/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include "Multicaster.hpp" #include "CertificateOfMembership.hpp" #include "Constants.hpp" #include "Network.hpp" #include "Node.hpp" #include "Packet.hpp" #include "Peer.hpp" #include "RuntimeEnvironment.hpp" #include "Switch.hpp" #include "Topology.hpp" #include namespace ZeroTier { Multicaster::Multicaster(const RuntimeEnvironment* renv) : RR(renv), _groups(32) { } Multicaster::~Multicaster() { } void Multicaster::addMultiple(void* tPtr, int64_t now, uint64_t nwid, const MulticastGroup& mg, const void* addresses, unsigned int count, unsigned int totalKnown) { const unsigned char* p = (const unsigned char*)addresses; const unsigned char* e = p + (5 * count); Mutex::Lock _l(_groups_m); MulticastGroupStatus& gs = _groups[Multicaster::Key(nwid, mg)]; while (p != e) { _add(tPtr, now, nwid, mg, gs, Address(p, 5)); p += 5; } } void Multicaster::remove(uint64_t nwid, const MulticastGroup& mg, const Address& member) { Mutex::Lock _l(_groups_m); MulticastGroupStatus* s = _groups.get(Multicaster::Key(nwid, mg)); if (s) { for (std::vector::iterator m(s->members.begin()); m != s->members.end(); ++m) { if (m->address == member) { s->members.erase(m); break; } } } } unsigned int Multicaster::gather(const Address& queryingPeer, uint64_t nwid, const MulticastGroup& mg, Buffer& appendTo, unsigned int limit) const { unsigned char* p; unsigned int added = 0, i, k, rptr, totalKnown = 0; uint64_t a, picked[(ZT_PROTO_MAX_PACKET_LENGTH / 5) + 2]; if (! limit) { return 0; } else if (limit > 0xffff) { limit = 0xffff; } const unsigned int totalAt = appendTo.size(); appendTo.addSize(4); // sizeof(uint32_t) const unsigned int addedAt = appendTo.size(); appendTo.addSize(2); // sizeof(uint16_t) { // Return myself if I am a member of this group SharedPtr network(RR->node->network(nwid)); if ((network) && (network->subscribedToMulticastGroup(mg, true))) { RR->identity.address().appendTo(appendTo); ++totalKnown; ++added; } } Mutex::Lock _l(_groups_m); const MulticastGroupStatus* s = _groups.get(Multicaster::Key(nwid, mg)); if ((s) && (! s->members.empty())) { totalKnown += (unsigned int)s->members.size(); // Members are returned in random order so that repeated gather queries // will return different subsets of a large multicast group. k = 0; while ((added < limit) && (k < s->members.size()) && ((appendTo.size() + ZT_ADDRESS_LENGTH) <= ZT_PROTO_MAX_PACKET_LENGTH)) { rptr = (unsigned int)RR->node->prng(); restart_member_scan: a = s->members[rptr % (unsigned int)s->members.size()].address.toInt(); for (i = 0; i < k; ++i) { if (picked[i] == a) { ++rptr; goto restart_member_scan; } } picked[k++] = a; if (queryingPeer.toInt() != a) { // do not return the peer that is making the request as a result p = (unsigned char*)appendTo.appendField(ZT_ADDRESS_LENGTH); *(p++) = (unsigned char)((a >> 32) & 0xff); *(p++) = (unsigned char)((a >> 24) & 0xff); *(p++) = (unsigned char)((a >> 16) & 0xff); *(p++) = (unsigned char)((a >> 8) & 0xff); *p = (unsigned char)(a & 0xff); ++added; } } } appendTo.setAt(totalAt, (uint32_t)totalKnown); appendTo.setAt(addedAt, (uint16_t)added); return added; } std::vector
Multicaster::getMembers(uint64_t nwid, const MulticastGroup& mg, unsigned int limit) const { std::vector
ls; Mutex::Lock _l(_groups_m); const MulticastGroupStatus* s = _groups.get(Multicaster::Key(nwid, mg)); if (! s) { return ls; } for (std::vector::const_reverse_iterator m(s->members.rbegin()); m != s->members.rend(); ++m) { ls.push_back(m->address); if (ls.size() >= limit) { break; } } return ls; } void Multicaster::send(void* tPtr, int64_t now, const SharedPtr& network, const Address& origin, const MulticastGroup& mg, const MAC& src, unsigned int etherType, const void* data, unsigned int len) { unsigned long idxbuf[4096]; unsigned long* indexes = idxbuf; // If we're in hub-and-spoke designated multicast replication mode, see if we // have a multicast replicator active. If so, pick the best and send it // there. If we are a multicast replicator or if none are alive, fall back // to sender replication. Note that bridges do not do this since this would // break bridge route learning. This is sort of an edge case limitation of // the current protocol and could be fixed, but fixing it would add more // complexity than the fix is probably worth. Bridges are generally high // bandwidth nodes. if (! network->config().isActiveBridge(RR->identity.address())) { Address multicastReplicators[ZT_MAX_NETWORK_SPECIALISTS]; const unsigned int multicastReplicatorCount = network->config().multicastReplicators(multicastReplicators); if (multicastReplicatorCount) { if (std::find(multicastReplicators, multicastReplicators + multicastReplicatorCount, RR->identity.address()) == (multicastReplicators + multicastReplicatorCount)) { SharedPtr bestMulticastReplicator; SharedPtr bestMulticastReplicatorPath; unsigned int bestMulticastReplicatorLatency = 0xffff; for (unsigned int i = 0; i < multicastReplicatorCount; ++i) { const SharedPtr p(RR->topology->getPeerNoCache(multicastReplicators[i])); if ((p) && (p->isAlive(now))) { const SharedPtr pp(p->getAppropriatePath(now, false)); if ((pp) && (pp->latency() < bestMulticastReplicatorLatency)) { bestMulticastReplicatorLatency = pp->latency(); bestMulticastReplicatorPath = pp; bestMulticastReplicator = p; } } } if (bestMulticastReplicator) { Packet outp(bestMulticastReplicator->address(), RR->identity.address(), Packet::VERB_MULTICAST_FRAME); outp.append((uint64_t)network->id()); outp.append((uint8_t)0x0c); // includes source MAC | please replicate ((src) ? src : MAC(RR->identity.address(), network->id())).appendTo(outp); mg.mac().appendTo(outp); outp.append((uint32_t)mg.adi()); outp.append((uint16_t)etherType); outp.append(data, len); if (! network->config().disableCompression()) { outp.compress(); } outp.armor(bestMulticastReplicator->key(), true, false, bestMulticastReplicator->aesKeysIfSupported(), bestMulticastReplicator->identity()); Metrics::pkt_multicast_frame_out++; bestMulticastReplicatorPath->send(RR, tPtr, outp.data(), outp.size(), now); return; } } } } try { Mutex::Lock _l(_groups_m); MulticastGroupStatus& gs = _groups[Multicaster::Key(network->id(), mg)]; if (! gs.members.empty()) { // Allocate a memory buffer if group is monstrous if (gs.members.size() > (sizeof(idxbuf) / sizeof(unsigned long))) { indexes = new unsigned long[gs.members.size()]; } // Generate a random permutation of member indexes for (unsigned long i = 0; i < gs.members.size(); ++i) { indexes[i] = i; } for (unsigned long i = (unsigned long)gs.members.size() - 1; i > 0; --i) { unsigned long j = (unsigned long)RR->node->prng() % (i + 1); unsigned long tmp = indexes[j]; indexes[j] = indexes[i]; indexes[i] = tmp; } } Address activeBridges[ZT_MAX_NETWORK_SPECIALISTS]; const unsigned int activeBridgeCount = network->config().activeBridges(activeBridges); const unsigned int limit = network->config().multicastLimit; if (gs.members.size() >= limit) { // Skip queue if we already have enough members to complete the send operation OutboundMulticast out; out.init( RR, now, network->id(), network->config().disableCompression(), limit, 1, // we'll still gather a little from peers to keep multicast list fresh src, mg, etherType, data, len); unsigned int count = 0; for (unsigned int i = 0; i < activeBridgeCount; ++i) { if ((activeBridges[i] != RR->identity.address()) && (activeBridges[i] != origin)) { out.sendOnly(RR, tPtr, activeBridges[i]); // optimization: don't use dedup log if it's a one-pass send if (++count >= limit) { break; } } } unsigned long idx = 0; while ((count < limit) && (idx < gs.members.size())) { const Address ma(gs.members[indexes[idx++]].address); if ((std::find(activeBridges, activeBridges + activeBridgeCount, ma) == (activeBridges + activeBridgeCount)) && (ma != origin)) { out.sendOnly(RR, tPtr, ma); // optimization: don't use dedup log if it's a one-pass send ++count; } } } else { while (gs.txQueue.size() >= ZT_TX_QUEUE_SIZE) { gs.txQueue.pop_front(); } const unsigned int gatherLimit = (limit - (unsigned int)gs.members.size()) + 1; int timerScale = RR->node->lowBandwidthModeEnabled() ? 3 : 1; if ((gs.members.empty()) || ((now - gs.lastExplicitGather) >= (ZT_MULTICAST_EXPLICIT_GATHER_DELAY * timerScale))) { gs.lastExplicitGather = now; Address explicitGatherPeers[16]; unsigned int numExplicitGatherPeers = 0; SharedPtr bestRoot(RR->topology->getUpstreamPeer()); if (bestRoot) { explicitGatherPeers[numExplicitGatherPeers++] = bestRoot->address(); } explicitGatherPeers[numExplicitGatherPeers++] = network->controller(); Address ac[ZT_MAX_NETWORK_SPECIALISTS]; const unsigned int accnt = network->config().alwaysContactAddresses(ac); unsigned int shuffled[ZT_MAX_NETWORK_SPECIALISTS]; for (unsigned int i = 0; i < accnt; ++i) { shuffled[i] = i; } for (unsigned int i = 0, k = accnt >> 1; i < k; ++i) { const uint64_t x = RR->node->prng(); const unsigned int x1 = shuffled[(unsigned int)x % accnt]; const unsigned int x2 = shuffled[(unsigned int)(x >> 32) % accnt]; const unsigned int tmp = shuffled[x1]; shuffled[x1] = shuffled[x2]; shuffled[x2] = tmp; } for (unsigned int i = 0; i < accnt; ++i) { explicitGatherPeers[numExplicitGatherPeers++] = ac[shuffled[i]]; if (numExplicitGatherPeers == 16) { break; } } std::vector
anchors(network->config().anchors()); for (std::vector
::const_iterator a(anchors.begin()); a != anchors.end(); ++a) { if (*a != RR->identity.address()) { explicitGatherPeers[numExplicitGatherPeers++] = *a; if (numExplicitGatherPeers == 16) { break; } } } for (unsigned int k = 0; k < numExplicitGatherPeers; ++k) { const CertificateOfMembership* com = (network) ? ((network->config().com) ? &(network->config().com) : (const CertificateOfMembership*)0) : (const CertificateOfMembership*)0; Packet outp(explicitGatherPeers[k], RR->identity.address(), Packet::VERB_MULTICAST_GATHER); outp.append(network->id()); outp.append((uint8_t)((com) ? 0x01 : 0x00)); mg.mac().appendTo(outp); outp.append((uint32_t)mg.adi()); outp.append((uint32_t)gatherLimit); if (com) { com->serialize(outp); } RR->node->expectReplyTo(outp.packetId()); RR->sw->send(tPtr, outp, true); Metrics::pkt_multicast_gather_out++; } } gs.txQueue.push_back(OutboundMulticast()); OutboundMulticast& out = gs.txQueue.back(); out.init(RR, now, network->id(), network->config().disableCompression(), limit, gatherLimit, src, mg, etherType, data, len); if (origin) { out.logAsSent(origin); } unsigned int count = 0; for (unsigned int i = 0; i < activeBridgeCount; ++i) { if (activeBridges[i] != RR->identity.address()) { out.sendAndLog(RR, tPtr, activeBridges[i]); if (++count >= limit) { break; } } } unsigned long idx = 0; while ((count < limit) && (idx < gs.members.size())) { Address ma(gs.members[indexes[idx++]].address); if (std::find(activeBridges, activeBridges + activeBridgeCount, ma) == (activeBridges + activeBridgeCount)) { out.sendAndLog(RR, tPtr, ma); ++count; } } } } catch (...) { } // this is a sanity check to catch any failures and make sure indexes[] still gets deleted // Free allocated memory buffer if any if (indexes != idxbuf) { delete[] indexes; } } void Multicaster::clean(int64_t now) { Mutex::Lock _l(_groups_m); Multicaster::Key* k = (Multicaster::Key*)0; MulticastGroupStatus* s = (MulticastGroupStatus*)0; Hashtable::Iterator mm(_groups); while (mm.next(k, s)) { for (std::list::iterator tx(s->txQueue.begin()); tx != s->txQueue.end();) { if ((tx->expired(now)) || (tx->atLimit())) { s->txQueue.erase(tx++); } else { ++tx; } } unsigned long count = 0; { std::vector::iterator reader(s->members.begin()); std::vector::iterator writer(reader); while (reader != s->members.end()) { if ((now - reader->timestamp) < ZT_MULTICAST_LIKE_EXPIRE) { *writer = *reader; ++writer; ++count; } ++reader; } } if (count) { s->members.resize(count); } else if (s->txQueue.empty()) { _groups.erase(*k); } else { s->members.clear(); } } } void Multicaster::_add(void* tPtr, int64_t now, uint64_t nwid, const MulticastGroup& mg, MulticastGroupStatus& gs, const Address& member) { // assumes _groups_m is locked // Do not add self -- even if someone else returns it if (member == RR->identity.address()) { return; } std::vector::iterator m(std::lower_bound(gs.members.begin(), gs.members.end(), member)); if (m != gs.members.end()) { if (m->address == member) { m->timestamp = now; return; } gs.members.insert(m, MulticastGroupMember(member, now)); } else { gs.members.push_back(MulticastGroupMember(member, now)); } for (std::list::iterator tx(gs.txQueue.begin()); tx != gs.txQueue.end();) { if (tx->atLimit()) { gs.txQueue.erase(tx++); } else { tx->sendIfNew(RR, tPtr, member); if (tx->atLimit()) { gs.txQueue.erase(tx++); } else { ++tx; } } } } } // namespace ZeroTier