ZeroTierOne/node/Hashtable.hpp

420 lines
8.4 KiB
C++
Raw Normal View History

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2015 ZeroTier, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*/
#ifndef ZT_HASHTABLE_HPP
#define ZT_HASHTABLE_HPP
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdexcept>
#include <vector>
#include <utility>
#include <algorithm>
namespace ZeroTier {
/**
* A minimal hash table implementation for the ZeroTier core
*
* This is not a drop-in replacement for STL containers, and has several
* limitations. Keys can be uint64_t or an object, and if the latter they
* must implement a method called hashCode() that returns an unsigned long
* value that is evenly distributed.
*/
template<typename K,typename V>
class Hashtable
{
private:
struct _Bucket
{
_Bucket(const K &k,const V &v) : k(k),v(v) {}
_Bucket(const K &k) : k(k),v() {}
_Bucket(const _Bucket &b) : k(b.k),v(b.v) {}
inline _Bucket &operator=(const _Bucket &b) { k = b.k; v = b.v; return *this; }
K k;
V v;
_Bucket *next; // must be set manually for each _Bucket
};
public:
/**
* A simple forward iterator (different from STL)
*
* It's safe to erase the last key, but not others. Don't use set() since that
* may rehash and invalidate the iterator. Note the erasing the key will destroy
* the targets of the pointers returned by next().
*/
class Iterator
{
public:
/**
* @param ht Hash table to iterate over
*/
Iterator(Hashtable &ht) :
_idx(0),
_ht(&ht),
_b(ht._t[0])
{
}
/**
* @param kptr Pointer to set to point to next key
* @param vptr Pointer to set to point to next value
* @return True if kptr and vptr are set, false if no more entries
*/
inline bool next(K *&kptr,V *&vptr)
{
for(;;) {
if (_b) {
kptr = &(_b->k);
vptr = &(_b->v);
_b = _b->next;
return true;
}
++_idx;
if (_idx >= _ht->_bc)
return false;
_b = _ht->_t[_idx];
}
}
private:
unsigned long _idx;
Hashtable *_ht;
Hashtable::_Bucket *_b;
};
friend class Hashtable::Iterator;
/**
* @param bc Initial capacity in buckets (default: 128, must be nonzero)
*/
Hashtable(unsigned long bc = 128) :
_t(reinterpret_cast<_Bucket **>(::malloc(sizeof(_Bucket *) * bc))),
_bc(bc),
_s(0)
{
if (!_t)
throw std::bad_alloc();
for(unsigned long i=0;i<bc;++i)
_t[i] = (_Bucket *)0;
}
Hashtable(const Hashtable<K,V> &ht) :
_t(reinterpret_cast<_Bucket **>(::malloc(sizeof(_Bucket *) * ht._bc))),
_bc(ht._bc),
_s(ht._s)
{
if (!_t)
throw std::bad_alloc();
for(unsigned long i=0;i<_bc;++i)
_t[i] = (_Bucket *)0;
for(unsigned long i=0;i<_bc;++i) {
const _Bucket *b = ht._t[i];
while (b) {
_Bucket *nb = new _Bucket(*b);
nb->next = _t[i];
_t[i] = nb;
b = b->next;
}
}
}
~Hashtable()
{
this->clear();
::free(_t);
}
inline Hashtable &operator=(const Hashtable<K,V> &ht)
{
this->clear();
if (ht._s) {
for(unsigned long i=0;i<ht._bc;++i) {
const _Bucket *b = ht._t[i];
while (b) {
this->set(b->k,b->v);
b = b->next;
}
}
}
return *this;
}
/**
* Erase all entries
*/
inline void clear()
{
if (_s) {
for(unsigned long i=0;i<_bc;++i) {
_Bucket *b = _t[i];
while (b) {
_Bucket *const nb = b->next;
delete b;
b = nb;
}
_t[i] = (_Bucket *)0;
}
_s = 0;
}
}
/**
* @return Vector of all keys
*/
inline typename std::vector<K> keys() const
{
typename std::vector<K> k;
if (_s) {
k.reserve(_s);
for(unsigned long i=0;i<_bc;++i) {
_Bucket *b = _t[i];
while (b) {
k.push_back(b->k);
b = b->next;
}
}
}
return k;
}
2015-09-04 20:42:19 +00:00
/**
* Append all keys (in unspecified order) to the supplied vector or list
*
* @param v Vector, list, or other compliant container
* @tparam Type of V (generally inferred)
*/
template<typename C>
inline void appendKeys(C &v) const
{
if (_s) {
for(unsigned long i=0;i<_bc;++i) {
_Bucket *b = _t[i];
while (b) {
v.push_back(b->k);
b = b->next;
}
}
}
}
/**
* @return Vector of all entries (pairs of K,V)
*/
inline typename std::vector< std::pair<K,V> > entries() const
{
typename std::vector< std::pair<K,V> > k;
if (_s) {
k.reserve(_s);
for(unsigned long i=0;i<_bc;++i) {
_Bucket *b = _t[i];
while (b) {
k.push_back(std::pair<K,V>(b->k,b->v));
b = b->next;
}
}
}
return k;
}
/**
* @param k Key
* @return Pointer to value or NULL if not found
*/
inline V *get(const K &k)
{
_Bucket *b = _t[_hc(k) % _bc];
while (b) {
if (b->k == k)
return &(b->v);
b = b->next;
}
return (V *)0;
}
inline const V *get(const K &k) const { return const_cast<Hashtable *>(this)->get(k); }
2015-09-04 20:42:19 +00:00
/**
* @param k Key to check
* @return True if key is present
*/
inline bool contains(const K &k) const
{
_Bucket *b = _t[_hc(k) % _bc];
while (b) {
if (b->k == k)
return true;
b = b->next;
}
return false;
}
/**
* @param k Key
* @return True if value was present
*/
inline bool erase(const K &k)
{
const unsigned long bidx = _hc(k) % _bc;
_Bucket *lastb = (_Bucket *)0;
_Bucket *b = _t[bidx];
while (b) {
if (b->k == k) {
if (lastb)
lastb->next = b->next;
else _t[bidx] = b->next;
delete b;
--_s;
return true;
}
lastb = b;
b = b->next;
}
return false;
}
/**
* @param k Key
* @param v Value
* @return Reference to value in table
*/
inline V &set(const K &k,const V &v)
{
const unsigned long h = _hc(k);
unsigned long bidx = h % _bc;
_Bucket *b = _t[bidx];
while (b) {
if (b->k == k) {
b->v = v;
return b->v;
}
b = b->next;
}
if (_s >= _bc) {
_grow();
bidx = h % _bc;
}
b = new _Bucket(k,v);
b->next = _t[bidx];
_t[bidx] = b;
++_s;
return b->v;
}
/**
* @param k Key
* @return Value, possibly newly created
*/
inline V &operator[](const K &k)
{
const unsigned long h = _hc(k);
unsigned long bidx = h % _bc;
_Bucket *b = _t[bidx];
while (b) {
if (b->k == k)
return b->v;
b = b->next;
}
if (_s >= _bc) {
_grow();
bidx = h % _bc;
}
b = new _Bucket(k);
b->next = _t[bidx];
_t[bidx] = b;
++_s;
return b->v;
}
/**
* @return Number of entries
*/
inline unsigned long size() const throw() { return _s; }
/**
* @return True if table is empty
*/
inline bool empty() const throw() { return (_s == 0); }
private:
template<typename O>
static inline unsigned long _hc(const O &obj)
{
return obj.hashCode();
}
static inline unsigned long _hc(const uint64_t i)
{
/* NOTE: this assumes that 'i' is evenly distributed, which is the case for
* packet IDs and network IDs -- the two use cases in ZT for uint64_t keys.
* These values are also greater than 0xffffffff so they'll map onto a full
* bucket count just fine no matter what happens. Normally you'd want to
* hash an integer key index in a hash table. */
return (unsigned long)i;
}
static inline unsigned long _hc(const uint32_t i)
{
// In the uint32_t case we use a simple multiplier for hashing to ensure coverage
return ((unsigned long)i * (unsigned long)2654435761);
}
inline void _grow()
{
const unsigned long nc = _bc * 2;
_Bucket **nt = reinterpret_cast<_Bucket **>(::malloc(sizeof(_Bucket *) * nc));
if (nt) {
for(unsigned long i=0;i<nc;++i)
nt[i] = (_Bucket *)0;
for(unsigned long i=0;i<_bc;++i) {
_Bucket *b = _t[i];
while (b) {
_Bucket *const nb = b->next;
const unsigned long nidx = _hc(b->k) % nc;
b->next = nt[nidx];
nt[nidx] = b;
b = nb;
}
}
::free(_t);
_t = nt;
_bc = nc;
}
}
_Bucket **_t;
unsigned long _bc;
unsigned long _s;
};
} // namespace ZeroTier
#endif