ZeroTierOne/node/Identity.cpp

353 lines
9.9 KiB
C++
Raw Normal View History

/*
* ZeroTier One - Network Virtualization Everywhere
2019-01-14 18:25:53 +00:00
* Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
2019-01-14 18:25:53 +00:00
* along with this program. If not, see <http://www.gnu.org/licenses/>.
2017-04-28 03:47:25 +00:00
*
* --
*
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial closed-source software that incorporates or links
* directly against ZeroTier software without disclosing the source code
* of your own application.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include "Constants.hpp"
#include "Identity.hpp"
#include "SHA512.hpp"
#include "Salsa20.hpp"
#include "Utils.hpp"
namespace ZeroTier {
2019-08-08 04:50:47 +00:00
namespace {
// These can't be changed without a new identity type. They define the
// parameters of the hashcash hashing/searching algorithm.
#define ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN 17
#define ZT_IDENTITY_GEN_MEMORY 2097152
// A memory-hard composition of SHA-512 and Salsa20 for hashcash hashing
2019-08-08 04:50:47 +00:00
static void _computeMemoryHardHash(const void *publicKey,unsigned int publicKeyBytes,void *digest,void *genmem)
{
// Digest publicKey[] to obtain initial digest
2019-08-07 21:41:58 +00:00
SHA512(digest,publicKey,publicKeyBytes);
// Initialize genmem[] using Salsa20 in a CBC-like configuration since
2018-06-08 00:25:27 +00:00
// ordinary Salsa20 is randomly seek-able. This is good for a cipher
// but is not what we want for sequential memory-hardness.
memset(genmem,0,ZT_IDENTITY_GEN_MEMORY);
Salsa20 s20(digest,(char *)digest + 32);
s20.crypt20((char *)genmem,(char *)genmem,64);
for(unsigned long i=64;i<ZT_IDENTITY_GEN_MEMORY;i+=64) {
unsigned long k = i - 64;
*((uint64_t *)((char *)genmem + i)) = *((uint64_t *)((char *)genmem + k));
*((uint64_t *)((char *)genmem + i + 8)) = *((uint64_t *)((char *)genmem + k + 8));
*((uint64_t *)((char *)genmem + i + 16)) = *((uint64_t *)((char *)genmem + k + 16));
*((uint64_t *)((char *)genmem + i + 24)) = *((uint64_t *)((char *)genmem + k + 24));
*((uint64_t *)((char *)genmem + i + 32)) = *((uint64_t *)((char *)genmem + k + 32));
*((uint64_t *)((char *)genmem + i + 40)) = *((uint64_t *)((char *)genmem + k + 40));
*((uint64_t *)((char *)genmem + i + 48)) = *((uint64_t *)((char *)genmem + k + 48));
*((uint64_t *)((char *)genmem + i + 56)) = *((uint64_t *)((char *)genmem + k + 56));
s20.crypt20((char *)genmem + i,(char *)genmem + i,64);
}
// Render final digest using genmem as a lookup table
for(unsigned long i=0;i<(ZT_IDENTITY_GEN_MEMORY / sizeof(uint64_t));) {
unsigned long idx1 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (64 / sizeof(uint64_t)));
unsigned long idx2 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (ZT_IDENTITY_GEN_MEMORY / sizeof(uint64_t)));
uint64_t tmp = ((uint64_t *)genmem)[idx2];
((uint64_t *)genmem)[idx2] = ((uint64_t *)digest)[idx1];
((uint64_t *)digest)[idx1] = tmp;
s20.crypt20(digest,digest,64);
}
}
// Hashcash generation halting condition -- halt when first byte is less than
// threshold value.
struct _Identity_generate_cond
{
2017-07-17 21:21:09 +00:00
_Identity_generate_cond() {}
_Identity_generate_cond(unsigned char *sb,char *gm) : digest(sb),genmem(gm) {}
inline bool operator()(const C25519::Pair &kp) const
{
2018-01-27 01:00:37 +00:00
_computeMemoryHardHash(kp.pub.data,ZT_C25519_PUBLIC_KEY_LEN,digest,genmem);
return (digest[0] < ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN);
}
unsigned char *digest;
char *genmem;
};
2019-08-08 04:50:47 +00:00
} // anonymous namespace
void Identity::generate(const Type t)
{
uint8_t digest[64];
2019-08-08 04:50:47 +00:00
char *const genmem = new char[ZT_IDENTITY_GEN_MEMORY];
switch(t) {
case C25519: {
C25519::Pair kp;
do {
kp = C25519::generateSatisfying(_Identity_generate_cond(digest,genmem));
_address.setTo(digest + 59,ZT_ADDRESS_LENGTH); // last 5 bytes are address
} while (_address.isReserved());
memcpy(_k.t0.pub.data,kp.pub.data,ZT_C25519_PUBLIC_KEY_LEN);
memcpy(_k.t0.priv.data,kp.priv.data,ZT_C25519_PRIVATE_KEY_LEN);
_type = C25519;
_hasPrivate = true;
} break;
case P384: {
do {
ECC384GenerateKey(_k.t1.pub,_k.t1.priv);
2019-08-08 04:50:47 +00:00
_computeMemoryHardHash(_k.t1.pub,ZT_ECC384_PUBLIC_KEY_SIZE,digest,genmem);
if (digest[0] >= ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN)
continue;
_address.setTo(digest + 59,ZT_ADDRESS_LENGTH);
} while (_address.isReserved());
_type = P384;
_hasPrivate = true;
} break;
}
2019-08-08 04:50:47 +00:00
delete [] genmem;
}
bool Identity::locallyValidate() const
{
if (_address.isReserved())
return false;
2019-08-08 04:50:47 +00:00
uint8_t digest[64];
char *genmem = nullptr;
try {
genmem = new char[ZT_IDENTITY_GEN_MEMORY];
switch(_type) {
case C25519:
_computeMemoryHardHash(_k.t0.pub.data,ZT_C25519_PUBLIC_KEY_LEN,digest,genmem);
break;
case P384:
_computeMemoryHardHash(_k.t1.pub,ZT_ECC384_PUBLIC_KEY_SIZE,digest,genmem);
break;
default:
return false;
}
delete [] genmem;
unsigned char addrb[5];
_address.copyTo(addrb,5);
return (
(digest[0] < ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN)&&
(digest[59] == addrb[0])&&
(digest[60] == addrb[1])&&
(digest[61] == addrb[2])&&
(digest[62] == addrb[3])&&
(digest[63] == addrb[4]));
} catch ( ... ) {
if (genmem) delete [] genmem;
return false;
}
}
2019-08-08 04:50:47 +00:00
unsigned int Identity::sign(const void *data,unsigned int len,void *sig,unsigned int siglen) const
{
uint8_t h[48];
if (!_hasPrivate)
return 0;
switch(_type) {
2019-08-08 04:50:47 +00:00
case C25519:
if (siglen < ZT_C25519_SIGNATURE_LEN)
return 0;
C25519::sign(_k.t0.priv,_k.t0.pub,data,len,sig);
return ZT_C25519_SIGNATURE_LEN;
case P384:
if (siglen < ZT_ECC384_SIGNATURE_SIZE)
return 0;
SHA384(h,data,len);
ECC384ECDSASign(_k.t1.priv,h,(uint8_t *)sig);
return ZT_ECC384_SIGNATURE_SIZE;
}
return 0;
}
2019-08-08 04:50:47 +00:00
bool Identity::verify(const void *data,unsigned int len,const void *sig,unsigned int siglen) const
{
switch(_type) {
case C25519:
return C25519::verify(_k.t0.pub,data,len,sig,siglen);
case P384:
if (siglen == ZT_ECC384_SIGNATURE_SIZE) {
uint8_t h[48];
SHA384(h,data,len);
return ECC384ECDSAVerify(_k.t1.pub,h,(const uint8_t *)sig);
}
break;
}
2019-08-08 04:50:47 +00:00
return false;
}
2019-08-08 04:50:47 +00:00
bool Identity::agree(const Identity &id,void *key,unsigned int klen) const
{
uint8_t ecc384RawSecret[ZT_ECC384_SHARED_SECRET_SIZE];
uint8_t h[48];
if (_hasPrivate) {
switch(_type) {
case C25519:
C25519::agree(_k.t0.priv,id._k.t0.pub,key,klen);
return true;
case P384:
ECC384ECDH(id._k.t1.pub,_k.t1.priv,ecc384RawSecret);
SHA384(h,ecc384RawSecret,sizeof(ecc384RawSecret));
for(unsigned int i=0,hi=0;i<klen;++i) {
if (hi == 48) {
hi = 0;
SHA384(h,h,48);
}
((uint8_t *)key)[i] = h[hi++];
}
return true;
}
}
return false;
}
2017-07-06 23:11:11 +00:00
char *Identity::toString(bool includePrivate,char buf[ZT_IDENTITY_STRING_BUFFER_LENGTH]) const
{
switch(_type) {
case C25519: {
char *p = buf;
Utils::hex10(_address.toInt(),p);
p += 10;
*(p++) = ':';
*(p++) = '0';
*(p++) = ':';
Utils::hex(_k.t0.pub.data,ZT_C25519_PUBLIC_KEY_LEN,p);
p += ZT_C25519_PUBLIC_KEY_LEN * 2;
if ((_hasPrivate)&&(includePrivate)) {
*(p++) = ':';
Utils::hex(_k.t0.priv.data,ZT_C25519_PRIVATE_KEY_LEN,p);
p += ZT_C25519_PRIVATE_KEY_LEN * 2;
}
*p = (char)0;
return buf;
} break;
case P384: {
char *p = buf;
Utils::hex10(_address.toInt(),p);
p += 10;
*(p++) = ':';
*(p++) = '1';
*(p++) = ':';
Utils::hex(_k.t1.pub,ZT_ECC384_PUBLIC_KEY_SIZE,p);
p += ZT_ECC384_PUBLIC_KEY_SIZE * 2;
if ((_hasPrivate)&&(includePrivate)) {
*(p++) = ':';
Utils::hex(_k.t1.priv,ZT_ECC384_PRIVATE_KEY_SIZE,p);
p += ZT_ECC384_PRIVATE_KEY_SIZE * 2;
}
*p = (char)0;
return buf;
} break;
}
return nullptr;
}
bool Identity::fromString(const char *str)
{
2017-07-13 22:08:57 +00:00
if (!str) {
_address.zero();
return false;
2017-07-13 22:08:57 +00:00
}
2017-07-06 23:11:11 +00:00
char tmp[ZT_IDENTITY_STRING_BUFFER_LENGTH];
2017-07-13 22:08:57 +00:00
if (!Utils::scopy(tmp,sizeof(tmp),str)) {
_address.zero();
return false;
2017-07-13 22:08:57 +00:00
}
_hasPrivate = false;
int fno = 0;
2017-07-13 22:08:57 +00:00
char *saveptr = (char *)0;
for(char *f=Utils::stok(tmp,":",&saveptr);(f);f=Utils::stok((char *)0,":",&saveptr)) {
switch(fno++) {
case 0:
2017-02-04 08:23:31 +00:00
_address = Address(Utils::hexStrToU64(f));
2017-07-13 22:08:57 +00:00
if (_address.isReserved()) {
_address.zero();
return false;
2017-07-13 22:08:57 +00:00
}
break;
case 1:
if ((f[0] == '0')&&(!f[1])) {
_type = C25519;
} else if ((f[0] == '1')&&(!f[1])) {
_type = P384;
} else {
2017-07-13 22:08:57 +00:00
_address.zero();
return false;
2017-07-13 22:08:57 +00:00
}
break;
case 2:
switch(_type) {
case C25519:
if (Utils::unhex(f,_k.t0.pub.data,ZT_C25519_PUBLIC_KEY_LEN) != ZT_C25519_PUBLIC_KEY_LEN) {
_address.zero();
return false;
}
break;
case P384:
if (Utils::unhex(f,_k.t1.pub,ZT_ECC384_PUBLIC_KEY_SIZE) != ZT_ECC384_PUBLIC_KEY_SIZE) {
_address.zero();
return false;
}
break;
2017-07-13 22:08:57 +00:00
}
break;
case 3:
switch(_type) {
case C25519:
if (Utils::unhex(f,_k.t0.priv.data,ZT_C25519_PRIVATE_KEY_LEN) != ZT_C25519_PRIVATE_KEY_LEN) {
_address.zero();
return false;
} else {
_hasPrivate = true;
}
break;
case P384:
if (Utils::unhex(f,_k.t1.priv,ZT_ECC384_PRIVATE_KEY_SIZE) != ZT_ECC384_PRIVATE_KEY_SIZE) {
_address.zero();
return false;
} else {
_hasPrivate = true;
}
break;
2017-07-13 22:08:57 +00:00
}
break;
default:
2017-07-13 22:08:57 +00:00
_address.zero();
return false;
}
}
2017-07-13 22:08:57 +00:00
if (fno < 3) {
_address.zero();
return false;
2017-07-13 22:08:57 +00:00
}
return true;
}
} // namespace ZeroTier