = accnt >> 1; i < k; ++i) {
const uint64_t x = RR->node->prng();
const unsigned int x1 = shuffled[(unsigned int)x % accnt];
const unsigned int x2 = shuffled[(unsigned int)(x >> 32) % accnt];
const unsigned int tmp = shuffled[x1];
shuffled[x1] = shuffled[x2];
shuffled[x2] = tmp;
}
for (unsigned int i = 0; i < accnt; ++i) {
explicitGatherPeers[numExplicitGatherPeers++] = ac[shuffled[i]];
if (numExplicitGatherPeers == 16) {
break;
}
}
std::vector<Address> anchors(network->config().anchors());
for (std::vector<Address>::const_iterator a(anchors.begin()); a != anchors.end(); ++a) {
if (*a != RR->identity.address()) {
explicitGatherPeers[numExplicitGatherPeers++] = *a;
if (numExplicitGatherPeers == 16) {
break;
}
}
}
for (unsigned int k = 0; k < numExplicitGatherPeers; ++k) {
const CertificateOfMembership* com = (network) ? ((network->config().com) ? &(network->config().com) : (const CertificateOfMembership*)0) : (const CertificateOfMembership*)0;
Packet outp(explicitGatherPeers[k], RR->identity.address(), Packet::VERB_MULTICAST_GATHER);
outp.append(network->id());
outp.append((uint8_t)((com) ? 0x01 : 0x00));
mg.mac().appendTo(outp);
outp.append((uint32_t)mg.adi());
outp.append((uint32_t)gatherLimit);
if (com) {
com->serialize(outp);
}
RR->node->expectReplyTo(outp.packetId());
RR->sw->send(tPtr, outp, true);
Metrics::pkt_multicast_gather_out++;
}
}
gs.txQueue.push_back(OutboundMulticast());
OutboundMulticast& out = gs.txQueue.back();
out.init(RR, now, network->id(), network->config().disableCompression(), limit, gatherLimit, src, mg, etherType, data, len);
if (origin) {
out.logAsSent(origin);
}
unsigned int count = 0;
for (unsigned int i = 0; i < activeBridgeCount; ++i) {
if (activeBridges[i] != RR->identity.address()) {
out.sendAndLog(RR, tPtr, activeBridges[i]);
if (++count >= limit) {
break;
}
}
}
unsigned long idx = 0;
while ((count < limit) && (idx < gs.members.size())) {
Address ma(gs.members[indexes[idx++]].address);
if (std::find(activeBridges, activeBridges + activeBridgeCount, ma) == (activeBridges + activeBridgeCount)) {
out.sendAndLog(RR, tPtr, ma);
++count;
}
}
}
}
catch (...) {
} // this is a sanity check to catch any failures and make sure indexes[] still gets deleted
// Free allocated memory buffer if any
if (indexes != idxbuf) {
delete[] indexes;
}
}
void Multicaster::clean(int64_t now)
{
Mutex::Lock _l(_groups_m);
Multicaster::Key* k = (Multicaster::Key*)0;
MulticastGroupStatus* s = (MulticastGroupStatus*)0;
Hashtable<Multicaster::Key, MulticastGroupStatus>::Iterator mm(_groups);
while (mm.next(k, s)) {
for (std::list<OutboundMulticast>::iterator tx(s->txQueue.begin()); tx != s->txQueue.end();) {
if ((tx->expired(now)) || (tx->atLimit())) {
s->txQueue.erase(tx++);
}
else {
++tx;
}
}
unsigned long count = 0;
{
std::vector<MulticastGroupMember>::iterator reader(s->members.begin());
std::vector<MulticastGroupMember>::iterator writer(reader);
while (reader != s->members.end()) {
if ((now - reader->timestamp) < ZT_MULTICAST_LIKE_EXPIRE) {
*writer = *reader;
++writer;
++count;
}
++reader;
}
}
if (count) {
s->members.resize(count);
}
else if (s->txQueue.empty()) {
_groups.erase(*k);
}
else {
s->members.clear();
}
}
}
void Multicaster::_add(void* tPtr, int64_t now, uint64_t nwid, const MulticastGroup& mg, MulticastGroupStatus& gs, const Address& member)
{
// assumes _groups_m is locked
// Do not add self -- even if someone else returns it
if (member == RR->identity.address()) {
return;
}
std::vector<MulticastGroupMember>::iterator m(std::lower_bound(gs.members.begin(), gs.members.end(), member));
if (m != gs.members.end()) {
if (m->address == member) {
m->timestamp = now;
return;
}
gs.members.insert(m, MulticastGroupMember(member, now));
}
else {
gs.members.push_back(MulticastGroupMember(member, now));
}
for (std::list<OutboundMulticast>::iterator tx(gs.txQueue.begin()); tx != gs.txQueue.end();) {
if (tx->atLimit()) {
gs.txQueue.erase(tx++);
}
else {
tx->sendIfNew(RR, tPtr, member);
if (tx->atLimit()) {
gs.txQueue.erase(tx++);
}
else {
++tx;
}
}
}
}
} // namespace ZeroTier