OneService now binds all ports to specific local interfaces instead of wildcard and rebinds on changes. (default route)

This commit is contained in:
Adam Ierymenko 2016-04-05 15:44:08 -07:00
parent 4a109658ab
commit 32cd2a02c9
5 changed files with 294 additions and 219 deletions

View File

@ -45,11 +45,19 @@
#include <algorithm>
#include <utility>
#include "../node/NonCopyable.hpp"
#include "../node/InetAddress.hpp"
#include "../node/Mutex.hpp"
#include "Phy.hpp"
/**
* Period between binder rescans/refreshes
*
* OneService also does this on detected restarts.
*/
#define ZT_BINDER_REFRESH_PERIOD 30000
namespace ZeroTier {
/**
@ -63,36 +71,39 @@ namespace ZeroTier {
* On OSes that do not support local port enumeration or where this is not
* meaningful, this degrades to binding to wildcard.
*/
template<typename PHY_HANDLER_TYPE>
class Binder
class Binder : NonCopyable
{
private:
struct _Binding
{
_Binding() :
udpSock((PhySocket *)0),
tcpListenSock((PhySocket *)0),
address() {}
PhySocket *udpSock;
PhySocket *tcpListenSock;
InetAddress address;
};
public:
/**
* @param phy Physical interface to use -- be sure not to delete phy before binder
* @param port Port to bind to on all interfaces (TCP and UDP)
*/
Binder(Phy<PHY_HANDLER_TYPE> &phy,unsigned int port) :
_phy(phy),
_port(port)
{
}
Binder() {}
/**
* Closes all bound ports -- but NOT accepted connections on those ports
* Close all bound ports
*
* This should be called on shutdown. It closes listen sockets and UDP ports
* but not TCP connections from any TCP listen sockets.
*
* @param phy Physical interface
*/
~Binder()
template<typename PHY_HANDLER_TYPE>
void closeAll(Phy<PHY_HANDLER_TYPE> &phy)
{
Mutex::Lock _l(_lock);
for(typename std::vector<_Binding>::const_iterator i(_bindings.begin());i!=_bindings.end();++i) {
_phy.close(i->udpSock,false);
_phy.close(i->tcpListenSock,false);
phy.close(i->udpSock,false);
phy.close(i->tcpListenSock,false);
}
}
@ -102,20 +113,24 @@ public:
* This should be called after wake from sleep, on detected network device
* changes, on startup, or periodically (e.g. every 30-60s).
*
* @param phy Physical interface
* @param port Port to bind to on all interfaces (TCP and UDP)
* @param ignoreInterfacesByName Ignore these interfaces by name
* @param ignoreInterfacesByNamePrefix Ignore these interfaces by name-prefix (starts-with, e.g. zt ignores zt*)
* @param ignoreInterfacesByAddress Ignore these interfaces by address
* @tparam PHY_HANDLER_TYPE Type for Phy<> template
* @tparam INTERFACE_CHECKER Type for class containing shouldBindInterface() method
*/
void refresh(const std::vector<std::string> &ignoreInterfacesByName,const std::vector<std::string> &ignoreInterfacesByNamePrefix,const std::vector<InetAddress> &ignoreInterfacesByAddress)
template<typename PHY_HANDLER_TYPE,typename INTERFACE_CHECKER>
void refresh(Phy<PHY_HANDLER_TYPE> &phy,unsigned int port,INTERFACE_CHECKER &ifChecker)
{
// We use goto's in this code and some C++ compilers don't allow inline variable defs in that case, so declare them all here
std::vector<InetAddress> localIfAddrs;
std::vector<_Binding> newBindings;
std::vector<std::string>::const_iterator si;
std::vector<InetAddress>::const_iterator ii;
typename std::vector<_Binding>::const_iterator bi;
const char *na,*nb;
PhySocket *udps,*tcps;
PhySocket *udps;
//PhySocket *tcps;
InetAddress ip;
Mutex::Lock _l(_lock);
@ -130,43 +145,21 @@ public:
ifa = ifatbl;
while (ifa) {
if ((ifa->ifa_name)&&(ifa->ifa_addr)) {
for(si=ignoreInterfacesByName.begin();si!=ignoreInterfacesByName.end();++si) {
if (*si == ifa->ifa_name)
goto binder_hpp_ignore_interface;
}
for(si=ignoreInterfacesByNamePrefix.begin();si!=ignoreInterfacesByNamePrefix.end();++si) {
na = si->c_str();
nb = ifa->ifa_name;
while (*nb) {
if (*(na++) != *(nb++))
goto binder_hpp_interface_prefixes_dont_match;
}
goto binder_hpp_ignore_interface;
}
binder_hpp_interface_prefixes_dont_match:
ip = *(ifa->ifa_addr);
switch(ip.ipScope()) {
default: break;
case InetAddress::IP_SCOPE_PSEUDOPRIVATE:
case InetAddress::IP_SCOPE_GLOBAL:
//case InetAddress::IP_SCOPE_LINK_LOCAL:
case InetAddress::IP_SCOPE_SHARED:
case InetAddress::IP_SCOPE_PRIVATE:
for(ii=ignoreInterfacesByAddress.begin();ii!=ignoreInterfacesByAddress.end();++ii) {
if (ip.ipsEqual(*ii))
goto binder_hpp_ignore_interface;
}
ip.setPort(_port);
localIfAddrs.push_back(ip);
break;
if (ifChecker.shouldBindInterface(ifa->ifa_name,ip)) {
switch(ip.ipScope()) {
default: break;
case InetAddress::IP_SCOPE_PSEUDOPRIVATE:
case InetAddress::IP_SCOPE_GLOBAL:
//case InetAddress::IP_SCOPE_LINK_LOCAL:
case InetAddress::IP_SCOPE_SHARED:
case InetAddress::IP_SCOPE_PRIVATE:
ip.setPort(port);
localIfAddrs.push_back(ip);
break;
}
}
}
binder_hpp_ignore_interface:
ifa = ifa->ifa_next;
}
}
@ -177,15 +170,15 @@ binder_hpp_ignore_interface:
// Default to binding to wildcard if we can't enumerate addresses
if (localIfAddrs.size() == 0) {
localIfAddrs.push_back(InetAddress((uint32_t)0,_port));
localIfAddrs.push_back(InetAddress((const void *)"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0",16,_port));
localIfAddrs.push_back(InetAddress((uint32_t)0,port));
localIfAddrs.push_back(InetAddress((const void *)"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0",16,port));
}
// Close any bindings to anything that doesn't exist anymore
// Close any old bindings to anything that doesn't exist anymore
for(bi=_bindings.begin();bi!=_bindings.end();++bi) {
if (std::find(localIfAddrs.begin(),localIfAddrs.end(),bi->address) == localIfAddrs.end()) {
_phy.close(bi->udpSock,false);
_phy.close(bi->tcpListenSock,false);
phy.close(bi->udpSock,false);
phy.close(bi->tcpListenSock,false);
}
}
@ -200,21 +193,27 @@ binder_hpp_ignore_interface:
// Add new bindings
if (bi == _bindings.end()) {
udps = _phy.udpBind(reinterpret_cast<const struct sockaddr *>(&ii),(void *)0,ZT_UDP_DESIRED_BUF_SIZE);
udps = phy.udpBind(reinterpret_cast<const struct sockaddr *>(&(*ii)),(void *)0,ZT_UDP_DESIRED_BUF_SIZE);
if (udps) {
tcps = _phy.tcpListen(reinterpret_cast<const struct sockaddr *>(&ii),(void *)0);
if (tcps) {
//tcps = phy.tcpListen(reinterpret_cast<const struct sockaddr *>(&ii),(void *)0);
//if (tcps) {
newBindings.push_back(_Binding());
newBindings.back().udpSock = udps;
newBindings.back().tcpListenSock = tcps;
//newBindings.back().tcpListenSock = tcps;
newBindings.back().address = *ii;
} else {
_phy.close(udps,false);
}
//} else {
// phy.close(udps,false);
//}
}
}
}
/*
for(bi=newBindings.begin();bi!=newBindings.end();++bi) {
printf("Binder: bound to %s\n",bi->address.toString().c_str());
}
*/
// Swapping pointers and then letting the old one fall out of scope is faster than copying again
_bindings.swap(newBindings);
}
@ -242,34 +241,41 @@ binder_hpp_ignore_interface:
* @param remote Remote address
* @param data Data to send
* @param len Length of data
* @param v4ttl If non-zero, send this packet with the specified IP TTL (IPv4 only)
*/
inline bool udpSend(const InetAddress &local,const InetAddress &remote,const void *data,unsigned int len) const
template<typename PHY_HANDLER_TYPE>
inline bool udpSend(Phy<PHY_HANDLER_TYPE> &phy,const InetAddress &local,const InetAddress &remote,const void *data,unsigned int len,unsigned int v4ttl = 0) const
{
Mutex::Lock _l(_lock);
if (local) {
for(typename std::vector<_Binding>::const_iterator i(_bindings.begin());i!=_bindings.end();++i) {
if (i->address == local)
return _phy.udpSend(i->udpSock,reinterpret_cast<const struct sockaddr *>(&remote),data,len);
if (i->address == local) {
if ((v4ttl)&&(local.ss_family == AF_INET))
phy.setIp4UdpTtl(i->udpSock,v4ttl);
const bool result = phy.udpSend(i->udpSock,reinterpret_cast<const struct sockaddr *>(&remote),data,len);
if ((v4ttl)&&(local.ss_family == AF_INET))
phy.setIp4UdpTtl(i->udpSock,255);
return result;
}
}
return false;
} else {
bool result = false;
for(typename std::vector<_Binding>::const_iterator i(_bindings.begin());i!=_bindings.end();++i) {
if (i->address.ss_family == remote.ss_family)
result |= _phy.udpSend(i->udpSock,reinterpret_cast<const struct sockaddr *>(&remote),data,len);
if (i->address.ss_family == remote.ss_family) {
if ((v4ttl)&&(remote.ss_family == AF_INET))
phy.setIp4UdpTtl(i->udpSock,v4ttl);
result |= phy.udpSend(i->udpSock,reinterpret_cast<const struct sockaddr *>(&remote),data,len);
if ((v4ttl)&&(remote.ss_family == AF_INET))
phy.setIp4UdpTtl(i->udpSock,255);
}
}
return result;
}
}
/**
* @return Local port we are handling bindings to
*/
inline unsigned int port() const { return _port; }
private:
std::vector<_Binding> _bindings;
Phy<PHY_HANDLER_TYPE> &_phy;
unsigned int _port;
Mutex _lock;
};

View File

@ -53,7 +53,7 @@ static const struct http_parser_settings HTTP_PARSER_SETTINGS = {
struct HttpPhyHandler
{
// not used
inline void phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len) {}
inline void phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *localAddr,const struct sockaddr *from,void *data,unsigned long len) {}
inline void phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from) {}
inline void phyOnTcpConnect(PhySocket *sock,void **uptr,bool success)

View File

@ -89,7 +89,7 @@ typedef void PhySocket;
*
* For all platforms:
*
* phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len)
* phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *localAddr,const struct sockaddr *from,void *data,unsigned long len)
* phyOnTcpConnect(PhySocket *sock,void **uptr,bool success)
* phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from)
* phyOnTcpClose(PhySocket *sock,void **uptr)
@ -963,7 +963,7 @@ public:
long n = (long)::recvfrom(s->sock,buf,sizeof(buf),0,(struct sockaddr *)&ss,&slen);
if (n > 0) {
try {
_handler->phyOnDatagram((PhySocket *)&(*s),&(s->uptr),(const struct sockaddr *)&ss,(void *)buf,(unsigned long)n);
_handler->phyOnDatagram((PhySocket *)&(*s),&(s->uptr),(const struct sockaddr *)&(s->saddr),(const struct sockaddr *)&ss,(void *)buf,(unsigned long)n);
} catch ( ... ) {}
} else if (n < 0)
break;

View File

@ -804,7 +804,7 @@ struct TestPhyHandlers;
static Phy<TestPhyHandlers *> *testPhyInstance = (Phy<TestPhyHandlers *> *)0;
struct TestPhyHandlers
{
inline void phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len)
inline void phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *localAddr,const struct sockaddr *from,void *data,unsigned long len)
{
++phyTestUdpPacketCount;
}

View File

@ -115,7 +115,8 @@ namespace ZeroTier { typedef BSDEthernetTap EthernetTap; }
#define ZT_MAX_HTTP_MESSAGE_SIZE (1024 * 1024 * 64)
#define ZT_MAX_HTTP_CONNECTIONS 64
// Interface metric for ZeroTier taps
// Interface metric for ZeroTier taps -- this ensures that if we are on WiFi and also
// bridged via ZeroTier to the same LAN traffic will (if the OS is sane) prefer WiFi.
#define ZT_IF_METRIC 5000
// How often to check for new multicast subscriptions on a tap device
@ -473,10 +474,10 @@ public:
* destructively with uPnP port mapping behavior in very weird buggy ways.
* It's only used if uPnP/NAT-PMP is enabled in this build.
*/
struct {
InetAddress v4a,v6a;
PhySocket *v4s,*v6s;
} _udp[3];
Binder _bindings[3];
unsigned int _ports[3];
uint16_t _portsBE[3]; // ports in big-endian network byte order as in sockaddr
// Sockets for JSON API -- bound only to V4 and V6 localhost
PhySocket *_v4TcpControlSocket;
@ -511,9 +512,6 @@ public:
std::string _fatalErrorMessage;
Mutex _termReason_m;
// The default/deterministic port we were told to use, normally 9993
unsigned int _port;
// uPnP/NAT-PMP port mapper if enabled
#ifdef ZT_USE_MINIUPNPC
PortMapper *_portMapper;
@ -550,7 +548,6 @@ public:
,_nextBackgroundTaskDeadline(0)
,_tcpFallbackTunnel((TcpConnection *)0)
,_termReason(ONE_STILL_RUNNING)
,_port(0)
#ifdef ZT_USE_MINIUPNPC
,_portMapper((PortMapper *)0)
#endif
@ -562,8 +559,13 @@ public:
#endif
,_run(true)
{
memset((void *)_udp,0,sizeof(_udp));
_ports[0] = 0;
_ports[1] = 0;
_ports[2] = 0;
// The control socket is bound to the default/static port on localhost. If we
// can do this, we have successfully allocated a port. The binders will take
// care of binding non-local addresses for ZeroTier traffic.
const int portTrials = (port == 0) ? 256 : 1; // if port is 0, pick random
for(int k=0;k<portTrials;++k) {
if (port == 0) {
@ -572,59 +574,54 @@ public:
port = 40000 + (randp % 25500);
}
_udp[0].v4a = InetAddress((uint32_t)0,port);
_udp[0].v4s = _phy.udpBind((const struct sockaddr *)&(_udp[0].v4a),(void *)&(_udp[0].v4a),ZT_UDP_DESIRED_BUF_SIZE);
struct sockaddr_in in4;
memset(&in4,0,sizeof(in4));
in4.sin_family = AF_INET;
in4.sin_addr.s_addr = Utils::hton((uint32_t)0x7f000001); // right now we just listen for TCP @127.0.0.1
in4.sin_port = Utils::hton((uint16_t)port);
_v4TcpControlSocket = _phy.tcpListen((const struct sockaddr *)&in4,this);
if (_udp[0].v4s) {
struct sockaddr_in in4;
memset(&in4,0,sizeof(in4));
in4.sin_family = AF_INET;
in4.sin_addr.s_addr = Utils::hton((uint32_t)0x7f000001); // right now we just listen for TCP @127.0.0.1
in4.sin_port = Utils::hton((uint16_t)port);
_v4TcpControlSocket = _phy.tcpListen((const struct sockaddr *)&in4,this);
struct sockaddr_in6 in6;
memset((void *)&in6,0,sizeof(in6));
in6.sin6_family = AF_INET6;
in6.sin6_port = in4.sin_port;
in6.sin6_addr.s6_addr[15] = 1; // IPv6 localhost == ::1
_v6TcpControlSocket = _phy.tcpListen((const struct sockaddr *)&in6,this);
if (_v4TcpControlSocket) {
_udp[0].v6a = InetAddress("\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0",16,port);
_udp[0].v6s = _phy.udpBind((const struct sockaddr *)&(_udp[0].v6a),(void *)&(_udp[0].v6a),ZT_UDP_DESIRED_BUF_SIZE);
struct sockaddr_in6 in6;
memset((void *)&in6,0,sizeof(in6));
in6.sin6_family = AF_INET6;
in6.sin6_port = in4.sin_port;
in6.sin6_addr.s6_addr[15] = 1; // IPv6 localhost == ::1
_v6TcpControlSocket = _phy.tcpListen((const struct sockaddr *)&in6,this);
_port = port;
break; // success!
} else {
_phy.close(_udp[0].v4s,false);
}
// We must bind one of IPv4 or IPv6 -- support either failing to support hosts that
// have only IPv4 or only IPv6 stacks.
if (((_v4TcpControlSocket)||(_v6TcpControlSocket))&&(_trialBind(port))) {
_ports[0] = port;
break;
} else {
if (_v4TcpControlSocket)
_phy.close(_v4TcpControlSocket,false);
if (_v6TcpControlSocket)
_phy.close(_v6TcpControlSocket,false);
port = 0;
}
port = 0;
}
if (_port == 0)
throw std::runtime_error("cannot bind to port");
if (_ports[0] == 0)
throw std::runtime_error("cannot bind to local control interface port");
char portstr[64];
Utils::snprintf(portstr,sizeof(portstr),"%u",_port);
Utils::snprintf(portstr,sizeof(portstr),"%u",_ports[0]);
OSUtils::writeFile((_homePath + ZT_PATH_SEPARATOR_S + "zerotier-one.port").c_str(),std::string(portstr));
}
virtual ~OneServiceImpl()
{
for(int i=0;i<3;++i) {
if (_udp[i].v4s)
_phy.close(_udp[i].v4s);
if (_udp[i].v6s)
_phy.close(_udp[i].v6s);
}
for(int i=0;i<3;++i)
_bindings[i].closeAll(_phy);
_phy.close(_v4TcpControlSocket);
_phy.close(_v6TcpControlSocket);
#ifdef ZT_ENABLE_CLUSTER
_phy.close(_clusterMessageSocket);
#endif
#ifdef ZT_USE_MINIUPNPC
delete _portMapper;
#endif
@ -654,7 +651,9 @@ public:
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = "authtoken.secret could not be written";
return _termReason;
} else OSUtils::lockDownFile(authTokenPath.c_str(),false);
} else {
OSUtils::lockDownFile(authTokenPath.c_str(),false);
}
}
}
authToken = _trimString(authToken);
@ -670,42 +669,47 @@ public:
SnodePathCheckFunction,
SnodeEventCallback);
// Bind secondary randomized port. If this fails we continue anyway.
for(int k=0;k<512;++k) {
const unsigned int randomizedPort = 40000 + (((unsigned int)_node->address() + k) % 25500);
_udp[1].v4a = InetAddress(0,randomizedPort);
_udp[1].v4s = _phy.udpBind((const struct sockaddr *)&(_udp[1].v4a),(void *)&(_udp[1].v4a),ZT_UDP_DESIRED_BUF_SIZE);
if (_udp[1].v4s) {
_udp[1].v6a = InetAddress("\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0",16,randomizedPort);
_udp[1].v6s = _phy.udpBind((const struct sockaddr *)&(_udp[1].v6a),(void *)&(_udp[1].v6a),ZT_UDP_DESIRED_BUF_SIZE);
if (_udp[1].v6s) {
break;
} else {
_phy.close(_udp[1].v4s);
_udp[1].v4s = (PhySocket *)0;
}
// Attempt to bind to a secondary port chosen from our ZeroTier address.
// This exists because there are buggy NATs out there that fail if more
// than one device behind the same NAT tries to use the same internal
// private address port number.
_ports[1] = 20000 + ((unsigned int)_node->address() % 45500);
for(int i=0;;++i) {
if (i > 256) {
_ports[1] = 0;
break;
} else if (++_ports[1] >= 65536) {
_ports[1] = 20000;
}
if (_trialBind(_ports[1]))
break;
}
#ifdef ZT_USE_MINIUPNPC
// Bind tertiary uPnP/NAT-PMP redirect port. If this succeeds start port mapper.
for(int k=0;k<512;++k) {
const unsigned int mapperPort = 40000 + (((_port + 1) * (k + 1)) % 25500);
char uniqueName[64];
_udp[2].v4a = InetAddress(0,mapperPort);
_udp[2].v4s = _phy.udpBind((const struct sockaddr *)&(_udp[2].v4a),(void *)&(_udp[2].v4a),ZT_UDP_DESIRED_BUF_SIZE);
if (_udp[2].v4s) {
Utils::snprintf(uniqueName,sizeof(uniqueName),"ZeroTier/%.10llx",_node->address());
_portMapper = new PortMapper(mapperPort,uniqueName);
_udp[2].v6a = InetAddress("\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0",16,mapperPort);
_udp[2].v6s = _phy.udpBind((const struct sockaddr *)&(_udp[2].v6a),(void *)&(_udp[2].v6a),ZT_UDP_DESIRED_BUF_SIZE); // okay if this fails, but it shouldn't
// If we're running uPnP/NAT-PMP, bind a *third* port for that. We can't
// use the other two ports for that because some NATs do really funky
// stuff with ports that are explicitly mapped that breaks things.
_ports[2] = _ports[1];
for(int i=0;;++i) {
if (i > 256) {
_ports[2] = 0;
break;
} else if (++_ports[2] >= 65536) {
_ports[2] = 20000;
}
if (_trialBind(_ports[2]))
break;
}
if (_ports[2]) {
char uniqueName[64];
Utils::snprintf(uniqueName,sizeof(uniqueName),"ZeroTier/%.10llx",_node->address());
_portMapper = new PortMapper(_ports[2],uniqueName);
}
#endif
for(int i=0;i<3;++i)
_portsBE[i] = Utils::hton((uint16_t)_ports[i]);
#ifdef ZT_ENABLE_NETWORK_CONTROLLER
_controller = new SqliteNetworkController(_node,(_homePath + ZT_PATH_SEPARATOR_S + ZT_CONTROLLER_DB_PATH).c_str(),(_homePath + ZT_PATH_SEPARATOR_S + "circuitTestResults.d").c_str());
_node->setNetconfMaster((void *)_controller);
@ -800,6 +804,7 @@ public:
_lastRestart = clockShouldBe;
uint64_t lastTapMulticastGroupCheck = 0;
uint64_t lastTcpFallbackResolve = 0;
uint64_t lastBindRefresh = 0;
uint64_t lastLocalInterfaceAddressCheck = (OSUtils::now() - ZT_LOCAL_INTERFACE_CHECK_INTERVAL) + 15000; // do this in 15s to give portmapper time to configure and other things time to settle
#ifdef ZT_AUTO_UPDATE
uint64_t lastSoftwareUpdateCheck = 0;
@ -812,9 +817,28 @@ public:
_termReason = ONE_NORMAL_TERMINATION;
_termReason_m.unlock();
break;
} else _run_m.unlock();
} else {
_run_m.unlock();
}
uint64_t now = OSUtils::now();
const uint64_t now = OSUtils::now();
// Attempt to detect sleep/wake events by detecting delay overruns
bool restarted = false;
if ((now > clockShouldBe)&&((now - clockShouldBe) > 10000)) {
_lastRestart = now;
restarted = true;
}
// Refresh bindings in case device's interfaces have changed
if (((now - lastBindRefresh) >= ZT_BINDER_REFRESH_PERIOD)||(restarted)) {
lastBindRefresh = now;
for(int i=0;i<3;++i) {
if (_ports[i]) {
_bindings[i].refresh(_phy,_ports[i],*this);
}
}
}
uint64_t dl = _nextBackgroundTaskDeadline;
if (dl <= now) {
@ -822,10 +846,6 @@ public:
dl = _nextBackgroundTaskDeadline;
}
// Attempt to detect sleep/wake events by detecting delay overruns
if ((now > clockShouldBe)&&((now - clockShouldBe) > 2000))
_lastRestart = now;
#ifdef ZT_AUTO_UPDATE
if ((now - lastSoftwareUpdateCheck) >= ZT_AUTO_UPDATE_CHECK_PERIOD) {
lastSoftwareUpdateCheck = now;
@ -859,9 +879,11 @@ public:
_node->clearLocalInterfaceAddresses();
#ifdef ZT_USE_MINIUPNPC
std::vector<InetAddress> mappedAddresses(_portMapper->get());
for(std::vector<InetAddress>::const_iterator ext(mappedAddresses.begin());ext!=mappedAddresses.end();++ext)
_node->addLocalInterfaceAddress(reinterpret_cast<const struct sockaddr_storage *>(&(*ext)));
if (_portMapper) {
std::vector<InetAddress> mappedAddresses(_portMapper->get());
for(std::vector<InetAddress>::const_iterator ext(mappedAddresses.begin());ext!=mappedAddresses.end();++ext)
_node->addLocalInterfaceAddress(reinterpret_cast<const struct sockaddr_storage *>(&(*ext)));
}
#endif
#ifdef __UNIX_LIKE__
@ -885,7 +907,7 @@ public:
}
if (!isZT) {
InetAddress ip(ifa->ifa_addr);
ip.setPort(_port);
ip.setPort(_ports[0]);
_node->addLocalInterfaceAddress(reinterpret_cast<const struct sockaddr_storage *>(&ip));
}
}
@ -999,7 +1021,7 @@ public:
// Begin private implementation methods
inline void phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len)
inline void phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *localAddr,const struct sockaddr *from,void *data,unsigned long len)
{
#ifdef ZT_ENABLE_CLUSTER
if (sock == _clusterMessageSocket) {
@ -1019,7 +1041,7 @@ public:
const ZT_ResultCode rc = _node->processWirePacket(
OSUtils::now(),
reinterpret_cast<const struct sockaddr_storage *>(*uptr), // *uptr points to InetAddress/sockaddr of local listen port
reinterpret_cast<const struct sockaddr_storage *>(localAddr),
(const struct sockaddr_storage *)from, // Phy<> uses sockaddr_storage, so it'll always be that big
data,
len,
@ -1072,28 +1094,32 @@ public:
inline void phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from)
{
// Incoming TCP connections are HTTP JSON API requests.
TcpConnection *tc = new TcpConnection();
_tcpConnections.insert(tc);
tc->type = TcpConnection::TCP_HTTP_INCOMING;
tc->shouldKeepAlive = true;
tc->parent = this;
tc->sock = sockN;
tc->from = from;
http_parser_init(&(tc->parser),HTTP_REQUEST);
tc->parser.data = (void *)tc;
tc->messageSize = 0;
tc->lastActivity = OSUtils::now();
tc->currentHeaderField = "";
tc->currentHeaderValue = "";
tc->url = "";
tc->status = "";
tc->headers.clear();
tc->body = "";
tc->writeBuf = "";
*uptrN = (void *)tc;
if ((!from)||(reinterpret_cast<const InetAddress *>(from)->ipScope() != InetAddress::IP_SCOPE_LOOPBACK)) {
// Non-Loopback: deny (for now)
_phy.close(sockN,false);
return;
} else {
// Loopback == HTTP JSON API request
TcpConnection *tc = new TcpConnection();
_tcpConnections.insert(tc);
tc->type = TcpConnection::TCP_HTTP_INCOMING;
tc->shouldKeepAlive = true;
tc->parent = this;
tc->sock = sockN;
tc->from = from;
http_parser_init(&(tc->parser),HTTP_REQUEST);
tc->parser.data = (void *)tc;
tc->messageSize = 0;
tc->lastActivity = OSUtils::now();
tc->currentHeaderField = "";
tc->currentHeaderValue = "";
tc->url = "";
tc->status = "";
tc->headers.clear();
tc->body = "";
tc->writeBuf = "";
*uptrN = (void *)tc;
}
}
inline void phyOnTcpClose(PhySocket *sock,void **uptr)
@ -1166,9 +1192,10 @@ public:
}
if (from) {
InetAddress fakeTcpLocalInterfaceAddress((uint32_t)0xffffffff,0xffff);
const ZT_ResultCode rc = _node->processWirePacket(
OSUtils::now(),
reinterpret_cast<struct sockaddr_storage *>(&(_udp[0].v4a)), // TCP tunneled packets are "from" the default local port's address
reinterpret_cast<struct sockaddr_storage *>(&fakeTcpLocalInterfaceAddress),
reinterpret_cast<struct sockaddr_storage *>(&from),
data,
plen,
@ -1383,24 +1410,22 @@ public:
inline int nodeWirePacketSendFunction(const struct sockaddr_storage *localAddr,const struct sockaddr_storage *addr,const void *data,unsigned int len,unsigned int ttl)
{
PhySocket *froms = (PhySocket *)0;
unsigned int fromBindingNo = 0;
if (addr->ss_family == AF_INET) {
if (reinterpret_cast<const struct sockaddr_in *>(localAddr)->sin_port == 0) {
// If sender specifies any local address, use secondary port 1/4 times
froms = _udp[(++_udpPortPickerCounter & 0x4) >> 2].v4s;
// If sender is sending from wildcard (null address), choose the secondary backup
// port 1/4 of the time. (but only for IPv4)
fromBindingNo = (++_udpPortPickerCounter & 0x4) >> 2;
if (!_ports[fromBindingNo])
fromBindingNo = 0;
} else {
// If sender specifies a local address, find it by just checking port since right now we always bind wildcard
for(int k=1;k<=2;++k) {
// Match fast on port only, since right now we always bind wildcard
if (reinterpret_cast<const struct sockaddr_in *>(&(_udp[k].v4a))->sin_port == reinterpret_cast<const struct sockaddr_in *>(localAddr)->sin_port) {
froms = _udp[k].v4s;
break;
}
}
const uint16_t lp = reinterpret_cast<const struct sockaddr_in *>(localAddr)->sin_port;
if (lp == _portsBE[1])
fromBindingNo = 1;
else if (lp == _portsBE[2])
fromBindingNo = 2;
}
if (!froms)
froms = _udp[0].v4s;
#ifdef ZT_TCP_FALLBACK_RELAY
// TCP fallback tunnel support, currently IPv4 only
@ -1442,17 +1467,12 @@ public:
#endif // ZT_TCP_FALLBACK_RELAY
} else if (addr->ss_family == AF_INET6) {
if (reinterpret_cast<const struct sockaddr_in6 *>(localAddr)->sin6_port != 0) {
// If sender specifies a local address, find it by just checking port since right now we always bind wildcard
for(int k=1;k<=2;++k) {
// Match fast on port only, since right now we always bind wildcard
if (reinterpret_cast<const struct sockaddr_in6 *>(&(_udp[k].v6a))->sin6_port == reinterpret_cast<const struct sockaddr_in6 *>(localAddr)->sin6_port) {
froms = _udp[k].v6s;
break;
}
}
const uint16_t lp = reinterpret_cast<const struct sockaddr_in6 *>(localAddr)->sin6_port;
if (lp == _portsBE[1])
fromBindingNo = 1;
else if (lp == _portsBE[2])
fromBindingNo = 2;
}
if (!froms)
froms = _udp[0].v6s;
} else {
return -1;
}
@ -1462,12 +1482,7 @@ public:
return 0; // silently break UDP
#endif
if ((ttl)&&(addr->ss_family == AF_INET))
_phy.setIp4UdpTtl(froms,ttl);
const int result = (_phy.udpSend(froms,(const struct sockaddr *)addr,data,len) != 0) ? 0 : -1;
if ((ttl)&&(addr->ss_family == AF_INET))
_phy.setIp4UdpTtl(froms,255);
return result;
return (_bindings[fromBindingNo].udpSend(_phy,*(reinterpret_cast<const InetAddress *>(localAddr)),*(reinterpret_cast<const InetAddress *>(addr)),data,len,ttl)) ? 0 : -1;
}
inline void nodeVirtualNetworkFrameFunction(uint64_t nwid,void **nuptr,uint64_t sourceMac,uint64_t destMac,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
@ -1551,6 +1566,25 @@ public:
_phy.close(tc->sock); // will call close handler, which deletes from _tcpConnections
}
bool shouldBindInterface(const char *ifname,const InetAddress &ifaddr)
{
if (isBlacklistedLocalInterfaceForZeroTierTraffic(ifname))
return false;
Mutex::Lock _l(_taps_m);
for(std::map< uint64_t,EthernetTap * >::const_iterator t(_taps.begin());t!=_taps.end();++t) {
if (t->second) {
std::vector<InetAddress> ips(t->second->ips());
for(std::vector<InetAddress>::const_iterator i(ips.begin());i!=ips.end();++i) {
if (i->ipsEqual(ifaddr))
return false;
}
}
}
return true;
}
std::string _dataStorePrepPath(const char *name) const
{
std::string p(_homePath);
@ -1567,6 +1601,41 @@ public:
}
return p;
}
bool _trialBind(unsigned int port)
{
struct sockaddr_in in4;
struct sockaddr_in6 in6;
PhySocket *tb;
memset(&in4,0,sizeof(in4));
in4.sin_family = AF_INET;
in4.sin_port = Utils::hton((uint16_t)port);
tb = _phy.udpBind(reinterpret_cast<const struct sockaddr *>(&in4),(void *)0,0);
if (tb) {
_phy.close(tb,false);
tb = _phy.tcpListen(reinterpret_cast<const struct sockaddr *>(&in4),(void *)0);
if (tb) {
_phy.close(tb,false);
return true;
}
}
memset(&in6,0,sizeof(in6));
in6.sin6_family = AF_INET6;
in6.sin6_port = Utils::hton((uint16_t)port);
tb = _phy.udpBind(reinterpret_cast<const struct sockaddr *>(&in6),(void *)0,0);
if (tb) {
_phy.close(tb,false);
tb = _phy.tcpListen(reinterpret_cast<const struct sockaddr *>(&in6),(void *)0);
if (tb) {
_phy.close(tb,false);
return true;
}
}
return false;
}
};
static int SnodeVirtualNetworkConfigFunction(ZT_Node *node,void *uptr,uint64_t nwid,void **nuptr,enum ZT_VirtualNetworkConfigOperation op,const ZT_VirtualNetworkConfig *nwconf)