ZeroTierOne/node/Capability.hpp

528 lines
20 KiB
C++
Raw Normal View History

/*
2019-08-23 16:23:39 +00:00
* Copyright (c)2019 ZeroTier, Inc.
*
2019-08-23 16:23:39 +00:00
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2026-01-01
*
2019-08-23 16:23:39 +00:00
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
2019-08-23 16:23:39 +00:00
/****/
#ifndef ZT_CAPABILITY_HPP
#define ZT_CAPABILITY_HPP
2024-09-26 12:52:29 +00:00
#include "../include/ZeroTierOne.h"
#include "Address.hpp"
#include "Buffer.hpp"
#include "Constants.hpp"
#include "Credential.hpp"
2024-09-15 21:34:01 +00:00
#include "ECC.hpp"
#include "Identity.hpp"
2024-09-26 12:52:29 +00:00
#include "Utils.hpp"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
namespace ZeroTier {
class RuntimeEnvironment;
/**
* A set of grouped and signed network flow rules
*
* On the sending side the sender does the following for each packet:
*
* (1) Evaluates its capabilities in ascending order of ID to determine
* which capability allows it to transmit this packet.
* (2) If it has not done so lately, it then sends this capability to the
2018-06-08 00:25:27 +00:00
* receiving peer ("presents" it).
* (3) The sender then sends the packet.
*
* On the receiving side the receiver evaluates the capabilities presented
* by the sender. If any valid un-expired capability allows this packet it
* is accepted.
*
* Note that this is after evaluation of network scope rules and only if
* network scope rules do not deliver an explicit match.
*
* Capabilities support a chain of custody. This is currently unused but
* in the future would allow the publication of capabilities that can be
2018-06-08 00:25:27 +00:00
* handed off between nodes. Limited transferability of capabilities is
* a feature of true capability based security.
*/
2024-09-26 12:52:29 +00:00
class Capability : public Credential {
public:
static inline Credential::Type credentialType()
{
return Credential::CREDENTIAL_TYPE_CAPABILITY;
}
Capability() : _nwid(0), _ts(0), _id(0), _maxCustodyChainLength(0), _ruleCount(0)
{
memset(_rules, 0, sizeof(_rules));
memset(_custody, 0, sizeof(_custody));
}
/**
* @param id Capability ID
* @param nwid Network ID
* @param ts Timestamp (at controller)
* @param mccl Maximum custody chain length (1 to create non-transferable capability)
* @param rules Network flow rules for this capability
* @param ruleCount Number of flow rules
*/
Capability(uint32_t id, uint64_t nwid, int64_t ts, unsigned int mccl, const ZT_VirtualNetworkRule* rules, unsigned int ruleCount)
: _nwid(nwid)
, _ts(ts)
, _id(id)
, _maxCustodyChainLength((mccl > 0) ? ((mccl < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH) ? mccl : (unsigned int)ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH) : 1)
, _ruleCount((ruleCount < ZT_MAX_CAPABILITY_RULES) ? ruleCount : ZT_MAX_CAPABILITY_RULES)
{
if (_ruleCount > 0) {
memcpy(_rules, rules, sizeof(ZT_VirtualNetworkRule) * _ruleCount);
}
}
/**
* @return Rules -- see ruleCount() for size of array
*/
inline const ZT_VirtualNetworkRule* rules() const
{
return _rules;
}
/**
* @return Number of rules in rules()
*/
inline unsigned int ruleCount() const
{
return _ruleCount;
}
/**
* @return ID and evaluation order of this capability in network
*/
inline uint32_t id() const
{
return _id;
}
/**
* @return Network ID for which this capability was issued
*/
inline uint64_t networkId() const
{
return _nwid;
}
/**
* @return Timestamp
*/
inline int64_t timestamp() const
{
return _ts;
}
/**
* @return Last 'to' address in chain of custody
*/
inline Address issuedTo() const
{
Address i2;
for (unsigned int i = 0; i < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH; ++i) {
if (! _custody[i].to) {
return i2;
}
else {
i2 = _custody[i].to;
}
}
return i2;
}
/**
* Sign this capability and add signature to its chain of custody
*
* If this returns false, this object should be considered to be
* in an undefined state and should be discarded. False can be returned
* if there is no more room for signatures (max chain length reached)
* or if the 'from' identity does not include a secret key to allow
* it to sign anything.
*
* @param from Signing identity (must have secret)
* @param to Recipient of this signature
* @return True if signature successful and chain of custody appended
*/
inline bool sign(const Identity& from, const Address& to)
{
try {
for (unsigned int i = 0; ((i < _maxCustodyChainLength) && (i < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)); ++i) {
if (! (_custody[i].to)) {
Buffer<(sizeof(Capability) * 2)> tmp;
this->serialize(tmp, true);
_custody[i].to = to;
_custody[i].from = from.address();
_custody[i].signature = from.sign(tmp.data(), tmp.size());
return true;
}
}
}
catch (...) {
}
return false;
}
/**
* Verify this capability's chain of custody and signatures
*
* @param RR Runtime environment to provide for peer lookup, etc.
* @return 0 == OK, 1 == waiting for WHOIS, -1 == BAD signature or chain
*/
int verify(const RuntimeEnvironment* RR, void* tPtr) const;
template <unsigned int C> static inline void serializeRules(Buffer<C>& b, const ZT_VirtualNetworkRule* rules, unsigned int ruleCount)
{
for (unsigned int i = 0; i < ruleCount; ++i) {
// Each rule consists of its 8-bit type followed by the size of that type's
// field followed by field data. The inclusion of the size will allow non-supported
// rules to be ignored but still parsed.
b.append((uint8_t)rules[i].t);
switch ((ZT_VirtualNetworkRuleType)(rules[i].t & 0x3f)) {
default:
b.append((uint8_t)0);
break;
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_WATCH:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
b.append((uint8_t)14);
b.append((uint64_t)rules[i].v.fwd.address);
b.append((uint32_t)rules[i].v.fwd.flags);
b.append((uint16_t)rules[i].v.fwd.length); // unused for redirect
break;
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
b.append((uint8_t)5);
Address(rules[i].v.zt).appendTo(b);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
b.append((uint8_t)2);
b.append((uint16_t)rules[i].v.vlanId);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
b.append((uint8_t)1);
b.append((uint8_t)rules[i].v.vlanPcp);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
b.append((uint8_t)1);
b.append((uint8_t)rules[i].v.vlanDei);
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
b.append((uint8_t)6);
b.append(rules[i].v.mac, 6);
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
b.append((uint8_t)5);
b.append(&(rules[i].v.ipv4.ip), 4);
b.append((uint8_t)rules[i].v.ipv4.mask);
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
b.append((uint8_t)17);
b.append(rules[i].v.ipv6.ip, 16);
b.append((uint8_t)rules[i].v.ipv6.mask);
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
b.append((uint8_t)3);
b.append((uint8_t)rules[i].v.ipTos.mask);
b.append((uint8_t)rules[i].v.ipTos.value[0]);
b.append((uint8_t)rules[i].v.ipTos.value[1]);
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
b.append((uint8_t)1);
b.append((uint8_t)rules[i].v.ipProtocol);
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
b.append((uint8_t)2);
b.append((uint16_t)rules[i].v.etherType);
break;
case ZT_NETWORK_RULE_MATCH_ICMP:
b.append((uint8_t)3);
b.append((uint8_t)rules[i].v.icmp.type);
b.append((uint8_t)rules[i].v.icmp.code);
b.append((uint8_t)rules[i].v.icmp.flags);
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
b.append((uint8_t)4);
b.append((uint16_t)rules[i].v.port[0]);
b.append((uint16_t)rules[i].v.port[1]);
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
b.append((uint8_t)8);
b.append((uint64_t)rules[i].v.characteristics);
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
b.append((uint8_t)4);
b.append((uint16_t)rules[i].v.frameSize[0]);
b.append((uint16_t)rules[i].v.frameSize[1]);
break;
case ZT_NETWORK_RULE_MATCH_RANDOM:
b.append((uint8_t)4);
b.append((uint32_t)rules[i].v.randomProbability);
break;
case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL:
case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:
b.append((uint8_t)8);
b.append((uint32_t)rules[i].v.tag.id);
b.append((uint32_t)rules[i].v.tag.value);
break;
case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:
b.append((uint8_t)19);
b.append((uint64_t)rules[i].v.intRange.start);
b.append((uint64_t)(rules[i].v.intRange.start + (uint64_t)rules[i].v.intRange.end)); // more future-proof
b.append((uint16_t)rules[i].v.intRange.idx);
b.append((uint8_t)rules[i].v.intRange.format);
break;
}
}
}
template <unsigned int C> static inline void deserializeRules(const Buffer<C>& b, unsigned int& p, ZT_VirtualNetworkRule* rules, unsigned int& ruleCount, const unsigned int maxRuleCount)
{
while ((ruleCount < maxRuleCount) && (p < b.size())) {
rules[ruleCount].t = (uint8_t)b[p++];
const unsigned int fieldLen = (unsigned int)b[p++];
switch ((ZT_VirtualNetworkRuleType)(rules[ruleCount].t & 0x3f)) {
default:
break;
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_WATCH:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
rules[ruleCount].v.fwd.address = b.template at<uint64_t>(p);
rules[ruleCount].v.fwd.flags = b.template at<uint32_t>(p + 8);
rules[ruleCount].v.fwd.length = b.template at<uint16_t>(p + 12);
break;
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
rules[ruleCount].v.zt = Address(b.field(p, ZT_ADDRESS_LENGTH), ZT_ADDRESS_LENGTH).toInt();
break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
rules[ruleCount].v.vlanId = b.template at<uint16_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
rules[ruleCount].v.vlanPcp = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
rules[ruleCount].v.vlanDei = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
memcpy(rules[ruleCount].v.mac, b.field(p, 6), 6);
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
memcpy(&(rules[ruleCount].v.ipv4.ip), b.field(p, 4), 4);
rules[ruleCount].v.ipv4.mask = (uint8_t)b[p + 4];
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
memcpy(rules[ruleCount].v.ipv6.ip, b.field(p, 16), 16);
rules[ruleCount].v.ipv6.mask = (uint8_t)b[p + 16];
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
rules[ruleCount].v.ipTos.mask = (uint8_t)b[p];
rules[ruleCount].v.ipTos.value[0] = (uint8_t)b[p + 1];
rules[ruleCount].v.ipTos.value[1] = (uint8_t)b[p + 2];
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
rules[ruleCount].v.ipProtocol = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
rules[ruleCount].v.etherType = b.template at<uint16_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_ICMP:
rules[ruleCount].v.icmp.type = (uint8_t)b[p];
rules[ruleCount].v.icmp.code = (uint8_t)b[p + 1];
rules[ruleCount].v.icmp.flags = (uint8_t)b[p + 2];
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
rules[ruleCount].v.port[0] = b.template at<uint16_t>(p);
rules[ruleCount].v.port[1] = b.template at<uint16_t>(p + 2);
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
rules[ruleCount].v.characteristics = b.template at<uint64_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
rules[ruleCount].v.frameSize[0] = b.template at<uint16_t>(p);
rules[ruleCount].v.frameSize[1] = b.template at<uint16_t>(p + 2);
break;
case ZT_NETWORK_RULE_MATCH_RANDOM:
rules[ruleCount].v.randomProbability = b.template at<uint32_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL:
case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:
rules[ruleCount].v.tag.id = b.template at<uint32_t>(p);
rules[ruleCount].v.tag.value = b.template at<uint32_t>(p + 4);
break;
case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:
rules[ruleCount].v.intRange.start = b.template at<uint64_t>(p);
rules[ruleCount].v.intRange.end = (uint32_t)(b.template at<uint64_t>(p + 8) - rules[ruleCount].v.intRange.start);
rules[ruleCount].v.intRange.idx = b.template at<uint16_t>(p + 16);
rules[ruleCount].v.intRange.format = (uint8_t)b[p + 18];
break;
}
p += fieldLen;
++ruleCount;
}
}
template <unsigned int C> inline void serialize(Buffer<C>& b, const bool forSign = false) const
{
if (forSign) {
b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);
}
// These are the same between Tag and Capability
b.append(_nwid);
b.append(_ts);
b.append(_id);
b.append((uint16_t)_ruleCount);
serializeRules(b, _rules, _ruleCount);
b.append((uint8_t)_maxCustodyChainLength);
if (! forSign) {
for (unsigned int i = 0;; ++i) {
if ((i < _maxCustodyChainLength) && (i < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH) && (_custody[i].to)) {
_custody[i].to.appendTo(b);
_custody[i].from.appendTo(b);
b.append((uint8_t)1); // 1 == Ed25519 signature
b.append((uint16_t)ZT_ECC_SIGNATURE_LEN); // length of signature
b.append(_custody[i].signature.data, ZT_ECC_SIGNATURE_LEN);
}
else {
b.append((unsigned char)0, ZT_ADDRESS_LENGTH); // zero 'to' terminates chain
break;
}
}
}
// This is the size of any additional fields, currently 0.
b.append((uint16_t)0);
if (forSign) {
b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);
}
}
template <unsigned int C> inline unsigned int deserialize(const Buffer<C>& b, unsigned int startAt = 0)
{
*this = Capability();
unsigned int p = startAt;
_nwid = b.template at<uint64_t>(p);
p += 8;
_ts = b.template at<uint64_t>(p);
p += 8;
_id = b.template at<uint32_t>(p);
p += 4;
const unsigned int rc = b.template at<uint16_t>(p);
p += 2;
if (rc > ZT_MAX_CAPABILITY_RULES) {
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
}
deserializeRules(b, p, _rules, _ruleCount, rc);
_maxCustodyChainLength = (unsigned int)b[p++];
if ((_maxCustodyChainLength < 1) || (_maxCustodyChainLength > ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)) {
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
}
for (unsigned int i = 0;; ++i) {
const Address to(b.field(p, ZT_ADDRESS_LENGTH), ZT_ADDRESS_LENGTH);
p += ZT_ADDRESS_LENGTH;
if (! to) {
break;
}
if ((i >= _maxCustodyChainLength) || (i >= ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)) {
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
}
_custody[i].to = to;
_custody[i].from.setTo(b.field(p, ZT_ADDRESS_LENGTH), ZT_ADDRESS_LENGTH);
p += ZT_ADDRESS_LENGTH;
if (b[p++] == 1) {
if (b.template at<uint16_t>(p) != ZT_ECC_SIGNATURE_LEN) {
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN;
}
p += 2;
memcpy(_custody[i].signature.data, b.field(p, ZT_ECC_SIGNATURE_LEN), ZT_ECC_SIGNATURE_LEN);
p += ZT_ECC_SIGNATURE_LEN;
}
else {
p += 2 + b.template at<uint16_t>(p);
}
}
p += 2 + b.template at<uint16_t>(p);
if (p > b.size()) {
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
}
return (p - startAt);
}
// Provides natural sort order by ID
inline bool operator<(const Capability& c) const
{
return (_id < c._id);
}
inline bool operator==(const Capability& c) const
{
return (memcmp(this, &c, sizeof(Capability)) == 0);
}
inline bool operator!=(const Capability& c) const
{
return (memcmp(this, &c, sizeof(Capability)) != 0);
}
private:
uint64_t _nwid;
int64_t _ts;
uint32_t _id;
unsigned int _maxCustodyChainLength;
unsigned int _ruleCount;
ZT_VirtualNetworkRule _rules[ZT_MAX_CAPABILITY_RULES];
struct {
Address to;
Address from;
ECC::Signature signature;
} _custody[ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH];
};
2024-09-26 12:52:29 +00:00
} // namespace ZeroTier
#endif