TON of refactoring, moon/planet is DEAD, ECC P-384 is integrated (but not enabled), and multicast work and cleanup. Whew.

This commit is contained in:
Adam Ierymenko 2019-07-17 10:52:08 -05:00
parent 640bbaabbf
commit fe2215df00
36 changed files with 556 additions and 1844 deletions

View File

@ -1,162 +0,0 @@
/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial closed-source software that incorporates or links
* directly against ZeroTier software without disclosing the source code
* of your own application.
*/
#ifndef ZT_MTUDPSOCKET_HPP
#define ZT_MTUDPSOCKET_HPP
#ifndef __WINDOWS__
#include "../node/Constants.hpp"
#include "../include/ZeroTierOne.h"
#include "../osdep/OSUtils.hpp"
#include "../osdep/Thread.hpp"
#include <vector>
#include <sys/types.h>
#include <sys/socket.h>
#include <unistd.h>
namespace ZeroTier {
/**
* MTUDPSocket is a multithreaded UDP socket using multiple binds and SO_REUSEPORT
*
* On Mac and Linux this is the most efficient way to implement a multithreaded UDP
* I/O path. On Windows it's probably not necessary to optimize this much. If it ever
* is, we will have to implement a version of this the Windows way.
*/
class MTUDPSocket
{
public:
inline MTUDPSocket(ZT_Node *n,volatile int64_t *dptr,const struct sockaddr *bindAddr)
{
const int ncores = std::max(1,(int)sysconf(_SC_NPROCESSORS_CONF));
for(int t=0;t<ncores;t++) {
int s = socket(bindAddr->sa_family,SOCK_DGRAM,0);
if (s < 0) {
for(auto i=_sockets.begin();i!=_sockets.end();++i)
close(*i);
throw std::runtime_error("unable to allocate socket");
}
int f = 131072;
setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char *)&f,sizeof(f));
f = 131072;
setsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char *)&f,sizeof(f));
if (bindAddr->sa_family == AF_INET6) {
f = 1; setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f));
#ifdef IPV6_MTU_DISCOVER
f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_MTU_DISCOVER,&f,sizeof(f));
#endif
#ifdef IPV6_DONTFRAG
f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_DONTFRAG,&f,sizeof(f));
#endif
}
f = 1; setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f));
f = 1; setsockopt(s,SOL_SOCKET,SO_REUSEPORT,(void *)&f,sizeof(f));
f = 1; setsockopt(s,SOL_SOCKET,SO_BROADCAST,(void *)&f,sizeof(f));
#ifdef IP_DONTFRAG
f = 0; setsockopt(s,IPPROTO_IP,IP_DONTFRAG,&f,sizeof(f));
#endif
#ifdef IP_MTU_DISCOVER
f = 0; setsockopt(s,IPPROTO_IP,IP_MTU_DISCOVER,&f,sizeof(f));
#endif
#ifdef SO_NO_CHECK
if (bindAddr->sa_family == AF_INET) {
f = 1; setsockopt(s,SOL_SOCKET,SO_NO_CHECK,(void *)&f,sizeof(f));
}
#endif
if (bind(s,bindAddr,(bindAddr->sa_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))) {
for(auto i=_sockets.begin();i!=_sockets.end();++i)
close(*i);
throw std::runtime_error("unable to bind to address");
}
_sockets.push_back(s);
}
for(auto s=_sockets.begin();s!=_sockets.end();++s) {
try {
new MTUDPThread(n,dptr,*s);
} catch ( ... ) {
for(auto i=_sockets.begin();i!=_sockets.end();++i)
close(*i);
throw;
}
}
}
inline ~MTUDPSocket()
{
for(auto i=_sockets.begin();i!=_sockets.end();++i)
close(*i);
}
private:
class MTUDPThread
{
public:
inline MTUDPThread(ZT_Node *n,volatile int64_t *dptr,int s) :
node(n),
deadlinePtr(dptr),
sock(s),
thread(Thread::start(this))
{
}
inline void threadMain()
{
struct sockaddr_storage from;
for(;;) {
socklen_t fromLen = sizeof(from);
const int nr = recvfrom(this->sock,this->buf,sizeof(this->buf),0,(struct sockaddr *)&from,&fromLen);
if (nr > 0) {
ZT_Node_processWirePacket(this->node,nullptr,OSUtils::now(),(int64_t)this->sock,&from,this->buf,(unsigned int)nr,this->deadlinePtr);
} else {
close(this->sock);
break;
}
}
delete this; // closing the socket causes this to exit and delete itself
}
ZT_Node *const node;
volatile int64_t *const deadlinePtr;
const int sock;
Thread thread;
char buf[10000];
};
std::vector<int> _sockets;
};
} // namespace ZeroTier
#endif // !__WINDOWS__
#endif

View File

@ -1,7 +0,0 @@
World Definitions and Generator Code
======
This little bit of code is used to generate world updates. Ordinary users probably will never need this unless they want to test or experiment.
See mkworld.cpp for documentation. To build from this directory use 'source ./build.sh'.

View File

@ -1,3 +0,0 @@
#!/bin/bash
c++ -std=c++11 -I../.. -I.. -O -o mkworld ../../node/C25519.cpp ../../node/Salsa20.cpp ../../node/SHA512.cpp ../../node/Identity.cpp ../../node/Utils.cpp ../../node/InetAddress.cpp ../../osdep/OSUtils.cpp mkworld.cpp -lm

View File

@ -1,154 +0,0 @@
/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* This utility makes the World from the configuration specified below.
* It probably won't be much use to anyone outside ZeroTier, Inc. except
* for testing and experimentation purposes.
*
* If you want to make your own World you must edit this file.
*
* When run, it expects two files in the current directory:
*
* previous.c25519 - key pair to sign this world (key from previous world)
* current.c25519 - key pair whose public key should be embedded in this world
*
* If these files do not exist, they are both created with the same key pair
* and a self-signed initial World is born.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <string>
#include <vector>
#include <algorithm>
#include <node/Constants.hpp>
#include <node/World.hpp>
#include <node/C25519.hpp>
#include <node/Identity.hpp>
#include <node/InetAddress.hpp>
#include <osdep/OSUtils.hpp>
using namespace ZeroTier;
int main(int argc,char **argv)
{
std::string previous,current;
if ((!OSUtils::readFile("previous.c25519",previous))||(!OSUtils::readFile("current.c25519",current))) {
C25519::Pair np(C25519::generate());
previous = std::string();
previous.append((const char *)np.pub.data,ZT_C25519_PUBLIC_KEY_LEN);
previous.append((const char *)np.priv.data,ZT_C25519_PRIVATE_KEY_LEN);
current = previous;
OSUtils::writeFile("previous.c25519",previous);
OSUtils::writeFile("current.c25519",current);
fprintf(stderr,"INFO: created initial world keys: previous.c25519 and current.c25519 (both initially the same)" ZT_EOL_S);
}
if ((previous.length() != (ZT_C25519_PUBLIC_KEY_LEN + ZT_C25519_PRIVATE_KEY_LEN))||(current.length() != (ZT_C25519_PUBLIC_KEY_LEN + ZT_C25519_PRIVATE_KEY_LEN))) {
fprintf(stderr,"FATAL: previous.c25519 or current.c25519 empty or invalid" ZT_EOL_S);
return 1;
}
C25519::Pair previousKP;
memcpy(previousKP.pub.data,previous.data(),ZT_C25519_PUBLIC_KEY_LEN);
memcpy(previousKP.priv.data,previous.data() + ZT_C25519_PUBLIC_KEY_LEN,ZT_C25519_PRIVATE_KEY_LEN);
C25519::Pair currentKP;
memcpy(currentKP.pub.data,current.data(),ZT_C25519_PUBLIC_KEY_LEN);
memcpy(currentKP.priv.data,current.data() + ZT_C25519_PUBLIC_KEY_LEN,ZT_C25519_PRIVATE_KEY_LEN);
// =========================================================================
// EDIT BELOW HERE
std::vector<World::Root> roots;
const uint64_t id = ZT_WORLD_ID_EARTH;
const uint64_t ts = 1562631342273ULL; // July 8th, 2019
roots.push_back(World::Root());
roots.back().identity = Identity("3a46f1bf30:0:76e66fab33e28549a62ee2064d1843273c2c300ba45c3f20bef02dbad225723bb59a9bb4b13535730961aeecf5a163ace477cceb0727025b99ac14a5166a09a3");
roots.back().stableEndpoints.push_back(InetAddress("185.180.13.82/9993"));
roots.back().stableEndpoints.push_back(InetAddress("2a02:6ea0:c815::/9993"));
// Alice
roots.push_back(World::Root());
roots.back().identity = Identity("9d219039f3:0:01f0922a98e3b34ebcbff333269dc265d7a020aab69d72be4d4acc9c8c9294785771256cd1d942a90d1bd1d2dca3ea84ef7d85afe6611fb43ff0b74126d90a6e");
roots.back().stableEndpoints.push_back(InetAddress("188.166.94.177/9993")); // Amsterdam
roots.back().stableEndpoints.push_back(InetAddress("2a03:b0c0:2:d0::7d:1/9993")); // Amsterdam
roots.back().stableEndpoints.push_back(InetAddress("154.66.197.33/9993")); // Johannesburg
roots.back().stableEndpoints.push_back(InetAddress("2c0f:f850:154:197::33/9993")); // Johannesburg
roots.back().stableEndpoints.push_back(InetAddress("159.203.97.171/9993")); // New York
roots.back().stableEndpoints.push_back(InetAddress("2604:a880:800:a1::54:6001/9993")); // New York
roots.back().stableEndpoints.push_back(InetAddress("131.255.6.16/9993")); // Buenos Aires
roots.back().stableEndpoints.push_back(InetAddress("2803:eb80:0:e::2/9993")); // Buenos Aires
roots.back().stableEndpoints.push_back(InetAddress("107.170.197.14/9993")); // San Francisco
roots.back().stableEndpoints.push_back(InetAddress("2604:a880:1:20::200:e001/9993")); // San Francisco
roots.back().stableEndpoints.push_back(InetAddress("128.199.197.217/9993")); // Singapore
roots.back().stableEndpoints.push_back(InetAddress("2400:6180:0:d0::b7:4001/9993")); // Singapore
// Bob
roots.push_back(World::Root());
roots.back().identity = Identity("8841408a2e:0:bb1d31f2c323e264e9e64172c1a74f77899555ed10751cd56e86405cde118d02dffe555d462ccf6a85b5631c12350c8d5dc409ba10b9025d0f445cf449d92b1c");
roots.back().stableEndpoints.push_back(InetAddress("45.32.198.130/9993")); // Dallas
roots.back().stableEndpoints.push_back(InetAddress("2001:19f0:6400:81c3:5400:00ff:fe18:1d61/9993")); // Dallas
roots.back().stableEndpoints.push_back(InetAddress("46.101.160.249/9993")); // Frankfurt
roots.back().stableEndpoints.push_back(InetAddress("2a03:b0c0:3:d0::6a:3001/9993")); // Frankfurt
roots.back().stableEndpoints.push_back(InetAddress("107.191.46.210/9993")); // Paris
roots.back().stableEndpoints.push_back(InetAddress("2001:19f0:6800:83a4::64/9993")); // Paris
roots.back().stableEndpoints.push_back(InetAddress("45.32.246.179/9993")); // Sydney
roots.back().stableEndpoints.push_back(InetAddress("2001:19f0:5800:8bf8:5400:ff:fe15:b39a/9993")); // Sydney
roots.back().stableEndpoints.push_back(InetAddress("45.32.248.87/9993")); // Tokyo
roots.back().stableEndpoints.push_back(InetAddress("2001:19f0:7000:9bc9:5400:00ff:fe15:c4f5/9993")); // Tokyo
roots.back().stableEndpoints.push_back(InetAddress("159.203.2.154/9993")); // Toronto
roots.back().stableEndpoints.push_back(InetAddress("2604:a880:cad:d0::26:7001/9993")); // Toronto
// END WORLD DEFINITION
// =========================================================================
fprintf(stderr,"INFO: generating and signing id==%llu ts==%llu" ZT_EOL_S,(unsigned long long)id,(unsigned long long)ts);
World nw = World::make(World::TYPE_PLANET,id,ts,currentKP.pub,roots,previousKP);
Buffer<ZT_WORLD_MAX_SERIALIZED_LENGTH> outtmp;
nw.serialize(outtmp,false);
World testw;
testw.deserialize(outtmp,0);
if (testw != nw) {
fprintf(stderr,"FATAL: serialization test failed!" ZT_EOL_S);
return 1;
}
OSUtils::writeFile("world.bin",std::string((const char *)outtmp.data(),outtmp.size()));
fprintf(stderr,"INFO: world.bin written with %u bytes of binary world data." ZT_EOL_S,outtmp.size());
fprintf(stdout,ZT_EOL_S);
fprintf(stdout,"#define ZT_DEFAULT_WORLD_LENGTH %u" ZT_EOL_S,outtmp.size());
fprintf(stdout,"static const unsigned char ZT_DEFAULT_WORLD[ZT_DEFAULT_WORLD_LENGTH] = {");
for(unsigned int i=0;i<outtmp.size();++i) {
const unsigned char *d = (const unsigned char *)outtmp.data();
if (i > 0)
fprintf(stdout,",");
fprintf(stdout,"0x%.2x",(unsigned int)d[i]);
}
fprintf(stdout,"};" ZT_EOL_S);
return 0;
}

Binary file not shown.

View File

@ -1,3 +0,0 @@
#define ZT_DEFAULT_WORLD_LENGTH 732
static const unsigned char ZT_DEFAULT_WORLD[ZT_DEFAULT_WORLD_LENGTH] = {0x01,0x00,0x00,0x00,0x00,0x08,0xea,0xc9,0x0a,0x00,0x00,0x01,0x6b,0xd4,0x16,0x08,0xc1,0xb8,0xb3,0x88,0xa4,0x69,0x22,0x14,0x91,0xaa,0x9a,0xcd,0x66,0xcc,0x76,0x4c,0xde,0xfd,0x56,0x03,0x9f,0x10,0x67,0xae,0x15,0xe6,0x9c,0x6f,0xb4,0x2d,0x7b,0x55,0x33,0x0e,0x3f,0xda,0xac,0x52,0x9c,0x07,0x92,0xfd,0x73,0x40,0xa6,0xaa,0x21,0xab,0xa8,0xa4,0x89,0xfd,0xae,0xa4,0x4a,0x39,0xbf,0x2d,0x00,0x65,0x9a,0xc9,0xc8,0x18,0xeb,0x16,0x93,0xf4,0xe5,0xbd,0x20,0xda,0x10,0xad,0xc7,0x05,0xf4,0x99,0xfe,0x04,0x08,0x9b,0xe0,0x9e,0x77,0x1d,0x9f,0x47,0x16,0xaa,0x92,0x4f,0x10,0x16,0x3d,0xc7,0xec,0xd3,0x90,0x9e,0xd1,0x74,0xfc,0xb3,0xb5,0x07,0x9c,0x4d,0x95,0xc5,0x17,0x8b,0x3d,0x0b,0x60,0x76,0xe8,0x51,0xbb,0xb6,0x3d,0x74,0xb5,0x21,0x83,0x7b,0x95,0x1d,0x02,0x9b,0xcd,0xaf,0x5c,0x3e,0x96,0xdf,0x37,0x2c,0x56,0x6d,0xfa,0x75,0x0f,0xda,0x55,0x85,0x13,0xf4,0x76,0x1a,0x66,0x4d,0x3b,0x8d,0xcf,0x12,0xc9,0x34,0xb9,0x0d,0x61,0x03,0x3a,0x46,0xf1,0xbf,0x30,0x00,0x76,0xe6,0x6f,0xab,0x33,0xe2,0x85,0x49,0xa6,0x2e,0xe2,0x06,0x4d,0x18,0x43,0x27,0x3c,0x2c,0x30,0x0b,0xa4,0x5c,0x3f,0x20,0xbe,0xf0,0x2d,0xba,0xd2,0x25,0x72,0x3b,0xb5,0x9a,0x9b,0xb4,0xb1,0x35,0x35,0x73,0x09,0x61,0xae,0xec,0xf5,0xa1,0x63,0xac,0xe4,0x77,0xcc,0xeb,0x07,0x27,0x02,0x5b,0x99,0xac,0x14,0xa5,0x16,0x6a,0x09,0xa3,0x00,0x02,0x04,0xb9,0xb4,0x0d,0x52,0x27,0x09,0x06,0x2a,0x02,0x6e,0xa0,0xc8,0x15,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x27,0x09,0x9d,0x21,0x90,0x39,0xf3,0x00,0x01,0xf0,0x92,0x2a,0x98,0xe3,0xb3,0x4e,0xbc,0xbf,0xf3,0x33,0x26,0x9d,0xc2,0x65,0xd7,0xa0,0x20,0xaa,0xb6,0x9d,0x72,0xbe,0x4d,0x4a,0xcc,0x9c,0x8c,0x92,0x94,0x78,0x57,0x71,0x25,0x6c,0xd1,0xd9,0x42,0xa9,0x0d,0x1b,0xd1,0xd2,0xdc,0xa3,0xea,0x84,0xef,0x7d,0x85,0xaf,0xe6,0x61,0x1f,0xb4,0x3f,0xf0,0xb7,0x41,0x26,0xd9,0x0a,0x6e,0x00,0x0c,0x04,0xbc,0xa6,0x5e,0xb1,0x27,0x09,0x06,0x2a,0x03,0xb0,0xc0,0x00,0x02,0x00,0xd0,0x00,0x00,0x00,0x00,0x00,0x7d,0x00,0x01,0x27,0x09,0x04,0x9a,0x42,0xc5,0x21,0x27,0x09,0x06,0x2c,0x0f,0xf8,0x50,0x01,0x54,0x01,0x97,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x33,0x27,0x09,0x04,0x9f,0xcb,0x61,0xab,0x27,0x09,0x06,0x26,0x04,0xa8,0x80,0x08,0x00,0x00,0xa1,0x00,0x00,0x00,0x00,0x00,0x54,0x60,0x01,0x27,0x09,0x04,0x83,0xff,0x06,0x10,0x27,0x09,0x06,0x28,0x03,0xeb,0x80,0x00,0x00,0x00,0x0e,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x02,0x27,0x09,0x04,0x6b,0xaa,0xc5,0x0e,0x27,0x09,0x06,0x26,0x04,0xa8,0x80,0x00,0x01,0x00,0x20,0x00,0x00,0x00,0x00,0x02,0x00,0xe0,0x01,0x27,0x09,0x04,0x80,0xc7,0xc5,0xd9,0x27,0x09,0x06,0x24,0x00,0x61,0x80,0x00,0x00,0x00,0xd0,0x00,0x00,0x00,0x00,0x00,0xb7,0x40,0x01,0x27,0x09,0x88,0x41,0x40,0x8a,0x2e,0x00,0xbb,0x1d,0x31,0xf2,0xc3,0x23,0xe2,0x64,0xe9,0xe6,0x41,0x72,0xc1,0xa7,0x4f,0x77,0x89,0x95,0x55,0xed,0x10,0x75,0x1c,0xd5,0x6e,0x86,0x40,0x5c,0xde,0x11,0x8d,0x02,0xdf,0xfe,0x55,0x5d,0x46,0x2c,0xcf,0x6a,0x85,0xb5,0x63,0x1c,0x12,0x35,0x0c,0x8d,0x5d,0xc4,0x09,0xba,0x10,0xb9,0x02,0x5d,0x0f,0x44,0x5c,0xf4,0x49,0xd9,0x2b,0x1c,0x00,0x0c,0x04,0x2d,0x20,0xc6,0x82,0x27,0x09,0x06,0x20,0x01,0x19,0xf0,0x64,0x00,0x81,0xc3,0x54,0x00,0x00,0xff,0xfe,0x18,0x1d,0x61,0x27,0x09,0x04,0x2e,0x65,0xa0,0xf9,0x27,0x09,0x06,0x2a,0x03,0xb0,0xc0,0x00,0x03,0x00,0xd0,0x00,0x00,0x00,0x00,0x00,0x6a,0x30,0x01,0x27,0x09,0x04,0x6b,0xbf,0x2e,0xd2,0x27,0x09,0x06,0x20,0x01,0x19,0xf0,0x68,0x00,0x83,0xa4,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x64,0x27,0x09,0x04,0x2d,0x20,0xf6,0xb3,0x27,0x09,0x06,0x20,0x01,0x19,0xf0,0x58,0x00,0x8b,0xf8,0x54,0x00,0x00,0xff,0xfe,0x15,0xb3,0x9a,0x27,0x09,0x04,0x2d,0x20,0xf8,0x57,0x27,0x09,0x06,0x20,0x01,0x19,0xf0,0x70,0x00,0x9b,0xc9,0x54,0x00,0x00,0xff,0xfe,0x15,0xc4,0xf5,0x27,0x09,0x04,0x9f,0xcb,0x02,0x9a,0x27,0x09,0x06,0x26,0x04,0xa8,0x80,0x0c,0xad,0x00,0xd0,0x00,0x00,0x00,0x00,0x00,0x26,0x70,0x01,0x27,0x09};

View File

@ -1393,24 +1393,6 @@ enum ZT_StateObjectType
*/
ZT_STATE_OBJECT_IDENTITY_SECRET = 2,
/**
* The planet (there is only one per... well... planet!)
*
* Object ID: world ID of planet, or 0 if unknown (first query)
* Canonical path: <HOME>/planet
* Persistence: recommended
*/
ZT_STATE_OBJECT_PLANET = 3,
/**
* A moon (federated root set)
*
* Object ID: world ID of moon
* Canonical path: <HOME>/moons.d/<ID>.moon (16-digit hex ID)
* Persistence: required if moon memberships should persist
*/
ZT_STATE_OBJECT_MOON = 4,
/**
* Peer and related state
*
@ -1847,32 +1829,6 @@ ZT_SDK_API enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node *node,void *tpt
*/
ZT_SDK_API enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node *node,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi);
/**
* Add or update a moon
*
* Moons are persisted in the data store in moons.d/, so this can persist
* across invocations if the contents of moon.d are scanned and orbit is
* called for each on startup.
*
* @param node Node instance
* @param tptr Thread pointer to pass to functions/callbacks resulting from this call
* @param moonWorldId Moon's world ID
* @param moonSeed If non-zero, the ZeroTier address of any member of the moon to query for moon definition
* @param len Length of moonWorld in bytes
* @return Error if moon was invalid or failed to be added
*/
ZT_SDK_API enum ZT_ResultCode ZT_Node_orbit(ZT_Node *node,void *tptr,uint64_t moonWorldId,uint64_t moonSeed);
/**
* Remove a moon (does nothing if not present)
*
* @param node Node instance
* @param tptr Thread pointer to pass to functions/callbacks resulting from this call
* @param moonWorldId World ID of moon to remove
* @return Error if anything bad happened
*/
ZT_SDK_API enum ZT_ResultCode ZT_Node_deorbit(ZT_Node *node,void *tptr,uint64_t moonWorldId);
/**
* Get this node's 40-bit ZeroTier address
*

View File

@ -98,7 +98,6 @@ public:
* @param keylen Number of key bytes to generate
*/
static void agree(const Private &mine,const Public &their,void *keybuf,unsigned int keylen);
static inline void agree(const Pair &mine,const Public &their,void *keybuf,unsigned int keylen) { agree(mine.priv,their,keybuf,keylen); }
/**
* Sign a message with a sender's key pair
@ -120,7 +119,6 @@ public:
* @param signature Buffer to fill with signature -- MUST be 96 bytes in length
*/
static void sign(const Private &myPrivate,const Public &myPublic,const void *msg,unsigned int len,void *signature);
static inline void sign(const Pair &mine,const void *msg,unsigned int len,void *signature) { sign(mine.priv,mine.pub,msg,len,signature); }
/**
* Sign a message with a sender's key pair

View File

@ -34,6 +34,23 @@
namespace ZeroTier {
bool Capability::sign(const Identity &from,const Address &to)
{
try {
for(unsigned int i=0;((i<_maxCustodyChainLength)&&(i<ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH));++i) {
if (!(_custody[i].to)) {
Buffer<(sizeof(Capability) * 2)> tmp;
this->serialize(tmp,true);
_custody[i].to = to;
_custody[i].from = from.address();
_custody[i].signatureLength = from.sign(tmp.data(),tmp.size(),_custody[i].signature,sizeof(_custody[i].signature));
return true;
}
}
} catch ( ... ) {}
return false;
}
int Capability::verify(const RuntimeEnvironment *RR,void *tPtr) const
{
try {
@ -57,7 +74,7 @@ int Capability::verify(const RuntimeEnvironment *RR,void *tPtr) const
const Identity id(RR->topology->getIdentity(tPtr,_custody[c].from));
if (id) {
if (!id.verify(tmp.data(),tmp.size(),_custody[c].signature))
if (!id.verify(tmp.data(),tmp.size(),_custody[c].signature,_custody[c].signatureLength))
return -1;
} else {
RR->sw->requestWhois(tPtr,RR->node->now(),_custody[c].from);

View File

@ -154,22 +154,7 @@ public:
* @param to Recipient of this signature
* @return True if signature successful and chain of custody appended
*/
inline bool sign(const Identity &from,const Address &to)
{
try {
for(unsigned int i=0;((i<_maxCustodyChainLength)&&(i<ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH));++i) {
if (!(_custody[i].to)) {
Buffer<(sizeof(Capability) * 2)> tmp;
this->serialize(tmp,true);
_custody[i].to = to;
_custody[i].from = from.address();
_custody[i].signature = from.sign(tmp.data(),tmp.size());
return true;
}
}
} catch ( ... ) {}
return false;
}
bool sign(const Identity &from,const Address &to);
/**
* Verify this capability's chain of custody and signatures
@ -409,9 +394,9 @@ public:
if ((i < _maxCustodyChainLength)&&(i < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)&&(_custody[i].to)) {
_custody[i].to.appendTo(b);
_custody[i].from.appendTo(b);
b.append((uint8_t)1); // 1 == Ed25519 signature
b.append((uint16_t)ZT_C25519_SIGNATURE_LEN); // length of signature
b.append(_custody[i].signature.data,ZT_C25519_SIGNATURE_LEN);
b.append((uint8_t)1);
b.append((uint16_t)_custody[i].signatureLength);
b.append(_custody[i].signature,_custody[i].signatureLength);
} else {
b.append((unsigned char)0,ZT_ADDRESS_LENGTH); // zero 'to' terminates chain
break;
@ -454,10 +439,11 @@ public:
_custody[i].to = to;
_custody[i].from.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
if (b[p++] == 1) {
if (b.template at<uint16_t>(p) != ZT_C25519_SIGNATURE_LEN)
_custody[i].signatureLength = b.template at<uint16_t>(p);
if (_custody[i].signatureLength > sizeof(_custody[i].signature))
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN;
p += 2;
memcpy(_custody[i].signature.data,b.field(p,ZT_C25519_SIGNATURE_LEN),ZT_C25519_SIGNATURE_LEN); p += ZT_C25519_SIGNATURE_LEN;
memcpy(_custody[i].signature,b.field(p,_custody[i].signatureLength),_custody[i].signatureLength); p += _custody[i].signatureLength;
} else {
p += 2 + b.template at<uint16_t>(p);
}
@ -489,7 +475,8 @@ private:
struct {
Address to;
Address from;
C25519::Signature signature;
unsigned int signatureLength;
uint8_t signature[ZT_SIGNATURE_BUFFER_SIZE];
} _custody[ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH];
};

View File

@ -84,7 +84,7 @@ std::string CertificateOfMembership::toString() const
if (_signedBy) {
s.push_back(':');
s.append(Utils::hex(_signature.data,ZT_C25519_SIGNATURE_LEN,tmp));
s.append(Utils::hex(_signature,_signatureLength,tmp));
}
return s;
@ -92,9 +92,9 @@ std::string CertificateOfMembership::toString() const
void CertificateOfMembership::fromString(const char *s)
{
_qualifierCount = 0;
_signedBy.zero();
memset(_signature.data,0,ZT_C25519_SIGNATURE_LEN);
_qualifierCount = 0;
_signatureLength = 0;
if (!*s)
return;
@ -145,8 +145,7 @@ void CertificateOfMembership::fromString(const char *s)
colonAt = 0;
while ((s[colonAt])&&(s[colonAt] != ':')) ++colonAt;
if (colonAt) {
if (Utils::unhex(s,colonAt,_signature.data,ZT_C25519_SIGNATURE_LEN) != ZT_C25519_SIGNATURE_LEN)
_signedBy.zero();
_signatureLength = Utils::unhex(s,colonAt,_signature,sizeof(_signature));
} else {
_signedBy.zero();
}
@ -208,7 +207,7 @@ bool CertificateOfMembership::sign(const Identity &with)
}
try {
_signature = with.sign(buf,ptr * sizeof(uint64_t));
_signatureLength = with.sign(buf,ptr * sizeof(uint64_t),_signature,sizeof(_signature));
_signedBy = with.address();
return true;
} catch ( ... ) {
@ -235,7 +234,7 @@ int CertificateOfMembership::verify(const RuntimeEnvironment *RR,void *tPtr) con
buf[ptr++] = Utils::hton(_qualifiers[i].value);
buf[ptr++] = Utils::hton(_qualifiers[i].maxDelta);
}
return (id.verify(buf,ptr * sizeof(uint64_t),_signature) ? 0 : -1);
return (id.verify(buf,ptr * sizeof(uint64_t),_signature,_signatureLength) ? 0 : -1);
}
} // namespace ZeroTier

View File

@ -113,7 +113,8 @@ public:
* Create an empty certificate of membership
*/
CertificateOfMembership() :
_qualifierCount(0) {}
_qualifierCount(0),
_signatureLength(0) {}
/**
* Create from required fields common to all networks
@ -135,7 +136,7 @@ public:
_qualifiers[2].value = issuedTo.toInt();
_qualifiers[2].maxDelta = 0xffffffffffffffffULL;
_qualifierCount = 3;
memset(_signature.data,0,ZT_C25519_SIGNATURE_LEN);
_signatureLength = 0;
}
/**
@ -279,8 +280,13 @@ public:
b.append(_qualifiers[i].maxDelta);
}
_signedBy.appendTo(b);
if (_signedBy)
b.append(_signature.data,ZT_C25519_SIGNATURE_LEN);
if ((_signedBy)&&(_signatureLength == 96)) {
// UGLY: Ed25519 signatures in ZT are 96 bytes (64 + 32 bytes of hash).
// P-384 signatures are also 96 bytes, praise the horned one. That means
// we don't need to include a length. If we ever do we will need a new
// serialized object version, but only for those with length != 96.
b.append(_signature,96);
}
}
template<unsigned int C>
@ -288,8 +294,9 @@ public:
{
unsigned int p = startAt;
_qualifierCount = 0;
_signedBy.zero();
_qualifierCount = 0;
_signatureLength = 0;
if (b[p++] != 1)
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE;
@ -316,8 +323,10 @@ public:
p += ZT_ADDRESS_LENGTH;
if (_signedBy) {
memcpy(_signature.data,b.field(p,ZT_C25519_SIGNATURE_LEN),ZT_C25519_SIGNATURE_LEN);
p += ZT_C25519_SIGNATURE_LEN;
// See "UGLY" comment in serialize()...
_signatureLength = 96;
memcpy(_signature,b.field(p,96),96);
p += 96;
}
return (p - startAt);
@ -329,13 +338,15 @@ public:
return false;
if (_qualifierCount != c._qualifierCount)
return false;
if (_signatureLength != c._signatureLength)
return false;
for(unsigned int i=0;i<_qualifierCount;++i) {
const _Qualifier &a = _qualifiers[i];
const _Qualifier &b = c._qualifiers[i];
if ((a.id != b.id)||(a.value != b.value)||(a.maxDelta != b.maxDelta))
return false;
}
return (memcmp(_signature.data,c._signature.data,ZT_C25519_SIGNATURE_LEN) == 0);
return (memcmp(_signature,c._signature,_signatureLength) == 0);
}
inline bool operator!=(const CertificateOfMembership &c) const { return (!(*this == c)); }
@ -352,7 +363,8 @@ private:
Address _signedBy;
_Qualifier _qualifiers[ZT_NETWORK_COM_MAX_QUALIFIERS];
unsigned int _qualifierCount;
C25519::Signature _signature;
unsigned int _signatureLength;
uint8_t _signature[ZT_SIGNATURE_BUFFER_SIZE];
};
} // namespace ZeroTier

View File

@ -34,6 +34,32 @@
namespace ZeroTier {
void CertificateOfOwnership::addThing(const InetAddress &ip)
{
if (_thingCount >= ZT_CERTIFICATEOFOWNERSHIP_MAX_THINGS) return;
if (ip.ss_family == AF_INET) {
_thingTypes[_thingCount] = THING_IPV4_ADDRESS;
memcpy(_thingValues[_thingCount],&(reinterpret_cast<const struct sockaddr_in *>(&ip)->sin_addr.s_addr),4);
++_thingCount;
} else if (ip.ss_family == AF_INET6) {
_thingTypes[_thingCount] = THING_IPV6_ADDRESS;
memcpy(_thingValues[_thingCount],reinterpret_cast<const struct sockaddr_in6 *>(&ip)->sin6_addr.s6_addr,16);
++_thingCount;
}
}
bool CertificateOfOwnership::sign(const Identity &signer)
{
if (signer.hasPrivate()) {
Buffer<sizeof(CertificateOfOwnership) + 64> tmp;
_signedBy = signer.address();
this->serialize(tmp,true);
_signatureLength = signer.sign(tmp.data(),tmp.size(),_signature,sizeof(_signature));
return true;
}
return false;
}
int CertificateOfOwnership::verify(const RuntimeEnvironment *RR,void *tPtr) const
{
if ((!_signedBy)||(_signedBy != Network::controllerFor(_networkId)))
@ -46,7 +72,7 @@ int CertificateOfOwnership::verify(const RuntimeEnvironment *RR,void *tPtr) cons
try {
Buffer<(sizeof(CertificateOfOwnership) + 64)> tmp;
this->serialize(tmp,true);
return (id.verify(tmp.data(),tmp.size(),_signature) ? 0 : -1);
return (id.verify(tmp.data(),tmp.size(),_signature,_signatureLength) ? 0 : -1);
} catch ( ... ) {
return -1;
}

View File

@ -107,19 +107,7 @@ public:
return this->_owns(THING_MAC_ADDRESS,tmp,6);
}
inline void addThing(const InetAddress &ip)
{
if (_thingCount >= ZT_CERTIFICATEOFOWNERSHIP_MAX_THINGS) return;
if (ip.ss_family == AF_INET) {
_thingTypes[_thingCount] = THING_IPV4_ADDRESS;
memcpy(_thingValues[_thingCount],&(reinterpret_cast<const struct sockaddr_in *>(&ip)->sin_addr.s_addr),4);
++_thingCount;
} else if (ip.ss_family == AF_INET6) {
_thingTypes[_thingCount] = THING_IPV6_ADDRESS;
memcpy(_thingValues[_thingCount],reinterpret_cast<const struct sockaddr_in6 *>(&ip)->sin6_addr.s6_addr,16);
++_thingCount;
}
}
void addThing(const InetAddress &ip);
inline void addThing(const MAC &mac)
{
@ -133,17 +121,7 @@ public:
* @param signer Signing identity, must have private key
* @return True if signature was successful
*/
inline bool sign(const Identity &signer)
{
if (signer.hasPrivate()) {
Buffer<sizeof(CertificateOfOwnership) + 64> tmp;
_signedBy = signer.address();
this->serialize(tmp,true);
_signature = signer.sign(tmp.data(),tmp.size());
return true;
}
return false;
}
bool sign(const Identity &signer);
/**
* @param RR Runtime environment to allow identity lookup for signedBy
@ -170,9 +148,9 @@ public:
_issuedTo.appendTo(b);
_signedBy.appendTo(b);
if (!forSign) {
b.append((uint8_t)1); // 1 == Ed25519
b.append((uint16_t)ZT_C25519_SIGNATURE_LEN); // length of signature
b.append(_signature.data,ZT_C25519_SIGNATURE_LEN);
b.append((uint8_t)1);
b.append((uint16_t)_signatureLength); // length of signature
b.append(_signature,_signatureLength);
}
b.append((uint16_t)0); // length of additional fields, currently 0
@ -203,10 +181,11 @@ public:
_issuedTo.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
_signedBy.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
if (b[p++] == 1) {
if (b.template at<uint16_t>(p) != ZT_C25519_SIGNATURE_LEN)
_signatureLength = b.template at<uint16_t>(p);
if (_signatureLength > sizeof(_signature))
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN;
p += 2;
memcpy(_signature.data,b.field(p,ZT_C25519_SIGNATURE_LEN),ZT_C25519_SIGNATURE_LEN); p += ZT_C25519_SIGNATURE_LEN;
memcpy(_signature,b.field(p,_signatureLength),_signatureLength); p += _signatureLength;
} else {
p += 2 + b.template at<uint16_t>(p);
}
@ -236,7 +215,8 @@ private:
uint8_t _thingValues[ZT_CERTIFICATEOFOWNERSHIP_MAX_THINGS][ZT_CERTIFICATEOFOWNERSHIP_MAX_THING_VALUE_SIZE];
Address _issuedTo;
Address _signedBy;
C25519::Signature _signature;
unsigned int _signatureLength;
uint8_t _signature[ZT_SIGNATURE_BUFFER_SIZE];
};
} // namespace ZeroTier

View File

@ -613,6 +613,11 @@
*/
#define ZT_SUPPORT_OLD_STYLE_NETCONF 1
/**
* Size of a buffer to store either a C25519 or an ECC P-384 signature
*/
#define ZT_SIGNATURE_BUFFER_SIZE 96
/**
* Desired buffer size for UDP sockets (used in service and osdep but defined here)
*/

View File

@ -61,12 +61,46 @@
namespace ZeroTier {
/**
* Generate a NIST P-384 key pair
*
* @param pub Buffer to receive point compressed public key
* @param priv Buffer to receiver private key
*/
void ECC384GenerateKey(uint8_t pub[ZT_ECC384_PUBLIC_KEY_SIZE],uint8_t priv[ZT_ECC384_PRIVATE_KEY_SIZE]);
/**
* Sign a hash with a NIST P-384 private key
*
* The hash must be 48 bytes in size and is typically the first 48 bytes
* of a SHA512 hash or something similar. Extra bytes of course are ignored.
*
* @param priv Private key
* @param hash 48-byte hash
* @param sig Buffer to receive signature
*/
void ECC384ECDSASign(const uint8_t priv[ZT_ECC384_PRIVATE_KEY_SIZE],const uint8_t hash[ZT_ECC384_SIGNATURE_HASH_SIZE],uint8_t sig[ZT_ECC384_SIGNATURE_SIZE]);
/**
* Verify a signature
*
* @param pub Public key
* @param hash 48-byte hash (usually first 48 bytes of SHA512(msg))
* @param sig Signature to check
* @return True if signature is valid
*/
bool ECC384ECDSAVerify(const uint8_t pub[ZT_ECC384_PUBLIC_KEY_SIZE],const uint8_t hash[ZT_ECC384_SIGNATURE_HASH_SIZE],const uint8_t sig[ZT_ECC384_SIGNATURE_SIZE]);
/**
* Perform ECDH key agreement
*
* The secret generated here is the raw 48-byte result of ECDH.
* It's typically hashed prior to use.
*
* @param theirPub Remote public key
* @param ourPriv Local private key
* @param secret Buffer to receive 48-byte secret
*/
bool ECC384ECDH(const uint8_t theirPub[ZT_ECC384_PUBLIC_KEY_SIZE],const uint8_t ourPriv[ZT_ECC384_PRIVATE_KEY_SIZE],uint8_t secret[ZT_ECC384_SHARED_SECRET_SIZE]);
} // namespace ZeroTier

View File

@ -35,14 +35,16 @@
#include "Salsa20.hpp"
#include "Utils.hpp"
namespace ZeroTier {
//////////////////////////////////////////////////////////////////////////////
// This is the memory-hard hash used for type 0 identities' addresses
// These can't be changed without a new identity type. They define the
// parameters of the hashcash hashing/searching algorithm.
#define ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN 17
#define ZT_IDENTITY_GEN_MEMORY 2097152
namespace ZeroTier {
// A memory-hard composition of SHA-512 and Salsa20 for hashcash hashing
static inline void _computeMemoryHardHash(const void *publicKey,unsigned int publicKeyBytes,void *digest,void *genmem)
{
@ -94,23 +96,39 @@ struct _Identity_generate_cond
char *genmem;
};
void Identity::generate()
//////////////////////////////////////////////////////////////////////////////
void Identity::generate(const Type t)
{
unsigned char digest[64];
char *genmem = new char[ZT_IDENTITY_GEN_MEMORY];
uint8_t digest[64];
switch(t) {
case C25519: {
char *genmem = new char[ZT_IDENTITY_GEN_MEMORY];
C25519::Pair kp;
do {
kp = C25519::generateSatisfying(_Identity_generate_cond(digest,genmem));
_address.setTo(digest + 59,ZT_ADDRESS_LENGTH); // last 5 bytes are address
} while (_address.isReserved());
C25519::Pair kp;
do {
kp = C25519::generateSatisfying(_Identity_generate_cond(digest,genmem));
_address.setTo(digest + 59,ZT_ADDRESS_LENGTH); // last 5 bytes are address
} while (_address.isReserved());
_publicKey = kp.pub;
if (!_privateKey)
_privateKey = new C25519::Private();
*_privateKey = kp.priv;
memcpy(_k.t0.pub.data,kp.pub.data,ZT_C25519_PUBLIC_KEY_LEN);
memcpy(_k.t0.priv.data,kp.priv.data,ZT_C25519_PRIVATE_KEY_LEN);
_type = C25519;
_hasPrivate = true;
delete [] genmem;
} break;
delete [] genmem;
case P384: {
do {
ECC384GenerateKey(_k.t1.pub,_k.t1.priv);
SHA512::hash(digest,_k.t1.pub,ZT_ECC384_PUBLIC_KEY_SIZE);
_address.setTo(digest + 59,ZT_ADDRESS_LENGTH);
} while (_address.isReserved());
_type = P384;
_hasPrivate = true;
} break;
}
}
bool Identity::locallyValidate() const
@ -118,40 +136,70 @@ bool Identity::locallyValidate() const
if (_address.isReserved())
return false;
unsigned char digest[64];
char *genmem = new char[ZT_IDENTITY_GEN_MEMORY];
_computeMemoryHardHash(_publicKey.data,ZT_C25519_PUBLIC_KEY_LEN,digest,genmem);
delete [] genmem;
switch(_type) {
case C25519: {
unsigned char digest[64];
char *genmem = new char[ZT_IDENTITY_GEN_MEMORY];
_computeMemoryHardHash(_k.t0.pub.data,ZT_C25519_PUBLIC_KEY_LEN,digest,genmem);
delete [] genmem;
unsigned char addrb[5];
_address.copyTo(addrb,5);
return (
(digest[0] < ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN)&&
(digest[59] == addrb[0])&&
(digest[60] == addrb[1])&&
(digest[61] == addrb[2])&&
(digest[62] == addrb[3])&&
(digest[63] == addrb[4]));
} break;
unsigned char addrb[5];
_address.copyTo(addrb,5);
case P384: {
return true;
} break;
}
return (
(digest[0] < ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN)&&
(digest[59] == addrb[0])&&
(digest[60] == addrb[1])&&
(digest[61] == addrb[2])&&
(digest[62] == addrb[3])&&
(digest[63] == addrb[4]));
return false;
}
char *Identity::toString(bool includePrivate,char buf[ZT_IDENTITY_STRING_BUFFER_LENGTH]) const
{
char *p = buf;
Utils::hex10(_address.toInt(),p);
p += 10;
*(p++) = ':';
*(p++) = '0';
*(p++) = ':';
Utils::hex(_publicKey.data,ZT_C25519_PUBLIC_KEY_LEN,p);
p += ZT_C25519_PUBLIC_KEY_LEN * 2;
if ((_privateKey)&&(includePrivate)) {
*(p++) = ':';
Utils::hex(_privateKey->data,ZT_C25519_PRIVATE_KEY_LEN,p);
p += ZT_C25519_PRIVATE_KEY_LEN * 2;
switch(_type) {
case C25519: {
char *p = buf;
Utils::hex10(_address.toInt(),p);
p += 10;
*(p++) = ':';
*(p++) = '0';
*(p++) = ':';
Utils::hex(_k.t0.pub.data,ZT_C25519_PUBLIC_KEY_LEN,p);
p += ZT_C25519_PUBLIC_KEY_LEN * 2;
if ((_hasPrivate)&&(includePrivate)) {
*(p++) = ':';
Utils::hex(_k.t0.priv.data,ZT_C25519_PRIVATE_KEY_LEN,p);
p += ZT_C25519_PRIVATE_KEY_LEN * 2;
}
*p = (char)0;
return buf;
}
case P384: {
char *p = buf;
Utils::hex10(_address.toInt(),p);
p += 10;
*(p++) = ':';
*(p++) = '1';
*(p++) = ':';
Utils::hex(_k.t1.pub,ZT_ECC384_PUBLIC_KEY_SIZE,p);
p += ZT_ECC384_PUBLIC_KEY_SIZE * 2;
if ((_hasPrivate)&&(includePrivate)) {
*(p++) = ':';
Utils::hex(_k.t1.priv,ZT_ECC384_PRIVATE_KEY_SIZE,p);
p += ZT_ECC384_PRIVATE_KEY_SIZE * 2;
}
*p = (char)0;
return buf;
} break;
}
*p = (char)0;
return buf;
}
bool Identity::fromString(const char *str)
@ -166,8 +214,7 @@ bool Identity::fromString(const char *str)
return false;
}
delete _privateKey;
_privateKey = (C25519::Private *)0;
_hasPrivate = false;
int fno = 0;
char *saveptr = (char *)0;
@ -181,22 +228,49 @@ bool Identity::fromString(const char *str)
}
break;
case 1:
if ((f[0] != '0')||(f[1])) {
if ((f[0] == '0')&&(!f[1])) {
_type = C25519;
} else if ((f[0] == '1')&&(!f[1])) {
_type = P384;
} else {
_address.zero();
return false;
}
break;
case 2:
if (Utils::unhex(f,_publicKey.data,ZT_C25519_PUBLIC_KEY_LEN) != ZT_C25519_PUBLIC_KEY_LEN) {
_address.zero();
return false;
switch(_type) {
case C25519:
if (Utils::unhex(f,_k.t0.pub.data,ZT_C25519_PUBLIC_KEY_LEN) != ZT_C25519_PUBLIC_KEY_LEN) {
_address.zero();
return false;
}
break;
case P384:
if (Utils::unhex(f,_k.t1.pub,ZT_ECC384_PUBLIC_KEY_SIZE) != ZT_ECC384_PUBLIC_KEY_SIZE) {
_address.zero();
return false;
}
break;
}
break;
case 3:
_privateKey = new C25519::Private();
if (Utils::unhex(f,_privateKey->data,ZT_C25519_PRIVATE_KEY_LEN) != ZT_C25519_PRIVATE_KEY_LEN) {
_address.zero();
return false;
switch(_type) {
case C25519:
if (Utils::unhex(f,_k.t0.priv.data,ZT_C25519_PRIVATE_KEY_LEN) != ZT_C25519_PRIVATE_KEY_LEN) {
_address.zero();
return false;
} else {
_hasPrivate = true;
}
break;
case P384:
if (Utils::unhex(f,_k.t1.priv,ZT_ECC384_PRIVATE_KEY_SIZE) != ZT_ECC384_PRIVATE_KEY_SIZE) {
_address.zero();
return false;
} else {
_hasPrivate = true;
}
break;
}
break;
default:

View File

@ -36,6 +36,7 @@
#include "C25519.hpp"
#include "Buffer.hpp"
#include "SHA512.hpp"
#include "ECC384.hpp"
#define ZT_IDENTITY_STRING_BUFFER_LENGTH 384
@ -54,61 +55,45 @@ namespace ZeroTier {
class Identity
{
public:
Identity() :
_privateKey((C25519::Private *)0)
enum Type
{
}
C25519 = 0, // Curve25519 and Ed25519
P384 = 1 // NIST P-384 ECDH and ECDSA
};
Identity(const Identity &id) :
_address(id._address),
_publicKey(id._publicKey),
_privateKey((id._privateKey) ? new C25519::Private(*(id._privateKey)) : (C25519::Private *)0)
{
}
Identity() { memset(reinterpret_cast<void *>(this),0,sizeof(Identity)); }
Identity(const Identity &id) { memcpy(reinterpret_cast<void *>(this),&id,sizeof(Identity)); }
Identity(const char *str) :
_privateKey((C25519::Private *)0)
Identity(const char *str)
{
if (!fromString(str))
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE;
}
template<unsigned int C>
Identity(const Buffer<C> &b,unsigned int startAt = 0) :
_privateKey((C25519::Private *)0)
{
deserialize(b,startAt);
}
Identity(const Buffer<C> &b,unsigned int startAt = 0) { deserialize(b,startAt); }
~Identity()
{
if (_privateKey) {
Utils::burn(_privateKey,sizeof(C25519::Private));
delete _privateKey;
}
}
~Identity() { Utils::burn(reinterpret_cast<void *>(this),sizeof(Identity)); }
inline Identity &operator=(const Identity &id)
{
_address = id._address;
_publicKey = id._publicKey;
if (id._privateKey) {
if (!_privateKey)
_privateKey = new C25519::Private();
*_privateKey = *(id._privateKey);
} else {
delete _privateKey;
_privateKey = (C25519::Private *)0;
}
memcpy(reinterpret_cast<void *>(this),&id,sizeof(Identity));
return *this;
}
/**
* @return Identity type
*/
inline Type type() const { return _type; }
/**
* Generate a new identity (address, key pair)
*
* This is a time consuming operation.
*
* @param t Type of identity to generate
*/
void generate();
void generate(const Type t);
/**
* Check the validity of this identity's pairing of key to address
@ -120,7 +105,7 @@ public:
/**
* @return True if this identity contains a private key
*/
inline bool hasPrivate() const { return (_privateKey != (C25519::Private *)0); }
inline bool hasPrivate() const { return _hasPrivate; }
/**
* Compute the SHA512 hash of our private key (if we have one)
@ -130,9 +115,15 @@ public:
*/
inline bool sha512PrivateKey(void *sha) const
{
if (_privateKey) {
SHA512::hash(sha,_privateKey->data,ZT_C25519_PRIVATE_KEY_LEN);
return true;
if (_hasPrivate) {
switch(_type) {
case C25519:
SHA512::hash(sha,_k.t0.priv.data,ZT_C25519_PRIVATE_KEY_LEN);
return true;
case P384:
SHA512::hash(sha,_k.t1.priv,ZT_ECC384_PRIVATE_KEY_SIZE);
return true;
}
}
return false;
}
@ -140,14 +131,34 @@ public:
/**
* Sign a message with this identity (private key required)
*
* The signature buffer should be large enough for the largest
* signature, which is currently 96 bytes.
*
* @param data Data to sign
* @param len Length of data
* @param sig Buffer to receive signature
* @param siglen Length of buffer
* @return Number of bytes actually written to sig or 0 on error
*/
inline C25519::Signature sign(const void *data,unsigned int len) const
inline unsigned int sign(const void *data,unsigned int len,void *sig,unsigned int siglen) const
{
if (_privateKey)
return C25519::sign(*_privateKey,_publicKey,data,len);
throw ZT_EXCEPTION_PRIVATE_KEY_REQUIRED;
uint8_t h[64];
if (!_hasPrivate)
return 0;
switch(_type) {
case C25519:
if (siglen < ZT_C25519_SIGNATURE_LEN)
return 0;
C25519::sign(_k.t0.priv,_k.t0.pub,data,len,sig);
return ZT_C25519_SIGNATURE_LEN;
case P384:
if (siglen < ZT_ECC384_SIGNATURE_SIZE)
return 0;
SHA512::hash(h,data,len);
ECC384ECDSASign(_k.t1.priv,h,(uint8_t *)sig);
return ZT_ECC384_SIGNATURE_SIZE;
}
return 0;
}
/**
@ -159,17 +170,20 @@ public:
* @param siglen Length of signature in bytes
* @return True if signature validates and data integrity checks
*/
inline bool verify(const void *data,unsigned int len,const void *signature,unsigned int siglen) const { return C25519::verify(_publicKey,data,len,signature,siglen); }
/**
* Verify a message signature against this identity
*
* @param data Data to check
* @param len Length of data
* @param signature Signature
* @return True if signature validates and data integrity checks
*/
inline bool verify(const void *data,unsigned int len,const C25519::Signature &signature) const { return C25519::verify(_publicKey,data,len,signature); }
inline bool verify(const void *data,unsigned int len,const void *sig,unsigned int siglen) const
{
uint8_t h[64];
switch(_type) {
case C25519:
return C25519::verify(_k.t0.pub,data,len,sig,siglen);
case P384:
if (siglen != ZT_ECC384_SIGNATURE_SIZE)
return false;
SHA512::hash(h,data,len);
return ECC384ECDSAVerify(_k.t1.pub,h,(const uint8_t *)sig);
}
return false;
}
/**
* Shortcut method to perform key agreement with another identity
@ -183,9 +197,26 @@ public:
*/
inline bool agree(const Identity &id,void *key,unsigned int klen) const
{
if (_privateKey) {
C25519::agree(*_privateKey,id._publicKey,key,klen);
return true;
uint8_t ecc384RawSecret[ZT_ECC384_SHARED_SECRET_SIZE];
uint8_t h[64];
if (_hasPrivate) {
switch(_type) {
case C25519:
C25519::agree(_k.t0.priv,id._k.t0.pub,key,klen);
return true;
case P384:
ECC384ECDH(id._k.t1.pub,_k.t1.priv,ecc384RawSecret);
SHA512::hash(h,ecc384RawSecret,sizeof(ecc384RawSecret));
unsigned int hi = 0;
for(unsigned int i=0;i<klen;++i) {
if (hi == 64) {
hi = 0;
SHA512::hash(h,h,64);
}
((uint8_t *)key)[i] = h[hi++];
}
return true;
}
}
return false;
}
@ -206,12 +237,28 @@ public:
inline void serialize(Buffer<C> &b,bool includePrivate = false) const
{
_address.appendTo(b);
b.append((uint8_t)0); // C25519/Ed25519 identity type
b.append(_publicKey.data,ZT_C25519_PUBLIC_KEY_LEN);
if ((_privateKey)&&(includePrivate)) {
b.append((unsigned char)ZT_C25519_PRIVATE_KEY_LEN);
b.append(_privateKey->data,ZT_C25519_PRIVATE_KEY_LEN);
} else b.append((unsigned char)0);
switch(_type) {
case C25519:
b.append((uint8_t)C25519);
b.append(_k.t0.pub.data,ZT_C25519_PUBLIC_KEY_LEN);
if ((_hasPrivate)&&(includePrivate)) {
b.append((uint8_t)ZT_C25519_PRIVATE_KEY_LEN);
b.append(_k.t0.priv.data,ZT_C25519_PRIVATE_KEY_LEN);
} else {
b.append((uint8_t)0);
}
break;
case P384:
b.append((uint8_t)P384);
b.append(_k.t1.pub,ZT_ECC384_PUBLIC_KEY_SIZE);
if ((_hasPrivate)&&(includePrivate)) {
b.append((uint8_t)ZT_ECC384_PRIVATE_KEY_SIZE);
b.append(_k.t1.priv,ZT_ECC384_PRIVATE_KEY_SIZE);
} else {
b.append((uint8_t)0);
}
break;
}
}
/**
@ -229,27 +276,47 @@ public:
template<unsigned int C>
inline unsigned int deserialize(const Buffer<C> &b,unsigned int startAt = 0)
{
delete _privateKey;
_privateKey = (C25519::Private *)0;
_hasPrivate = false;
unsigned int p = startAt;
unsigned int pkl;
_address.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
p += ZT_ADDRESS_LENGTH;
if (b[p++] != 0)
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE;
memcpy(_publicKey.data,b.field(p,ZT_C25519_PUBLIC_KEY_LEN),ZT_C25519_PUBLIC_KEY_LEN);
p += ZT_C25519_PUBLIC_KEY_LEN;
unsigned int privateKeyLength = (unsigned int)b[p++];
if (privateKeyLength) {
if (privateKeyLength != ZT_C25519_PRIVATE_KEY_LEN)
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN;
_privateKey = new C25519::Private();
memcpy(_privateKey->data,b.field(p,ZT_C25519_PRIVATE_KEY_LEN),ZT_C25519_PRIVATE_KEY_LEN);
p += ZT_C25519_PRIVATE_KEY_LEN;
_type = (Type)b[p++];
switch(_type) {
case C25519:
memcpy(_k.t0.pub.data,b.field(p,ZT_C25519_PUBLIC_KEY_LEN),ZT_C25519_PUBLIC_KEY_LEN);
p += ZT_C25519_PUBLIC_KEY_LEN;
pkl = (unsigned int)b[p++];
if (pkl) {
if (pkl != ZT_C25519_PRIVATE_KEY_LEN)
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN;
_hasPrivate = true;
memcpy(_k.t0.priv.data,b.field(p,ZT_C25519_PRIVATE_KEY_LEN),ZT_C25519_PRIVATE_KEY_LEN);
p += ZT_C25519_PRIVATE_KEY_LEN;
} else {
memset(_k.t0.priv.data,0,ZT_C25519_PRIVATE_KEY_LEN);
_hasPrivate = false;
}
break;
case P384:
memcpy(_k.t0.pub.data,b.field(p,ZT_ECC384_PUBLIC_KEY_SIZE),ZT_ECC384_PUBLIC_KEY_SIZE);
p += ZT_ECC384_PUBLIC_KEY_SIZE;
pkl = (unsigned int)b[p++];
if (pkl) {
if (pkl != ZT_ECC384_PRIVATE_KEY_SIZE)
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN;
_hasPrivate = true;
memcpy(_k.t1.priv,b.field(p,ZT_ECC384_PRIVATE_KEY_SIZE),ZT_ECC384_PRIVATE_KEY_SIZE);
p += ZT_ECC384_PRIVATE_KEY_SIZE;
} else {
memset(_k.t1.priv,0,ZT_ECC384_PRIVATE_KEY_SIZE);
_hasPrivate = false;
}
break;
default:
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE;
}
return (p - startAt);
@ -275,40 +342,64 @@ public:
*/
bool fromString(const char *str);
/**
* @return C25519 public key
*/
inline const C25519::Public &publicKey() const { return _publicKey; }
/**
* @return C25519 key pair (only returns valid pair if private key is present in this Identity object)
*/
inline const C25519::Pair privateKeyPair() const
{
C25519::Pair pair;
pair.pub = _publicKey;
if (_privateKey)
pair.priv = *_privateKey;
else memset(pair.priv.data,0,ZT_C25519_PRIVATE_KEY_LEN);
return pair;
}
/**
* @return True if this identity contains something
*/
inline operator bool() const { return (_address); }
inline bool operator==(const Identity &id) const { return ((_address == id._address)&&(memcmp(_publicKey.data,id._publicKey.data,ZT_C25519_PUBLIC_KEY_LEN) == 0)); }
inline bool operator<(const Identity &id) const { return ((_address < id._address)||((_address == id._address)&&(memcmp(_publicKey.data,id._publicKey.data,ZT_C25519_PUBLIC_KEY_LEN) < 0))); }
inline bool operator==(const Identity &id) const
{
if ((_address == id._address)&&(_type == id._type)) {
switch(_type) {
case C25519:
return (memcmp(_k.t0.pub.data,id._k.t0.pub.data,ZT_C25519_PUBLIC_KEY_LEN) == 0);
case P384:
return (memcmp(_k.t1.pub,id._k.t1.pub,ZT_ECC384_PUBLIC_KEY_SIZE) == 0);
default:
return false;
}
}
return false;
}
inline bool operator<(const Identity &id) const
{
if (_address < id._address)
return true;
if (_address == id._address) {
if ((int)_type < (int)id._type)
return true;
if (_type == id._type) {
switch(_type) {
case C25519:
return (memcmp(_k.t0.pub.data,id._k.t0.pub.data,ZT_C25519_PUBLIC_KEY_LEN) < 0);
case P384:
return (memcmp(_k.t1.pub,id._k.t1.pub,ZT_ECC384_PUBLIC_KEY_SIZE) < 0);
}
}
}
return false;
}
inline bool operator!=(const Identity &id) const { return !(*this == id); }
inline bool operator>(const Identity &id) const { return (id < *this); }
inline bool operator<=(const Identity &id) const { return !(id < *this); }
inline bool operator>=(const Identity &id) const { return !(*this < id); }
inline unsigned long hashCode() const { return (unsigned long)_address.toInt(); }
private:
Address _address;
C25519::Public _publicKey;
C25519::Private *_privateKey;
union {
struct {
C25519::Public pub;
C25519::Private priv;
} t0;
struct {
uint8_t pub[ZT_ECC384_PUBLIC_KEY_SIZE];
uint8_t priv[ZT_ECC384_PRIVATE_KEY_SIZE];
} t1;
} _k;
Type _type;
bool _hasPrivate;
};
} // namespace ZeroTier

View File

@ -43,7 +43,6 @@
#include "SelfAwareness.hpp"
#include "Salsa20.hpp"
#include "SHA512.hpp"
#include "World.hpp"
#include "Node.hpp"
#include "CertificateOfMembership.hpp"
#include "Capability.hpp"
@ -368,30 +367,6 @@ bool IncomingPacket::_doHELLO(const RuntimeEnvironment *RR,void *tPtr,const bool
RR->sa->iam(tPtr,id.address(),_path->localSocket(),_path->address(),externalSurfaceAddress,RR->topology->isUpstream(id),now);
}
// Get primary planet world ID and world timestamp if present
uint64_t planetWorldId = 0;
uint64_t planetWorldTimestamp = 0;
if ((ptr + 16) <= size()) {
planetWorldId = at<uint64_t>(ptr); ptr += 8;
planetWorldTimestamp = at<uint64_t>(ptr); ptr += 8;
}
std::vector< std::pair<uint64_t,uint64_t> > moonIdsAndTimestamps;
if (ptr < size()) {
// Remainder of packet, if present, is encrypted
cryptField(peer->key(),ptr,size() - ptr);
// Get moon IDs and timestamps if present
if ((ptr + 2) <= size()) {
const unsigned int numMoons = at<uint16_t>(ptr); ptr += 2;
for(unsigned int i=0;i<numMoons;++i) {
if ((World::Type)(*this)[ptr++] == World::TYPE_MOON)
moonIdsAndTimestamps.push_back(std::pair<uint64_t,uint64_t>(at<uint64_t>(ptr),at<uint64_t>(ptr + 8)));
ptr += 16;
}
}
}
// Send OK(HELLO) with an echo of the packet's timestamp and some of the same
// information about us: version, sent-to address, etc.
@ -435,25 +410,6 @@ bool IncomingPacket::_doHELLO(const RuntimeEnvironment *RR,void *tPtr,const bool
tmpa.serialize(outp);
}
const unsigned int worldUpdateSizeAt = outp.size();
outp.addSize(2); // make room for 16-bit size field
if ((planetWorldId)&&(RR->topology->planetWorldTimestamp() > planetWorldTimestamp)&&(planetWorldId == RR->topology->planetWorldId())) {
RR->topology->planet().serialize(outp,false);
}
if (moonIdsAndTimestamps.size() > 0) {
std::vector<World> moons(RR->topology->moons());
for(std::vector<World>::const_iterator m(moons.begin());m!=moons.end();++m) {
for(std::vector< std::pair<uint64_t,uint64_t> >::const_iterator i(moonIdsAndTimestamps.begin());i!=moonIdsAndTimestamps.end();++i) {
if (i->first == m->id()) {
if (m->timestamp() > i->second)
m->serialize(outp,false);
break;
}
}
}
}
outp.setAt<uint16_t>(worldUpdateSizeAt,(uint16_t)(outp.size() - (worldUpdateSizeAt + 2)));
outp.armor(peer->key(),true);
_path->send(RR,tPtr,outp.data(),outp.size(),now);
@ -489,22 +445,6 @@ bool IncomingPacket::_doOK(const RuntimeEnvironment *RR,void *tPtr,const SharedP
// Get reported external surface address if present
if (ptr < size())
ptr += externalSurfaceAddress.deserialize(*this,ptr);
// Handle planet or moon updates if present
if ((ptr + 2) <= size()) {
const unsigned int worldsLen = at<uint16_t>(ptr); ptr += 2;
if (RR->topology->shouldAcceptWorldUpdateFrom(peer->address())) {
const unsigned int endOfWorlds = ptr + worldsLen;
while (ptr < endOfWorlds) {
World w;
ptr += w.deserialize(*this,ptr);
RR->topology->addWorld(tPtr,w,false);
}
} else {
ptr += worldsLen;
}
}
if (!hops()) {
_path->updateLatency((unsigned int)latency,RR->node->now());
}
@ -575,8 +515,9 @@ bool IncomingPacket::_doOK(const RuntimeEnvironment *RR,void *tPtr,const SharedP
bool IncomingPacket::_doWHOIS(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
if ((!RR->topology->amUpstream())&&(!peer->rateGateInboundWhoisRequest(RR->node->now())))
return true;
// TODO
//if ((!RR->topology->amUpstream())&&(!peer->rateGateInboundWhoisRequest(RR->node->now())))
// return true;
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_WHOIS);
@ -772,8 +713,8 @@ bool IncomingPacket::_doMULTICAST_LIKE(const RuntimeEnvironment *RR,void *tPtr,c
SharedPtr<Network> network(RR->node->network(nwid));
if (network)
authorized = network->gate(tPtr,peer);
if (!authorized)
authorized = ((RR->topology->amUpstream())||(RR->node->localControllerHasAuthorized(now,nwid,peer->address())));
//if (!authorized)
// authorized = ((RR->topology->amUpstream())||(RR->node->localControllerHasAuthorized(now,nwid,peer->address())));
}
if (authorized)
RR->mc->add(tPtr,now,nwid,MulticastGroup(MAC(field(ptr + 8,6),6),at<uint32_t>(ptr + 14)),peer->address());
@ -982,7 +923,8 @@ bool IncomingPacket::_doMULTICAST_GATHER(const RuntimeEnvironment *RR,void *tPtr
}
const int64_t now = RR->node->now();
if ((gatherLimit > 0)&&((trustEstablished)||(RR->topology->amUpstream())||(RR->node->localControllerHasAuthorized(now,nwid,peer->address())))) {
//if ((gatherLimit > 0)&&((trustEstablished)||(RR->topology->amUpstream())||(RR->node->localControllerHasAuthorized(now,nwid,peer->address())))) {
if (gatherLimit) {
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_MULTICAST_GATHER);
outp.append(packetId());

View File

@ -93,7 +93,7 @@ Node::Node(void *uptr,void *tptr,const struct ZT_Node_Callbacks *callbacks,int64
}
if (n <= 0) {
RR->identity.generate();
RR->identity.generate(Identity::C25519);
RR->identity.toString(false,RR->publicIdentityStr);
RR->identity.toString(true,RR->secretIdentityStr);
idtmp[0] = RR->identity.address().toInt(); idtmp[1] = 0;
@ -192,16 +192,17 @@ ZT_ResultCode Node::processVirtualNetworkFrame(
} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
// Closure used to ping upstream and active/online peers
class _PingPeersThatNeedPing
// Function object used to traverse the peer list, check peer status, and ping
// those that need pinging.
struct _PingPeersThatNeedPing
{
public:
_PingPeersThatNeedPing(const RuntimeEnvironment *renv,void *tPtr,Hashtable< Address,std::vector<InetAddress> > &alwaysContact,int64_t now) :
RR(renv),
_tPtr(tPtr),
_alwaysContact(alwaysContact),
_now(now),
_bestCurrentUpstream(RR->topology->getUpstreamPeer())
_bestCurrentUpstream(RR->topology->getUpstreamPeer()),
online(false)
{
}
@ -209,6 +210,7 @@ public:
{
const std::vector<InetAddress> *const alwaysContactEndpoints = _alwaysContact.get(p->address());
if (alwaysContactEndpoints) {
online |= p->isAlive(_now);
const unsigned int sent = p->doPingAndKeepalive(_tPtr,_now);
bool contacted = (sent != 0);
@ -246,12 +248,13 @@ public:
}
}
private:
const RuntimeEnvironment *RR;
void *_tPtr;
Hashtable< Address,std::vector<InetAddress> > &_alwaysContact;
const int64_t _now;
const SharedPtr<Peer> _bestCurrentUpstream;
bool online;
};
ZT_ResultCode Node::processBackgroundTasks(void *tptr,int64_t now,volatile int64_t *nextBackgroundTaskDeadline)
@ -265,38 +268,25 @@ ZT_ResultCode Node::processBackgroundTasks(void *tptr,int64_t now,volatile int64
try {
_lastPingCheck = now;
// Get designated VL1 upstreams
Hashtable< Address,std::vector<InetAddress> > alwaysContact;
RR->topology->getUpstreamsToContact(alwaysContact);
// Check last receive time on designated upstreams to see if we seem to be online
int64_t lastReceivedFromUpstream = 0;
{
Hashtable< Address,std::vector<InetAddress> >::Iterator i(alwaysContact);
Address *upstreamAddress = (Address *)0;
std::vector<InetAddress> *upstreamStableEndpoints = (std::vector<InetAddress> *)0;
while (i.next(upstreamAddress,upstreamStableEndpoints)) {
SharedPtr<Peer> p(RR->topology->getPeerNoCache(*upstreamAddress));
if (p)
lastReceivedFromUpstream = std::max(p->lastReceive(),lastReceivedFromUpstream);
}
}
// Clean up any old local controller auth memorizations.
// Clean up any old local controller auth memoizations. This is an
// optimization for network controllers to know whether to accept
// or trust nodes without doing an extra cert check.
{
_localControllerAuthorizations_m.lock();
Hashtable< _LocalControllerAuth,int64_t >::Iterator i(_localControllerAuthorizations);
_LocalControllerAuth *k = (_LocalControllerAuth *)0;
int64_t *v = (int64_t *)0;
while (i.next(k,v)) {
if ((*v - now) > (ZT_NETWORK_AUTOCONF_DELAY * 3))
if ((*v - now) > (ZT_NETWORK_AUTOCONF_DELAY * 3)) {
_localControllerAuthorizations.erase(*k);
}
}
_localControllerAuthorizations_m.unlock();
}
// Get peers we should stay connected to according to network configs
// Also get networks and whether they need config so we only have to do one pass over networks
// (1) Get peers we should remain connected to and (2) get networks that need config.
Hashtable< Address,std::vector<InetAddress> > alwaysContact;
RR->topology->getUpstreamsToContact(alwaysContact);
std::vector< std::pair< SharedPtr<Network>,bool > > networkConfigNeeded;
{
Mutex::Lock l(_networks_m);
@ -331,7 +321,7 @@ ZT_ResultCode Node::processBackgroundTasks(void *tptr,int64_t now,volatile int64
// Update online status, post status change as event
const bool oldOnline = _online;
_online = (((now - lastReceivedFromUpstream) < ZT_PEER_ACTIVITY_TIMEOUT)||(RR->topology->amUpstream()));
_online = pfunc.online;
if (oldOnline != _online)
postEvent(tptr,_online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE);
} catch ( ... ) {
@ -425,18 +415,6 @@ ZT_ResultCode Node::multicastUnsubscribe(uint64_t nwid,uint64_t multicastGroup,u
} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
ZT_ResultCode Node::orbit(void *tptr,uint64_t moonWorldId,uint64_t moonSeed)
{
RR->topology->addMoon(tptr,moonWorldId,Address(moonSeed));
return ZT_RESULT_OK;
}
ZT_ResultCode Node::deorbit(void *tptr,uint64_t moonWorldId)
{
RR->topology->removeMoon(tptr,moonWorldId);
return ZT_RESULT_OK;
}
uint64_t Node::address() const
{
return RR->identity.address().toInt();
@ -635,16 +613,6 @@ ZT_ResultCode Node::setPhysicalPathConfiguration(const struct sockaddr_storage *
return ZT_RESULT_OK;
}
World Node::planet() const
{
return RR->topology->planet();
}
std::vector<World> Node::moons() const
{
return RR->topology->moons();
}
void Node::ncSendConfig(uint64_t nwid,uint64_t requestPacketId,const Address &destination,const NetworkConfig &nc,bool sendLegacyFormatConfig)
{
_localControllerAuthorizations_m.lock();
@ -682,10 +650,11 @@ void Node::ncSendConfig(uint64_t nwid,uint64_t requestPacketId,const Address &de
outp.append((uint32_t)totalSize);
outp.append((uint32_t)chunkIndex);
C25519::Signature sig(RR->identity.sign(reinterpret_cast<const uint8_t *>(outp.data()) + sigStart,outp.size() - sigStart));
uint8_t sig[256];
const unsigned int siglen = RR->identity.sign(reinterpret_cast<const uint8_t *>(outp.data()) + sigStart,outp.size() - sigStart,sig,sizeof(sig));
outp.append((uint8_t)1);
outp.append((uint16_t)ZT_C25519_SIGNATURE_LEN);
outp.append(sig.data,ZT_C25519_SIGNATURE_LEN);
outp.append((uint16_t)siglen);
outp.append(sig,siglen);
outp.compress();
RR->sw->send((void *)0,outp,true);
@ -879,24 +848,6 @@ enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node *node,uint64_t nwid,uint
}
}
enum ZT_ResultCode ZT_Node_orbit(ZT_Node *node,void *tptr,uint64_t moonWorldId,uint64_t moonSeed)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->orbit(tptr,moonWorldId,moonSeed);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_deorbit(ZT_Node *node,void *tptr,uint64_t moonWorldId)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->deorbit(tptr,moonWorldId);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
uint64_t ZT_Node_address(ZT_Node *node)
{
return reinterpret_cast<ZeroTier::Node *>(node)->address();

View File

@ -54,8 +54,6 @@
namespace ZeroTier {
class World;
/**
* Implementation of Node object as defined in CAPI
*
@ -99,8 +97,6 @@ public:
ZT_ResultCode leave(uint64_t nwid,void **uptr,void *tptr);
ZT_ResultCode multicastSubscribe(void *tptr,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi);
ZT_ResultCode multicastUnsubscribe(uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi);
ZT_ResultCode orbit(void *tptr,uint64_t moonWorldId,uint64_t moonSeed);
ZT_ResultCode deorbit(void *tptr,uint64_t moonWorldId);
uint64_t address() const;
void status(ZT_NodeStatus *status) const;
ZT_PeerList *peers() const;
@ -194,9 +190,6 @@ public:
uint64_t prng();
ZT_ResultCode setPhysicalPathConfiguration(const struct sockaddr_storage *pathNetwork,const ZT_PhysicalPathConfiguration *pathConfig);
World planet() const;
std::vector<World> moons() const;
inline const Identity &identity() const { return _RR.identity; }
/**

View File

@ -972,16 +972,6 @@ bool Packet::dearmor(const void *key)
}
}
void Packet::cryptField(const void *key,unsigned int start,unsigned int len)
{
uint8_t *const data = reinterpret_cast<uint8_t *>(unsafeData());
uint8_t iv[8];
for(int i=0;i<8;++i) iv[i] = data[i];
iv[7] &= 0xf8; // mask off least significant 3 bits of packet ID / IV since this is unset when this function gets called
Salsa20 s20(key,iv);
s20.crypt12(data + start,data + start,len);
}
bool Packet::compress()
{
char *const data = reinterpret_cast<char *>(unsafeData());

View File

@ -71,6 +71,7 @@
* 10 - 1.4.0 ... CURRENT
* + Multipath capability and load balancing
* + Peer-to-peer multicast replication (optional)
* + Old planet/moon stuff is DEAD!
*/
#define ZT_PROTO_VERSION 10
@ -532,22 +533,9 @@ public:
* <[8] timestamp for determining latency>
* <[...] binary serialized identity (see Identity)>
* <[...] physical destination address of packet>
* <[8] 64-bit world ID of current planet>
* <[8] 64-bit timestamp of current planet>
* [... remainder if packet is encrypted using cryptField() ...]
* <[2] 16-bit number of moons>
* [<[1] 8-bit type ID of moon>]
* [<[8] 64-bit world ID of moon>]
* [<[8] 64-bit timestamp of moon>]
* [... additional moon type/ID/timestamp tuples ...]
*
*
* HELLO is sent in the clear as it is how peers share their identity
* public keys. A few additional fields are sent in the clear too, but
* these are things that are public info or are easy to determine. As
* of 1.2.0 we have added a few more fields, but since these could have
* the potential to be sensitive we introduced the encryption of the
* remainder of the packet. See cryptField(). Packet MAC is still
* performed of course, so authentication occurs as normal.
* public keys.
*
* Destination address is the actual wire address to which the packet
* was sent. See InetAddress::serialize() for format.
@ -559,15 +547,10 @@ public:
* <[1] software minor version>
* <[2] software revision>
* <[...] physical destination address of packet>
* <[2] 16-bit length of world update(s) or 0 if none>
* [[...] updates to planets and/or moons]
*
* With the exception of the timestamp, the other fields pertain to the
* respondent who is sending OK and are not echoes.
*
* Note that OK is fully encrypted so no selective cryptField() of
* potentially sensitive fields is needed.
*
* ERROR has no payload.
*/
VERB_HELLO = 0x01,
@ -1268,21 +1251,6 @@ public:
*/
bool dearmor(const void *key);
/**
* Encrypt/decrypt a separately armored portion of a packet
*
* This is currently only used to mask portions of HELLO as an extra
* security precaution since most of that message is sent in the clear.
*
* This must NEVER be used more than once in the same packet, as doing
* so will result in re-use of the same key stream.
*
* @param key 32-byte key
* @param start Start of encrypted portion
* @param len Length of encrypted portion
*/
void cryptField(const void *key,unsigned int start,unsigned int len);
/**
* Attempt to compress payload if not already (must be unencrypted)
*

View File

@ -711,27 +711,6 @@ void Peer::sendHELLO(void *tPtr,const int64_t localSocket,const InetAddress &atA
RR->identity.serialize(outp,false);
atAddress.serialize(outp);
outp.append((uint64_t)RR->topology->planetWorldId());
outp.append((uint64_t)RR->topology->planetWorldTimestamp());
const unsigned int startCryptedPortionAt = outp.size();
std::vector<World> moons(RR->topology->moons());
std::vector<uint64_t> moonsWanted(RR->topology->moonsWanted());
outp.append((uint16_t)(moons.size() + moonsWanted.size()));
for(std::vector<World>::const_iterator m(moons.begin());m!=moons.end();++m) {
outp.append((uint8_t)m->type());
outp.append((uint64_t)m->id());
outp.append((uint64_t)m->timestamp());
}
for(std::vector<uint64_t>::const_iterator m(moonsWanted.begin());m!=moonsWanted.end();++m) {
outp.append((uint8_t)World::TYPE_MOON);
outp.append(*m);
outp.append((uint64_t)0);
}
outp.cryptField(_key,startCryptedPortionAt,outp.size() - startCryptedPortionAt);
RR->node->expectReplyTo(outp.packetId());
if (atAddress) {

View File

@ -34,6 +34,18 @@
namespace ZeroTier {
bool Revocation::sign(const Identity &signer)
{
if (signer.hasPrivate()) {
Buffer<sizeof(Revocation) + 64> tmp;
_signedBy = signer.address();
this->serialize(tmp,true);
_signatureLength = signer.sign(tmp.data(),tmp.size(),_signature,sizeof(_signature));
return true;
}
return false;
}
int Revocation::verify(const RuntimeEnvironment *RR,void *tPtr) const
{
if ((!_signedBy)||(_signedBy != Network::controllerFor(_networkId)))
@ -46,7 +58,7 @@ int Revocation::verify(const RuntimeEnvironment *RR,void *tPtr) const
try {
Buffer<sizeof(Revocation) + 64> tmp;
this->serialize(tmp,true);
return (id.verify(tmp.data(),tmp.size(),_signature) ? 0 : -1);
return (id.verify(tmp.data(),tmp.size(),_signature,_signatureLength) ? 0 : -1);
} catch ( ... ) {
return -1;
}

View File

@ -66,9 +66,9 @@ public:
_flags(0),
_target(),
_signedBy(),
_type(Credential::CREDENTIAL_TYPE_NULL)
_type(Credential::CREDENTIAL_TYPE_NULL),
_signatureLength(0)
{
memset(_signature.data,0,sizeof(_signature.data));
}
/**
@ -88,9 +88,9 @@ public:
_flags(fl),
_target(tgt),
_signedBy(),
_type(ct)
_type(ct),
_signatureLength(0)
{
memset(_signature.data,0,sizeof(_signature.data));
}
inline uint32_t id() const { return _id; }
@ -107,17 +107,7 @@ public:
* @param signer Signing identity, must have private key
* @return True if signature was successful
*/
inline bool sign(const Identity &signer)
{
if (signer.hasPrivate()) {
Buffer<sizeof(Revocation) + 64> tmp;
_signedBy = signer.address();
this->serialize(tmp,true);
_signature = signer.sign(tmp.data(),tmp.size());
return true;
}
return false;
}
bool sign(const Identity &signer);
/**
* Verify this revocation's signature
@ -145,9 +135,9 @@ public:
b.append((uint8_t)_type);
if (!forSign) {
b.append((uint8_t)1); // 1 == Ed25519 signature
b.append((uint16_t)ZT_C25519_SIGNATURE_LEN);
b.append(_signature.data,ZT_C25519_SIGNATURE_LEN);
b.append((uint8_t)1);
b.append((uint16_t)_signatureLength);
b.append(_signature,_signatureLength);
}
// This is the size of any additional fields, currently 0.
@ -175,11 +165,10 @@ public:
_type = (Credential::Type)b[p++];
if (b[p++] == 1) {
if (b.template at<uint16_t>(p) == ZT_C25519_SIGNATURE_LEN) {
p += 2;
memcpy(_signature.data,b.field(p,ZT_C25519_SIGNATURE_LEN),ZT_C25519_SIGNATURE_LEN);
p += ZT_C25519_SIGNATURE_LEN;
} else throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN;
_signatureLength = b.template at<uint16_t>(p);
if (_signatureLength > sizeof(_signature))
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN;
memcpy(_signature,b.field(p,_signatureLength),_signatureLength);
} else {
p += 2 + b.template at<uint16_t>(p);
}
@ -200,7 +189,8 @@ private:
Address _target;
Address _signedBy;
Credential::Type _type;
C25519::Signature _signature;
unsigned int _signatureLength;
uint8_t _signature[ZT_SIGNATURE_BUFFER_SIZE];
};
} // namespace ZeroTier

View File

@ -92,9 +92,6 @@ void Switch::onRemotePacket(void *tPtr,const int64_t localSocket,const InetAddre
const Address destination(fragment.destination());
if (destination != RR->identity.address()) {
if ( (!RR->topology->amUpstream()) && (!path->trustEstablished(now)) )
return;
if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
fragment.incrementHops();
@ -164,11 +161,7 @@ void Switch::onRemotePacket(void *tPtr,const int64_t localSocket,const InetAddre
return;
if (destination != RR->identity.address()) {
if ( (!RR->topology->amUpstream()) && (!path->trustEstablished(now)) && (source != RR->identity.address()) )
return;
Packet packet(data,len);
if (packet.hops() < ZT_RELAY_MAX_HOPS) {
packet.incrementHops();
SharedPtr<Peer> relayTo = RR->topology->getPeer(tPtr,destination);

View File

@ -34,6 +34,18 @@
namespace ZeroTier {
bool Tag::sign(const Identity &signer)
{
if (signer.hasPrivate()) {
Buffer<sizeof(Tag) + 64> tmp;
_signedBy = signer.address();
this->serialize(tmp,true);
_signatureLength = signer.sign(tmp.data(),tmp.size(),_signature,sizeof(_signature));
return true;
}
return false;
}
int Tag::verify(const RuntimeEnvironment *RR,void *tPtr) const
{
if ((!_signedBy)||(_signedBy != Network::controllerFor(_networkId)))
@ -46,7 +58,7 @@ int Tag::verify(const RuntimeEnvironment *RR,void *tPtr) const
try {
Buffer<(sizeof(Tag) * 2)> tmp;
this->serialize(tmp,true);
return (id.verify(tmp.data(),tmp.size(),_signature) ? 0 : -1);
return (id.verify(tmp.data(),tmp.size(),_signature,_signatureLength) ? 0 : -1);
} catch ( ... ) {
return -1;
}

View File

@ -69,9 +69,9 @@ public:
_id(0),
_value(0),
_networkId(0),
_ts(0)
_ts(0),
_signatureLength(0)
{
memset(_signature.data,0,sizeof(_signature.data));
}
/**
@ -87,9 +87,9 @@ public:
_networkId(nwid),
_ts(ts),
_issuedTo(issuedTo),
_signedBy()
_signedBy(),
_signatureLength(0)
{
memset(_signature.data,0,sizeof(_signature.data));
}
inline uint32_t id() const { return _id; }
@ -105,17 +105,7 @@ public:
* @param signer Signing identity, must have private key
* @return True if signature was successful
*/
inline bool sign(const Identity &signer)
{
if (signer.hasPrivate()) {
Buffer<sizeof(Tag) + 64> tmp;
_signedBy = signer.address();
this->serialize(tmp,true);
_signature = signer.sign(tmp.data(),tmp.size());
return true;
}
return false;
}
bool sign(const Identity &signer);
/**
* Check this tag's signature
@ -139,9 +129,9 @@ public:
_issuedTo.appendTo(b);
_signedBy.appendTo(b);
if (!forSign) {
b.append((uint8_t)1); // 1 == Ed25519
b.append((uint16_t)ZT_C25519_SIGNATURE_LEN); // length of signature
b.append(_signature.data,ZT_C25519_SIGNATURE_LEN);
b.append((uint8_t)1);
b.append((uint16_t)_signatureLength);
b.append(_signature,_signatureLength);
}
b.append((uint16_t)0); // length of additional fields, currently 0
@ -165,10 +155,11 @@ public:
_issuedTo.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
_signedBy.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
if (b[p++] == 1) {
if (b.template at<uint16_t>(p) != ZT_C25519_SIGNATURE_LEN)
_signatureLength = b.template at<uint16_t>(p);
if (_signatureLength > sizeof(_signature))
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN;
p += 2;
memcpy(_signature.data,b.field(p,ZT_C25519_SIGNATURE_LEN),ZT_C25519_SIGNATURE_LEN); p += ZT_C25519_SIGNATURE_LEN;
memcpy(_signature,b.field(p,_signatureLength),_signatureLength); p += _signatureLength;
} else {
p += 2 + b.template at<uint16_t>(p);
}
@ -207,7 +198,8 @@ private:
int64_t _ts;
Address _issuedTo;
Address _signedBy;
C25519::Signature _signature;
unsigned int _signatureLength;
uint8_t _signature[ZT_SIGNATURE_BUFFER_SIZE];
};
} // namespace ZeroTier

View File

@ -35,57 +35,10 @@
namespace ZeroTier {
/*
* 2018-07-26 ZeroTier planet definition for the third planet of Sol:
*
* There are two roots, each of which is a cluster spread across multiple
* continents and providers. They are named Alice and Bob after the
* canonical example names used in cryptography.
*
* Alice:
*
* root-alice-ams-01: Amsterdam, Netherlands
* root-alice-joh-01: Johannesburg, South Africa
* root-alice-nyc-01: New York, New York, USA
* root-alice-arg-01: Buenos Aires, Argentina
* root-alice-sfo-01: San Francisco, California, USA
* root-alice-sgp-01: Singapore
*
* Bob:
*
* root-bob-dfw-01: Dallas, Texas, USA
* root-bob-fra-01: Frankfurt, Germany
* root-bob-par-01: Paris, France
* root-bob-syd-01: Sydney, Australia
* root-bob-tok-01: Tokyo, Japan
* root-bob-tor-01: Toronto, Canada
*/
#define ZT_DEFAULT_WORLD_LENGTH 634
static const unsigned char ZT_DEFAULT_WORLD[ZT_DEFAULT_WORLD_LENGTH] = {0x01,0x00,0x00,0x00,0x00,0x08,0xea,0xc9,0x0a,0x00,0x00,0x01,0x64,0xd3,0x71,0xf0,0x58,0xb8,0xb3,0x88,0xa4,0x69,0x22,0x14,0x91,0xaa,0x9a,0xcd,0x66,0xcc,0x76,0x4c,0xde,0xfd,0x56,0x03,0x9f,0x10,0x67,0xae,0x15,0xe6,0x9c,0x6f,0xb4,0x2d,0x7b,0x55,0x33,0x0e,0x3f,0xda,0xac,0x52,0x9c,0x07,0x92,0xfd,0x73,0x40,0xa6,0xaa,0x21,0xab,0xa8,0xa4,0x89,0xfd,0xae,0xa4,0x4a,0x39,0xbf,0x2d,0x00,0x65,0x9a,0xc9,0xc8,0x18,0xeb,0xbf,0xfd,0xd5,0x32,0xf7,0x15,0x6e,0x02,0x6f,0xb9,0x01,0x0d,0xb5,0x7b,0x04,0xd8,0x3a,0xc5,0x17,0x39,0x04,0x36,0xfd,0x9d,0xc6,0x3d,0xa8,0xf3,0x8e,0x79,0xe7,0xc8,0x77,0x8d,0xcc,0x79,0xb8,0xab,0xc6,0x98,0x7c,0x9f,0x34,0x25,0x14,0xe1,0x2f,0xd7,0x97,0x11,0xec,0x34,0x4c,0x9f,0x0f,0xb4,0x85,0x0d,0x9b,0x11,0xd1,0xc2,0xce,0x00,0xc4,0x0a,0x13,0x4b,0xcb,0xc3,0xae,0x2e,0x16,0x00,0x4b,0xdc,0x90,0x5e,0x7e,0x9b,0x44,0x07,0x15,0x36,0x61,0x3c,0x64,0xaa,0xe9,0x46,0x78,0x3c,0xa7,0x18,0xc8,0xd8,0x02,0x9d,0x21,0x90,0x39,0xf3,0x00,0x01,0xf0,0x92,0x2a,0x98,0xe3,0xb3,0x4e,0xbc,0xbf,0xf3,0x33,0x26,0x9d,0xc2,0x65,0xd7,0xa0,0x20,0xaa,0xb6,0x9d,0x72,0xbe,0x4d,0x4a,0xcc,0x9c,0x8c,0x92,0x94,0x78,0x57,0x71,0x25,0x6c,0xd1,0xd9,0x42,0xa9,0x0d,0x1b,0xd1,0xd2,0xdc,0xa3,0xea,0x84,0xef,0x7d,0x85,0xaf,0xe6,0x61,0x1f,0xb4,0x3f,0xf0,0xb7,0x41,0x26,0xd9,0x0a,0x6e,0x00,0x0c,0x04,0xbc,0xa6,0x5e,0xb1,0x27,0x09,0x06,0x2a,0x03,0xb0,0xc0,0x00,0x02,0x00,0xd0,0x00,0x7d,0x00,0x01,0x00,0x00,0x00,0x00,0x27,0x09,0x04,0x9a,0x42,0xc5,0x21,0x27,0x09,0x06,0x2c,0x0f,0xf8,0x50,0x01,0x54,0x01,0x97,0x00,0x33,0xcc,0x08,0xf8,0xfa,0xcc,0x08,0x27,0x09,0x04,0x9f,0xcb,0x61,0xab,0x27,0x09,0x06,0x26,0x04,0xa8,0x80,0x08,0x00,0x00,0xa1,0x00,0x54,0x60,0x01,0x00,0xfc,0xcc,0x08,0x27,0x09,0x04,0x83,0xff,0x06,0x10,0x27,0x09,0x06,0x28,0x03,0xeb,0x80,0x00,0x00,0x00,0x0e,0x00,0x02,0x60,0x01,0x00,0xfc,0xcc,0x08,0x27,0x09,0x04,0x6b,0xaa,0xc5,0x0e,0x27,0x09,0x06,0x26,0x04,0xa8,0x80,0x00,0x01,0x00,0x20,0x02,0x00,0xe0,0x01,0x08,0xfe,0xcc,0x08,0x27,0x09,0x04,0x80,0xc7,0xc5,0xd9,0x27,0x09,0x06,0x24,0x00,0x61,0x80,0x00,0x00,0x00,0xd0,0x00,0xb7,0x40,0x01,0x08,0xfe,0xcc,0x08,0x27,0x09,0x88,0x41,0x40,0x8a,0x2e,0x00,0xbb,0x1d,0x31,0xf2,0xc3,0x23,0xe2,0x64,0xe9,0xe6,0x41,0x72,0xc1,0xa7,0x4f,0x77,0x89,0x95,0x55,0xed,0x10,0x75,0x1c,0xd5,0x6e,0x86,0x40,0x5c,0xde,0x11,0x8d,0x02,0xdf,0xfe,0x55,0x5d,0x46,0x2c,0xcf,0x6a,0x85,0xb5,0x63,0x1c,0x12,0x35,0x0c,0x8d,0x5d,0xc4,0x09,0xba,0x10,0xb9,0x02,0x5d,0x0f,0x44,0x5c,0xf4,0x49,0xd9,0x2b,0x1c,0x00,0x0c,0x04,0x2d,0x20,0xc6,0x82,0x27,0x09,0x06,0x20,0x01,0x19,0xf0,0x64,0x00,0x81,0xc3,0x54,0x00,0x00,0xff,0xfe,0x18,0x1d,0x61,0x27,0x09,0x04,0x2e,0x65,0xa0,0xf9,0x27,0x09,0x06,0x2a,0x03,0xb0,0xc0,0x00,0x03,0x00,0xd0,0x00,0x6a,0x30,0x01,0x78,0x00,0xcd,0x08,0x27,0x09,0x04,0x6b,0xbf,0x2e,0xd2,0x27,0x09,0x06,0x20,0x01,0x19,0xf0,0x68,0x00,0x83,0xa4,0x00,0x64,0xcd,0x08,0x80,0x01,0xcd,0x08,0x27,0x09,0x04,0x2d,0x20,0xf6,0xb3,0x27,0x09,0x06,0x20,0x01,0x19,0xf0,0x58,0x00,0x8b,0xf8,0x54,0x00,0x00,0xff,0xfe,0x15,0xb3,0x9a,0x27,0x09,0x04,0x2d,0x20,0xf8,0x57,0x27,0x09,0x06,0x20,0x01,0x19,0xf0,0x70,0x00,0x9b,0xc9,0x54,0x00,0x00,0xff,0xfe,0x15,0xc4,0xf5,0x27,0x09,0x04,0x9f,0xcb,0x02,0x9a,0x27,0x09,0x06,0x26,0x04,0xa8,0x80,0x0c,0xad,0x00,0xd0,0x00,0x26,0x70,0x01,0xfe,0x15,0xc4,0xf5,0x27,0x09};
Topology::Topology(const RuntimeEnvironment *renv,void *tPtr) :
RR(renv),
_numConfiguredPhysicalPaths(0),
_amUpstream(false)
_numConfiguredPhysicalPaths(0)
{
uint8_t tmp[ZT_WORLD_MAX_SERIALIZED_LENGTH];
uint64_t idtmp[2];
idtmp[0] = 0; idtmp[1] = 0;
int n = RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_PLANET,idtmp,tmp,sizeof(tmp));
if (n > 0) {
try {
World cachedPlanet;
cachedPlanet.deserialize(Buffer<ZT_WORLD_MAX_SERIALIZED_LENGTH>(tmp,(unsigned int)n),0);
addWorld(tPtr,cachedPlanet,false);
} catch ( ... ) {} // ignore invalid cached planets
}
World defaultPlanet;
{
Buffer<ZT_DEFAULT_WORLD_LENGTH> wtmp(ZT_DEFAULT_WORLD,ZT_DEFAULT_WORLD_LENGTH);
defaultPlanet.deserialize(wtmp,0); // throws on error, which would indicate a bad static variable up top
}
addWorld(tPtr,defaultPlanet,false);
}
Topology::~Topology()
@ -158,224 +111,33 @@ Identity Topology::getIdentity(void *tPtr,const Address &zta)
SharedPtr<Peer> Topology::getUpstreamPeer()
{
const int64_t now = RR->node->now();
unsigned int bestq = ~((unsigned int)0);
const SharedPtr<Peer> *best = (const SharedPtr<Peer> *)0;
Mutex::Lock _l2(_peers_m);
Mutex::Lock _l1(_upstreams_m);
for(std::vector<Address>::const_iterator a(_upstreamAddresses.begin());a!=_upstreamAddresses.end();++a) {
const SharedPtr<Peer> *p = _peers.get(*a);
if (p) {
const unsigned int q = (*p)->relayQuality(now);
if (q <= bestq) {
bestq = q;
best = p;
}
}
}
if (!best)
return SharedPtr<Peer>();
return *best;
return SharedPtr<Peer>();
}
bool Topology::isUpstream(const Identity &id) const
{
Mutex::Lock _l(_upstreams_m);
return (std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),id.address()) != _upstreamAddresses.end());
}
bool Topology::shouldAcceptWorldUpdateFrom(const Address &addr) const
{
Mutex::Lock _l(_upstreams_m);
if (std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),addr) != _upstreamAddresses.end())
return true;
for(std::vector< std::pair< uint64_t,Address> >::const_iterator s(_moonSeeds.begin());s!=_moonSeeds.end();++s) {
if (s->second == addr)
return true;
}
return false;
}
ZT_PeerRole Topology::role(const Address &ztaddr) const
{
Mutex::Lock _l(_upstreams_m);
if (std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),ztaddr) != _upstreamAddresses.end()) {
for(std::vector<World::Root>::const_iterator i(_planet.roots().begin());i!=_planet.roots().end();++i) {
if (i->identity.address() == ztaddr)
return ZT_PEER_ROLE_PLANET;
}
return ZT_PEER_ROLE_MOON;
}
return ZT_PEER_ROLE_LEAF;
}
bool Topology::isProhibitedEndpoint(const Address &ztaddr,const InetAddress &ipaddr) const
{
Mutex::Lock _l(_upstreams_m);
// For roots the only permitted addresses are those defined. This adds just a little
// bit of extra security against spoofing, replaying, etc.
if (std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),ztaddr) != _upstreamAddresses.end()) {
for(std::vector<World::Root>::const_iterator r(_planet.roots().begin());r!=_planet.roots().end();++r) {
if (r->identity.address() == ztaddr) {
if (r->stableEndpoints.size() == 0)
return false; // no stable endpoints specified, so allow dynamic paths
for(std::vector<InetAddress>::const_iterator e(r->stableEndpoints.begin());e!=r->stableEndpoints.end();++e) {
if (ipaddr.ipsEqual(*e))
return false;
}
}
}
for(std::vector<World>::const_iterator m(_moons.begin());m!=_moons.end();++m) {
for(std::vector<World::Root>::const_iterator r(m->roots().begin());r!=m->roots().end();++r) {
if (r->identity.address() == ztaddr) {
if (r->stableEndpoints.size() == 0)
return false; // no stable endpoints specified, so allow dynamic paths
for(std::vector<InetAddress>::const_iterator e(r->stableEndpoints.begin());e!=r->stableEndpoints.end();++e) {
if (ipaddr.ipsEqual(*e))
return false;
}
}
}
}
return true;
}
return false;
}
bool Topology::addWorld(void *tPtr,const World &newWorld,bool alwaysAcceptNew)
{
if ((newWorld.type() != World::TYPE_PLANET)&&(newWorld.type() != World::TYPE_MOON))
return false;
Mutex::Lock _l2(_peers_m);
Mutex::Lock _l1(_upstreams_m);
World *existing = (World *)0;
switch(newWorld.type()) {
case World::TYPE_PLANET:
existing = &_planet;
break;
case World::TYPE_MOON:
for(std::vector< World >::iterator m(_moons.begin());m!=_moons.end();++m) {
if (m->id() == newWorld.id()) {
existing = &(*m);
break;
}
}
break;
default:
return false;
}
if (existing) {
if (existing->shouldBeReplacedBy(newWorld))
*existing = newWorld;
else return false;
} else if (newWorld.type() == World::TYPE_MOON) {
if (alwaysAcceptNew) {
_moons.push_back(newWorld);
existing = &(_moons.back());
} else {
for(std::vector< std::pair<uint64_t,Address> >::iterator m(_moonSeeds.begin());m!=_moonSeeds.end();++m) {
if (m->first == newWorld.id()) {
for(std::vector<World::Root>::const_iterator r(newWorld.roots().begin());r!=newWorld.roots().end();++r) {
if (r->identity.address() == m->second) {
_moonSeeds.erase(m);
_moons.push_back(newWorld);
existing = &(_moons.back());
break;
}
}
if (existing)
break;
}
}
}
if (!existing)
return false;
} else {
return false;
}
try {
Buffer<ZT_WORLD_MAX_SERIALIZED_LENGTH> sbuf;
existing->serialize(sbuf,false);
uint64_t idtmp[2];
idtmp[0] = existing->id(); idtmp[1] = 0;
RR->node->stateObjectPut(tPtr,(existing->type() == World::TYPE_PLANET) ? ZT_STATE_OBJECT_PLANET : ZT_STATE_OBJECT_MOON,idtmp,sbuf.data(),sbuf.size());
} catch ( ... ) {}
_memoizeUpstreams(tPtr);
return true;
}
void Topology::addMoon(void *tPtr,const uint64_t id,const Address &seed)
{
char tmp[ZT_WORLD_MAX_SERIALIZED_LENGTH];
uint64_t idtmp[2];
idtmp[0] = id; idtmp[1] = 0;
int n = RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_MOON,idtmp,tmp,sizeof(tmp));
if (n > 0) {
try {
World w;
w.deserialize(Buffer<ZT_WORLD_MAX_SERIALIZED_LENGTH>(tmp,(unsigned int)n));
if ((w.type() == World::TYPE_MOON)&&(w.id() == id)) {
addWorld(tPtr,w,true);
return;
}
} catch ( ... ) {}
}
if (seed) {
Mutex::Lock _l(_upstreams_m);
if (std::find(_moonSeeds.begin(),_moonSeeds.end(),std::pair<uint64_t,Address>(id,seed)) == _moonSeeds.end())
_moonSeeds.push_back(std::pair<uint64_t,Address>(id,seed));
}
}
void Topology::removeMoon(void *tPtr,const uint64_t id)
{
Mutex::Lock _l2(_peers_m);
Mutex::Lock _l1(_upstreams_m);
std::vector<World> nm;
for(std::vector<World>::const_iterator m(_moons.begin());m!=_moons.end();++m) {
if (m->id() != id) {
nm.push_back(*m);
} else {
uint64_t idtmp[2];
idtmp[0] = id; idtmp[1] = 0;
RR->node->stateObjectDelete(tPtr,ZT_STATE_OBJECT_MOON,idtmp);
}
}
_moons.swap(nm);
std::vector< std::pair<uint64_t,Address> > cm;
for(std::vector< std::pair<uint64_t,Address> >::const_iterator m(_moonSeeds.begin());m!=_moonSeeds.end();++m) {
if (m->first != id)
cm.push_back(*m);
}
_moonSeeds.swap(cm);
_memoizeUpstreams(tPtr);
}
void Topology::doPeriodicTasks(void *tPtr,int64_t now)
{
{
Mutex::Lock _l1(_peers_m);
Mutex::Lock _l2(_upstreams_m);
Hashtable< Address,SharedPtr<Peer> >::Iterator i(_peers);
Address *a = (Address *)0;
SharedPtr<Peer> *p = (SharedPtr<Peer> *)0;
while (i.next(a,p)) {
if ( (!(*p)->isAlive(now)) && (std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),*a) == _upstreamAddresses.end()) ) {
if (!(*p)->isAlive(now)) {
_savePeer(tPtr,*p);
_peers.erase(*a);
}
@ -394,39 +156,6 @@ void Topology::doPeriodicTasks(void *tPtr,int64_t now)
}
}
void Topology::_memoizeUpstreams(void *tPtr)
{
// assumes _upstreams_m and _peers_m are locked
_upstreamAddresses.clear();
_amUpstream = false;
for(std::vector<World::Root>::const_iterator i(_planet.roots().begin());i!=_planet.roots().end();++i) {
if (i->identity == RR->identity) {
_amUpstream = true;
} else if (std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),i->identity.address()) == _upstreamAddresses.end()) {
_upstreamAddresses.push_back(i->identity.address());
SharedPtr<Peer> &hp = _peers[i->identity.address()];
if (!hp)
hp = new Peer(RR,RR->identity,i->identity);
}
}
for(std::vector<World>::const_iterator m(_moons.begin());m!=_moons.end();++m) {
for(std::vector<World::Root>::const_iterator i(m->roots().begin());i!=m->roots().end();++i) {
if (i->identity == RR->identity) {
_amUpstream = true;
} else if (std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),i->identity.address()) == _upstreamAddresses.end()) {
_upstreamAddresses.push_back(i->identity.address());
SharedPtr<Peer> &hp = _peers[i->identity.address()];
if (!hp)
hp = new Peer(RR,RR->identity,i->identity);
}
}
}
std::sort(_upstreamAddresses.begin(),_upstreamAddresses.end());
}
void Topology::_savePeer(void *tPtr,const SharedPtr<Peer> &peer)
{
try {

View File

@ -45,7 +45,6 @@
#include "Mutex.hpp"
#include "InetAddress.hpp"
#include "Hashtable.hpp"
#include "World.hpp"
namespace ZeroTier {
@ -136,12 +135,6 @@ public:
*/
bool isUpstream(const Identity &id) const;
/**
* @param addr Address to check
* @return True if we should accept a world update from this address
*/
bool shouldAcceptWorldUpdateFrom(const Address &addr) const;
/**
* @param ztaddr ZeroTier address
* @return Peer role for this device
@ -171,29 +164,6 @@ public:
*/
inline void getUpstreamsToContact(Hashtable< Address,std::vector<InetAddress> > &eps) const
{
Mutex::Lock _l(_upstreams_m);
for(std::vector<World::Root>::const_iterator i(_planet.roots().begin());i!=_planet.roots().end();++i) {
if (i->identity != RR->identity) {
std::vector<InetAddress> &ips = eps[i->identity.address()];
for(std::vector<InetAddress>::const_iterator j(i->stableEndpoints.begin());j!=i->stableEndpoints.end();++j) {
if (std::find(ips.begin(),ips.end(),*j) == ips.end())
ips.push_back(*j);
}
}
}
for(std::vector<World>::const_iterator m(_moons.begin());m!=_moons.end();++m) {
for(std::vector<World::Root>::const_iterator i(m->roots().begin());i!=m->roots().end();++i) {
if (i->identity != RR->identity) {
std::vector<InetAddress> &ips = eps[i->identity.address()];
for(std::vector<InetAddress>::const_iterator j(i->stableEndpoints.begin());j!=i->stableEndpoints.end();++j) {
if (std::find(ips.begin(),ips.end(),*j) == ips.end())
ips.push_back(*j);
}
}
}
}
for(std::vector< std::pair<uint64_t,Address> >::const_iterator m(_moonSeeds.begin());m!=_moonSeeds.end();++m)
eps[m->second];
}
/**
@ -201,87 +171,9 @@ public:
*/
inline std::vector<Address> upstreamAddresses() const
{
Mutex::Lock _l(_upstreams_m);
return _upstreamAddresses;
return std::vector<Address>();
}
/**
* @return Current moons
*/
inline std::vector<World> moons() const
{
Mutex::Lock _l(_upstreams_m);
return _moons;
}
/**
* @return Moon IDs we are waiting for from seeds
*/
inline std::vector<uint64_t> moonsWanted() const
{
Mutex::Lock _l(_upstreams_m);
std::vector<uint64_t> mw;
for(std::vector< std::pair<uint64_t,Address> >::const_iterator s(_moonSeeds.begin());s!=_moonSeeds.end();++s) {
if (std::find(mw.begin(),mw.end(),s->first) == mw.end())
mw.push_back(s->first);
}
return mw;
}
/**
* @return Current planet
*/
inline World planet() const
{
Mutex::Lock _l(_upstreams_m);
return _planet;
}
/**
* @return Current planet's world ID
*/
inline uint64_t planetWorldId() const
{
return _planet.id(); // safe to read without lock, and used from within eachPeer() so don't lock
}
/**
* @return Current planet's world timestamp
*/
inline uint64_t planetWorldTimestamp() const
{
return _planet.timestamp(); // safe to read without lock, and used from within eachPeer() so don't lock
}
/**
* Validate new world and update if newer and signature is okay
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param newWorld A new or updated planet or moon to learn
* @param alwaysAcceptNew If true, always accept new moons even if we're not waiting for one
* @return True if it was valid and newer than current (or totally new for moons)
*/
bool addWorld(void *tPtr,const World &newWorld,bool alwaysAcceptNew);
/**
* Add a moon
*
* This loads it from moons.d if present, and if not adds it to
* a list of moons that we want to contact.
*
* @param id Moon ID
* @param seed If non-NULL, an address of any member of the moon to contact
*/
void addMoon(void *tPtr,const uint64_t id,const Address &seed);
/**
* Remove a moon
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param id Moon's world ID
*/
void removeMoon(void *tPtr,const uint64_t id);
/**
* Clean and flush database
*/
@ -333,11 +225,6 @@ public:
return _peers.entries();
}
/**
* @return True if I am a root server in a planet or moon
*/
inline bool amUpstream() const { return _amUpstream; }
/**
* Get info about a path
*
@ -455,13 +342,6 @@ private:
Hashtable< Path::HashKey,SharedPtr<Path> > _paths;
Mutex _paths_m;
World _planet;
std::vector<World> _moons;
std::vector< std::pair<uint64_t,Address> > _moonSeeds;
std::vector<Address> _upstreamAddresses;
bool _amUpstream;
Mutex _upstreams_m; // locks worlds, upstream info, moon info, etc.
};
} // namespace ZeroTier

View File

@ -453,7 +453,7 @@ public:
out[6] = BASE32CHARS[(in[3] & 0x03) << 3 | (in[4] & 0xe0) >> 5];
out[7] = BASE32CHARS[(in[4] & 0x1f)];
}
static inline void base328to5(const char *const in,uint8_t *const out)
{
out[0] = ((BASE32BITS[(unsigned int)in[0]]) << 3) | (BASE32BITS[(unsigned int)in[1]] & 0x1C) >> 2;
@ -462,7 +462,7 @@ public:
out[3] = ((BASE32BITS[(unsigned int)in[4]] & 0x01) << 7) | (BASE32BITS[(unsigned int)in[5]]) << 2 | (BASE32BITS[(unsigned int)in[6]] & 0x18) >> 3;
out[4] = ((BASE32BITS[(unsigned int)in[6]] & 0x07) << 5) | (BASE32BITS[(unsigned int)in[7]]);
}
/**
* Hexadecimal characters 0-f
*/

View File

@ -1,284 +0,0 @@
/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial closed-source software that incorporates or links
* directly against ZeroTier software without disclosing the source code
* of your own application.
*/
#ifndef ZT_WORLD_HPP
#define ZT_WORLD_HPP
#include <vector>
#include <string>
#include "Constants.hpp"
#include "InetAddress.hpp"
#include "Identity.hpp"
#include "Buffer.hpp"
#include "C25519.hpp"
/**
* Maximum number of roots (sanity limit, okay to increase)
*
* A given root can (through multi-homing) be distributed across any number of
* physical endpoints, but having more than one is good to permit total failure
* of one root or its withdrawal due to compromise without taking the whole net
* down.
*/
#define ZT_WORLD_MAX_ROOTS 4
/**
* Maximum number of stable endpoints per root (sanity limit, okay to increase)
*/
#define ZT_WORLD_MAX_STABLE_ENDPOINTS_PER_ROOT 32
/**
* The (more than) maximum length of a serialized World
*/
#define ZT_WORLD_MAX_SERIALIZED_LENGTH (((1024 + (32 * ZT_WORLD_MAX_STABLE_ENDPOINTS_PER_ROOT)) * ZT_WORLD_MAX_ROOTS) + ZT_C25519_PUBLIC_KEY_LEN + ZT_C25519_SIGNATURE_LEN + 128)
/**
* World ID for Earth
*
* This is the ID for the ZeroTier World used on planet Earth. It is unrelated
* to the public network 8056c2e21c000001 of the same name. It was chosen
* from Earth's approximate distance from the sun in kilometers.
*/
#define ZT_WORLD_ID_EARTH 149604618
/**
* World ID for Mars -- for future use by SpaceX or others
*/
#define ZT_WORLD_ID_MARS 227883110
namespace ZeroTier {
/**
* A world definition (formerly known as a root topology)
*
* Think of a World as a single data center. Within this data center a set
* of distributed fault tolerant root servers provide stable anchor points
* for a peer to peer network that provides VLAN service. Updates to a world
* definition can be published by signing them with the previous revision's
* signing key, and should be very infrequent.
*
* The maximum data center size is approximately 2.5 cubic light seconds,
* since many protocols have issues with >5s RTT latencies.
*
* ZeroTier operates a World for Earth capable of encompassing the planet, its
* orbits, the Moon (about 1.3 light seconds), and nearby Lagrange points. A
* world ID for Mars and nearby space is defined but not yet used, and a test
* world ID is provided for testing purposes.
*/
class World
{
public:
/**
* World type -- do not change IDs
*/
enum Type
{
TYPE_NULL = 0,
TYPE_PLANET = 1, // Planets, of which there is currently one (Earth)
TYPE_MOON = 127 // Moons, which are user-created and many
};
/**
* Upstream server definition in world/moon
*/
struct Root
{
Identity identity;
std::vector<InetAddress> stableEndpoints;
inline bool operator==(const Root &r) const { return ((identity == r.identity)&&(stableEndpoints == r.stableEndpoints)); }
inline bool operator!=(const Root &r) const { return (!(*this == r)); }
inline bool operator<(const Root &r) const { return (identity < r.identity); } // for sorting
};
/**
* Construct an empty / null World
*/
World() :
_id(0),
_ts(0),
_type(TYPE_NULL) {}
/**
* @return Root servers for this world and their stable endpoints
*/
inline const std::vector<World::Root> &roots() const { return _roots; }
/**
* @return World type: planet or moon
*/
inline Type type() const { return _type; }
/**
* @return World unique identifier
*/
inline uint64_t id() const { return _id; }
/**
* @return World definition timestamp
*/
inline uint64_t timestamp() const { return _ts; }
/**
* @return C25519 signature
*/
inline const C25519::Signature &signature() const { return _signature; }
/**
* @return Public key that must sign next update
*/
inline const C25519::Public &updatesMustBeSignedBy() const { return _updatesMustBeSignedBy; }
/**
* Check whether a world update should replace this one
*
* @param update Candidate update
* @return True if update is newer than current, matches its ID and type, and is properly signed (or if current is NULL)
*/
inline bool shouldBeReplacedBy(const World &update)
{
if ((_id == 0)||(_type == TYPE_NULL))
return true;
if ((_id == update._id)&&(_ts < update._ts)&&(_type == update._type)) {
Buffer<ZT_WORLD_MAX_SERIALIZED_LENGTH> tmp;
update.serialize(tmp,true);
return C25519::verify(_updatesMustBeSignedBy,tmp.data(),tmp.size(),update._signature);
}
return false;
}
/**
* @return True if this World is non-empty
*/
inline operator bool() const { return (_type != TYPE_NULL); }
template<unsigned int C>
inline void serialize(Buffer<C> &b,bool forSign = false) const
{
if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);
b.append((uint8_t)_type);
b.append((uint64_t)_id);
b.append((uint64_t)_ts);
b.append(_updatesMustBeSignedBy.data,ZT_C25519_PUBLIC_KEY_LEN);
if (!forSign)
b.append(_signature.data,ZT_C25519_SIGNATURE_LEN);
b.append((uint8_t)_roots.size());
for(std::vector<Root>::const_iterator r(_roots.begin());r!=_roots.end();++r) {
r->identity.serialize(b);
b.append((uint8_t)r->stableEndpoints.size());
for(std::vector<InetAddress>::const_iterator ep(r->stableEndpoints.begin());ep!=r->stableEndpoints.end();++ep)
ep->serialize(b);
}
if (_type == TYPE_MOON)
b.append((uint16_t)0); // no attached dictionary (for future use)
if (forSign) b.append((uint64_t)0xf7f7f7f7f7f7f7f7ULL);
}
template<unsigned int C>
inline unsigned int deserialize(const Buffer<C> &b,unsigned int startAt = 0)
{
unsigned int p = startAt;
_roots.clear();
switch((Type)b[p++]) {
case TYPE_NULL: _type = TYPE_NULL; break; // shouldn't ever really happen in serialized data but it's not invalid
case TYPE_PLANET: _type = TYPE_PLANET; break;
case TYPE_MOON: _type = TYPE_MOON; break;
default:
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE;
}
_id = b.template at<uint64_t>(p); p += 8;
_ts = b.template at<uint64_t>(p); p += 8;
memcpy(_updatesMustBeSignedBy.data,b.field(p,ZT_C25519_PUBLIC_KEY_LEN),ZT_C25519_PUBLIC_KEY_LEN); p += ZT_C25519_PUBLIC_KEY_LEN;
memcpy(_signature.data,b.field(p,ZT_C25519_SIGNATURE_LEN),ZT_C25519_SIGNATURE_LEN); p += ZT_C25519_SIGNATURE_LEN;
const unsigned int numRoots = (unsigned int)b[p++];
if (numRoots > ZT_WORLD_MAX_ROOTS)
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
for(unsigned int k=0;k<numRoots;++k) {
_roots.push_back(Root());
Root &r = _roots.back();
p += r.identity.deserialize(b,p);
unsigned int numStableEndpoints = b[p++];
if (numStableEndpoints > ZT_WORLD_MAX_STABLE_ENDPOINTS_PER_ROOT)
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
for(unsigned int kk=0;kk<numStableEndpoints;++kk) {
r.stableEndpoints.push_back(InetAddress());
p += r.stableEndpoints.back().deserialize(b,p);
}
}
if (_type == TYPE_MOON)
p += b.template at<uint16_t>(p) + 2;
return (p - startAt);
}
inline bool operator==(const World &w) const { return ((_id == w._id)&&(_ts == w._ts)&&(memcmp(_updatesMustBeSignedBy.data,w._updatesMustBeSignedBy.data,ZT_C25519_PUBLIC_KEY_LEN) == 0)&&(memcmp(_signature.data,w._signature.data,ZT_C25519_SIGNATURE_LEN) == 0)&&(_roots == w._roots)&&(_type == w._type)); }
inline bool operator!=(const World &w) const { return (!(*this == w)); }
/**
* Create a World object signed with a key pair
*
* @param t World type
* @param id World ID
* @param ts World timestamp / revision
* @param sk Key that must be used to sign the next future update to this world
* @param roots Roots and their stable endpoints
* @param signWith Key to sign this World with (can have the same public as the next-update signing key, but doesn't have to)
* @return Signed World object
*/
static inline World make(World::Type t,uint64_t id,uint64_t ts,const C25519::Public &sk,const std::vector<World::Root> &roots,const C25519::Pair &signWith)
{
World w;
w._id = id;
w._ts = ts;
w._type = t;
w._updatesMustBeSignedBy = sk;
w._roots = roots;
Buffer<ZT_WORLD_MAX_SERIALIZED_LENGTH> tmp;
w.serialize(tmp,true);
w._signature = C25519::sign(signWith,tmp.data(),tmp.size());
return w;
}
protected:
uint64_t _id;
uint64_t _ts;
Type _type;
C25519::Public _updatesMustBeSignedBy;
C25519::Signature _signature;
std::vector<Root> _roots;
};
} // namespace ZeroTier
#endif

177
one.cpp
View File

@ -79,7 +79,6 @@
#include "node/Utils.hpp"
#include "node/NetworkController.hpp"
#include "node/Buffer.hpp"
#include "node/World.hpp"
#include "osdep/OSUtils.hpp"
#include "osdep/Http.hpp"
@ -136,9 +135,6 @@ static void cliPrintHelp(const char *pn,FILE *out)
fprintf(out," leave <network> - Leave a network" ZT_EOL_S);
fprintf(out," set <network> <setting> - Set a network setting" ZT_EOL_S);
fprintf(out," get <network> <setting> - Get a network setting" ZT_EOL_S);
fprintf(out," listmoons - List moons (federated root sets)" ZT_EOL_S);
fprintf(out," orbit <world ID> <seed> - Join a moon via any member root" ZT_EOL_S);
fprintf(out," deorbit <world ID> - Leave a moon" ZT_EOL_S);
fprintf(out,ZT_EOL_S"Available settings:" ZT_EOL_S);
fprintf(out," Settings to use with [get/set] may include property names from " ZT_EOL_S);
fprintf(out," the JSON output of \"zerotier-cli -j listnetworks\". Additionally, " ZT_EOL_S);
@ -593,80 +589,6 @@ static int cli(int argc,char **argv)
printf("%u %s %s" ZT_EOL_S,scode,command.c_str(),responseBody.c_str());
return 1;
}
} else if (command == "listmoons") {
const unsigned int scode = Http::GET(1024 * 1024 * 16,60000,(const struct sockaddr *)&addr,"/moon",requestHeaders,responseHeaders,responseBody);
if (scode == 0) {
printf("Error connecting to the ZeroTier service: %s\n\nPlease check that the service is running and that TCP port 9993 can be contacted via 127.0.0.1." ZT_EOL_S, responseBody.c_str());
return 1;
}
nlohmann::json j;
try {
j = OSUtils::jsonParse(responseBody);
} catch (std::exception &exc) {
printf("%u %s invalid JSON response (%s)" ZT_EOL_S,scode,command.c_str(),exc.what());
return 1;
} catch ( ... ) {
printf("%u %s invalid JSON response (unknown exception)" ZT_EOL_S,scode,command.c_str());
return 1;
}
if (scode == 200) {
printf("%s" ZT_EOL_S,OSUtils::jsonDump(j).c_str());
return 0;
} else {
printf("%u %s %s" ZT_EOL_S,scode,command.c_str(),responseBody.c_str());
return 1;
}
} else if (command == "orbit") {
const uint64_t worldId = Utils::hexStrToU64(arg1.c_str());
const uint64_t seed = Utils::hexStrToU64(arg2.c_str());
if ((worldId)&&(seed)) {
char jsons[1024];
OSUtils::ztsnprintf(jsons,sizeof(jsons),"{\"seed\":\"%s\"}",arg2.c_str());
char cl[128];
OSUtils::ztsnprintf(cl,sizeof(cl),"%u",(unsigned int)strlen(jsons));
requestHeaders["Content-Type"] = "application/json";
requestHeaders["Content-Length"] = cl;
unsigned int scode = Http::POST(
1024 * 1024 * 16,
60000,
(const struct sockaddr *)&addr,
(std::string("/moon/") + arg1).c_str(),
requestHeaders,
jsons,
(unsigned long)strlen(jsons),
responseHeaders,
responseBody);
if (scode == 200) {
printf("200 orbit OK" ZT_EOL_S);
return 0;
} else {
printf("%u %s %s" ZT_EOL_S,scode,command.c_str(),responseBody.c_str());
return 1;
}
}
} else if (command == "deorbit") {
unsigned int scode = Http::DEL(
1024 * 1024 * 16,
60000,
(const struct sockaddr *)&addr,
(std::string("/moon/") + arg1).c_str(),
requestHeaders,
responseHeaders,
responseBody);
if (scode == 200) {
if (json) {
printf("%s",cliFixJsonCRs(responseBody).c_str());
} else {
printf("200 deorbit OK" ZT_EOL_S);
}
return 0;
} else {
printf("%u %s %s" ZT_EOL_S,scode,command.c_str(),responseBody.c_str());
return 1;
}
} else if (command == "set") {
if (arg1.length() != 16) {
fprintf(stderr,"invalid format: must be a 16-digit (network) ID\n");
@ -829,8 +751,6 @@ static void idtoolPrintHelp(FILE *out,const char *pn)
fprintf(out," getpublic <identity.secret>" ZT_EOL_S);
fprintf(out," sign <identity.secret> <file>" ZT_EOL_S);
fprintf(out," verify <identity.secret/public> <file> <signature>" ZT_EOL_S);
fprintf(out," initmoon <identity.public of first seed>" ZT_EOL_S);
fprintf(out," genmoon <moon json>" ZT_EOL_S);
}
static Identity getIdFromArg(char *arg)
@ -872,7 +792,7 @@ static int idtool(int argc,char **argv)
Identity id;
for(;;) {
id.generate();
id.generate(Identity::C25519);
if ((id.address().toInt() >> (40 - vanityBits)) == vanity) {
if (vanityBits > 0) {
fprintf(stderr,"vanity address: found %.10llx !\n",(unsigned long long)id.address().toInt());
@ -950,9 +870,10 @@ static int idtool(int argc,char **argv)
fprintf(stderr,"%s is not readable" ZT_EOL_S,argv[3]);
return 1;
}
C25519::Signature signature = id.sign(inf.data(),(unsigned int)inf.length());
char hexbuf[1024];
printf("%s",Utils::hex(signature.data,ZT_C25519_SIGNATURE_LEN,hexbuf));
uint8_t signature[ZT_SIGNATURE_BUFFER_SIZE];
const unsigned int siglen = id.sign(inf.data(),(unsigned int)inf.length(),signature,sizeof(signature));
char hexbuf[256];
printf("%s",Utils::hex(signature,siglen,hexbuf));
} else if (!strcmp(argv[1],"verify")) {
if (argc < 5) {
idtoolPrintHelp(stdout,argv[0]);
@ -990,94 +911,6 @@ static int idtool(int argc,char **argv)
return 1;
}
}
} else if (!strcmp(argv[1],"initmoon")) {
if (argc < 3) {
idtoolPrintHelp(stdout,argv[0]);
} else {
const Identity id = getIdFromArg(argv[2]);
if (!id) {
fprintf(stderr,"%s is not a valid identity" ZT_EOL_S,argv[2]);
return 1;
}
C25519::Pair kp(C25519::generate());
char idtmp[4096];
nlohmann::json mj;
mj["objtype"] = "world";
mj["worldType"] = "moon";
mj["updatesMustBeSignedBy"] = mj["signingKey"] = Utils::hex(kp.pub.data,ZT_C25519_PUBLIC_KEY_LEN,idtmp);
mj["signingKey_SECRET"] = Utils::hex(kp.priv.data,ZT_C25519_PRIVATE_KEY_LEN,idtmp);
mj["id"] = id.address().toString(idtmp);
nlohmann::json seedj;
seedj["identity"] = id.toString(false,idtmp);
seedj["stableEndpoints"] = nlohmann::json::array();
(mj["roots"] = nlohmann::json::array()).push_back(seedj);
std::string mjd(OSUtils::jsonDump(mj));
printf("%s" ZT_EOL_S,mjd.c_str());
}
} else if (!strcmp(argv[1],"genmoon")) {
if (argc < 3) {
idtoolPrintHelp(stdout,argv[0]);
} else {
std::string buf;
if (!OSUtils::readFile(argv[2],buf)) {
fprintf(stderr,"cannot read %s" ZT_EOL_S,argv[2]);
return 1;
}
nlohmann::json mj(OSUtils::jsonParse(buf));
const uint64_t id = Utils::hexStrToU64(OSUtils::jsonString(mj["id"],"0").c_str());
if (!id) {
fprintf(stderr,"ID in %s is invalid" ZT_EOL_S,argv[2]);
return 1;
}
World::Type t;
if (mj["worldType"] == "moon") {
t = World::TYPE_MOON;
} else if (mj["worldType"] == "planet") {
t = World::TYPE_PLANET;
} else {
fprintf(stderr,"invalid worldType" ZT_EOL_S);
return 1;
}
C25519::Pair signingKey;
C25519::Public updatesMustBeSignedBy;
Utils::unhex(OSUtils::jsonString(mj["signingKey"],"").c_str(),signingKey.pub.data,ZT_C25519_PUBLIC_KEY_LEN);
Utils::unhex(OSUtils::jsonString(mj["signingKey_SECRET"],"").c_str(),signingKey.priv.data,ZT_C25519_PRIVATE_KEY_LEN);
Utils::unhex(OSUtils::jsonString(mj["updatesMustBeSignedBy"],"").c_str(),updatesMustBeSignedBy.data,ZT_C25519_PUBLIC_KEY_LEN);
std::vector<World::Root> roots;
nlohmann::json &rootsj = mj["roots"];
if (rootsj.is_array()) {
for(unsigned long i=0;i<(unsigned long)rootsj.size();++i) {
nlohmann::json &r = rootsj[i];
if (r.is_object()) {
roots.push_back(World::Root());
roots.back().identity = Identity(OSUtils::jsonString(r["identity"],"").c_str());
nlohmann::json &stableEndpointsj = r["stableEndpoints"];
if (stableEndpointsj.is_array()) {
for(unsigned long k=0;k<(unsigned long)stableEndpointsj.size();++k)
roots.back().stableEndpoints.push_back(InetAddress(OSUtils::jsonString(stableEndpointsj[k],"").c_str()));
std::sort(roots.back().stableEndpoints.begin(),roots.back().stableEndpoints.end());
}
}
}
}
std::sort(roots.begin(),roots.end());
const int64_t now = OSUtils::now();
World w(World::make(t,id,now,updatesMustBeSignedBy,roots,signingKey));
Buffer<ZT_WORLD_MAX_SERIALIZED_LENGTH> wbuf;
w.serialize(wbuf);
char fn[128];
OSUtils::ztsnprintf(fn,sizeof(fn),"%.16llx.moon",w.id());
OSUtils::writeFile(fn,wbuf.data(),wbuf.size());
printf("wrote %s (signed world with timestamp %llu)" ZT_EOL_S,fn,(unsigned long long)now);
}
} else {
idtoolPrintHelp(stdout,argv[0]);
return 1;

View File

@ -367,8 +367,8 @@ static int testCrypto()
memcpy(p1.priv.data,C25519_TEST_VECTORS[k].priv1,ZT_C25519_PRIVATE_KEY_LEN);
memcpy(p2.pub.data,C25519_TEST_VECTORS[k].pub2,ZT_C25519_PUBLIC_KEY_LEN);
memcpy(p2.priv.data,C25519_TEST_VECTORS[k].priv2,ZT_C25519_PRIVATE_KEY_LEN);
C25519::agree(p1,p2.pub,buf1,64);
C25519::agree(p2,p1.pub,buf2,64);
C25519::agree(p1.priv,p2.pub,buf1,64);
C25519::agree(p2.priv,p1.pub,buf2,64);
if (memcmp(buf1,buf2,64)) {
std::cout << "FAIL (1)" << std::endl;
return -1;
@ -398,9 +398,9 @@ static int testCrypto()
C25519::Pair p1 = C25519::generate();
C25519::Pair p2 = C25519::generate();
C25519::Pair p3 = C25519::generate();
C25519::agree(p1,p2.pub,buf1,64);
C25519::agree(p2,p1.pub,buf2,64);
C25519::agree(p3,p1.pub,buf3,64);
C25519::agree(p1.priv,p2.pub,buf1,64);
C25519::agree(p2.priv,p1.pub,buf2,64);
C25519::agree(p3.priv,p1.pub,buf3,64);
// p1<>p2 should equal p1<>p2
if (memcmp(buf1,buf2,64)) {
std::cout << "FAIL (1)" << std::endl;
@ -420,7 +420,7 @@ static int testCrypto()
bp[k] = C25519::generate();
uint64_t st = OSUtils::now();
for(unsigned int k=0;k<50;++k) {
C25519::agree(bp[~k & 7],bp[k & 7].pub,buf1,64);
C25519::agree(bp[~k & 7].priv,bp[k & 7].pub,buf1,64);
}
uint64_t et = OSUtils::now();
std::cout << ((double)(et - st) / 50.0) << "ms per agreement." << std::endl;
@ -508,7 +508,7 @@ static int testIdentity()
for(unsigned int k=0;k<4;++k) {
std::cout << "[identity] Generate identity... "; std::cout.flush();
uint64_t genstart = OSUtils::now();
id.generate();
id.generate(Identity::C25519);
uint64_t genend = OSUtils::now();
std::cout << "(took " << (genend - genstart) << "ms): " << id.toString(true,buf2) << std::endl;
std::cout << "[identity] Locally validate identity: ";
@ -581,13 +581,13 @@ static int testCertificate()
Identity authority;
std::cout << "[certificate] Generating identity to act as authority... "; std::cout.flush();
authority.generate();
authority.generate(Identity::C25519);
std::cout << authority.address().toString(buf) << std::endl;
Identity idA,idB;
std::cout << "[certificate] Generating identities A and B... "; std::cout.flush();
idA.generate();
idB.generate();
idA.generate(Identity::C25519);
idB.generate(Identity::C25519);
std::cout << idA.address().toString(buf) << ", " << idB.address().toString(buf) << std::endl;
std::cout << "[certificate] Generating certificates A and B...";

View File

@ -48,7 +48,6 @@
#include "../node/InetAddress.hpp"
#include "../node/MAC.hpp"
#include "../node/Identity.hpp"
#include "../node/World.hpp"
#include "../node/Salsa20.hpp"
#include "../node/Poly1305.hpp"
#include "../node/SHA512.hpp"
@ -346,28 +345,6 @@ static void _peerAggregateLinkToJson(nlohmann::json &pj,const ZT_Peer *peer)
pj["paths"] = pa;
}
static void _moonToJson(nlohmann::json &mj,const World &world)
{
char tmp[4096];
OSUtils::ztsnprintf(tmp,sizeof(tmp),"%.16llx",world.id());
mj["id"] = tmp;
mj["timestamp"] = world.timestamp();
mj["signature"] = Utils::hex(world.signature().data,ZT_C25519_SIGNATURE_LEN,tmp);
mj["updatesMustBeSignedBy"] = Utils::hex(world.updatesMustBeSignedBy().data,ZT_C25519_PUBLIC_KEY_LEN,tmp);
nlohmann::json ra = nlohmann::json::array();
for(std::vector<World::Root>::const_iterator r(world.roots().begin());r!=world.roots().end();++r) {
nlohmann::json rj;
rj["identity"] = r->identity.toString(false,tmp);
nlohmann::json eps = nlohmann::json::array();
for(std::vector<InetAddress>::const_iterator a(r->stableEndpoints.begin());a!=r->stableEndpoints.end();++a)
eps.push_back(a->toString(tmp));
rj["stableEndpoints"] = eps;
ra.push_back(rj);
}
mj["roots"] = ra;
mj["waiting"] = false;
}
class OneServiceImpl;
static int SnodeVirtualNetworkConfigFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t nwid,void **nuptr,enum ZT_VirtualNetworkConfigOperation op,const ZT_VirtualNetworkConfig *nwconf);
@ -780,16 +757,6 @@ public:
}
}
// Orbit existing moons in moons.d
{
std::vector<std::string> moonsDotD(OSUtils::listDirectory((_homePath + ZT_PATH_SEPARATOR_S "moons.d").c_str()));
for(std::vector<std::string>::iterator f(moonsDotD.begin());f!=moonsDotD.end();++f) {
std::size_t dot = f->find_last_of('.');
if ((dot == 16)&&(f->substr(16) == ".moon"))
_node->orbit((void *)0,Utils::hexStrToU64(f->substr(0,dot).c_str()),0);
}
}
// Main I/O loop
_nextBackgroundTaskDeadline = 0;
int64_t clockShouldBe = OSUtils::now();
@ -1287,37 +1254,8 @@ public:
settings["softwareUpdate"] = OSUtils::jsonString(settings["softwareUpdate"],ZT_SOFTWARE_UPDATE_DEFAULT);
settings["softwareUpdateChannel"] = OSUtils::jsonString(settings["softwareUpdateChannel"],ZT_SOFTWARE_UPDATE_DEFAULT_CHANNEL);
#endif
const World planet(_node->planet());
res["planetWorldId"] = planet.id();
res["planetWorldTimestamp"] = planet.timestamp();
scode = 200;
} else if (ps[0] == "moon") {
std::vector<World> moons(_node->moons());
if (ps.size() == 1) {
// Return [array] of all moons
res = json::array();
for(std::vector<World>::const_iterator m(moons.begin());m!=moons.end();++m) {
json mj;
_moonToJson(mj,*m);
res.push_back(mj);
}
scode = 200;
} else {
// Return a single moon by ID
const uint64_t id = Utils::hexStrToU64(ps[1].c_str());
for(std::vector<World>::const_iterator m(moons.begin());m!=moons.end();++m) {
if (m->id() == id) {
_moonToJson(res,*m);
scode = 200;
break;
}
}
}
} else if (ps[0] == "network") {
ZT_VirtualNetworkList *nws = _node->networks();
if (nws) {
@ -1390,44 +1328,7 @@ public:
} else if ((httpMethod == HTTP_POST)||(httpMethod == HTTP_PUT)) {
if (isAuth) {
if (ps[0] == "moon") {
if (ps.size() == 2) {
uint64_t seed = 0;
try {
json j(OSUtils::jsonParse(body));
if (j.is_object()) {
seed = Utils::hexStrToU64(OSUtils::jsonString(j["seed"],"0").c_str());
}
} catch ( ... ) {
// discard invalid JSON
}
std::vector<World> moons(_node->moons());
const uint64_t id = Utils::hexStrToU64(ps[1].c_str());
for(std::vector<World>::const_iterator m(moons.begin());m!=moons.end();++m) {
if (m->id() == id) {
_moonToJson(res,*m);
scode = 200;
break;
}
}
if ((scode != 200)&&(seed != 0)) {
char tmp[64];
OSUtils::ztsnprintf(tmp,sizeof(tmp),"%.16llx",id);
res["id"] = tmp;
res["roots"] = json::array();
res["timestamp"] = 0;
res["signature"] = json();
res["updatesMustBeSignedBy"] = json();
res["waiting"] = true;
_node->orbit((void *)0,id,seed);
scode = 200;
}
} else scode = 404;
} else if (ps[0] == "network") {
if (ps[0] == "network") {
if (ps.size() == 2) {
uint64_t wantnw = Utils::hexStrToU64(ps[1].c_str());
@ -1474,13 +1375,7 @@ public:
} else if (httpMethod == HTTP_DELETE) {
if (isAuth) {
if (ps[0] == "moon") {
if (ps.size() == 2) {
_node->deorbit((void *)0,Utils::hexStrToU64(ps[1].c_str()));
res["result"] = true;
scode = 200;
} // else 404
} else if (ps[0] == "network") {
if (ps[0] == "network") {
ZT_VirtualNetworkList *nws = _node->networks();
if (nws) {
if (ps.size() == 2) {
@ -2370,13 +2265,6 @@ public:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "identity.secret",_homePath.c_str());
secure = true;
break;
case ZT_STATE_OBJECT_PLANET:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "planet",_homePath.c_str());
break;
case ZT_STATE_OBJECT_MOON:
OSUtils::ztsnprintf(dirname,sizeof(dirname),"%s" ZT_PATH_SEPARATOR_S "moons.d",_homePath.c_str());
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "%.16llx.moon",dirname,(unsigned long long)id[0]);
break;
case ZT_STATE_OBJECT_NETWORK_CONFIG:
OSUtils::ztsnprintf(dirname,sizeof(dirname),"%s" ZT_PATH_SEPARATOR_S "networks.d",_homePath.c_str());
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "%.16llx.conf",dirname,(unsigned long long)id[0]);
@ -2522,12 +2410,6 @@ public:
case ZT_STATE_OBJECT_IDENTITY_SECRET:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "identity.secret",_homePath.c_str());
break;
case ZT_STATE_OBJECT_PLANET:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "planet",_homePath.c_str());
break;
case ZT_STATE_OBJECT_MOON:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "moons.d" ZT_PATH_SEPARATOR_S "%.16llx.moon",_homePath.c_str(),(unsigned long long)id[0]);
break;
case ZT_STATE_OBJECT_NETWORK_CONFIG:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "networks.d" ZT_PATH_SEPARATOR_S "%.16llx.conf",_homePath.c_str(),(unsigned long long)id[0]);
break;