/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_CAPABILITY_HPP #define ZT_CAPABILITY_HPP #include "../include/ZeroTierOne.h" #include "Address.hpp" #include "Buffer.hpp" #include "Constants.hpp" #include "Credential.hpp" #include "ECC.hpp" #include "Identity.hpp" #include "Utils.hpp" #include #include #include namespace ZeroTier { class RuntimeEnvironment; /** * A set of grouped and signed network flow rules * * On the sending side the sender does the following for each packet: * * (1) Evaluates its capabilities in ascending order of ID to determine * which capability allows it to transmit this packet. * (2) If it has not done so lately, it then sends this capability to the * receiving peer ("presents" it). * (3) The sender then sends the packet. * * On the receiving side the receiver evaluates the capabilities presented * by the sender. If any valid un-expired capability allows this packet it * is accepted. * * Note that this is after evaluation of network scope rules and only if * network scope rules do not deliver an explicit match. * * Capabilities support a chain of custody. This is currently unused but * in the future would allow the publication of capabilities that can be * handed off between nodes. Limited transferability of capabilities is * a feature of true capability based security. */ class Capability : public Credential { public: static inline Credential::Type credentialType() { return Credential::CREDENTIAL_TYPE_CAPABILITY; } Capability() : _nwid(0), _ts(0), _id(0), _maxCustodyChainLength(0), _ruleCount(0) { memset(_rules, 0, sizeof(_rules)); memset(_custody, 0, sizeof(_custody)); } /** * @param id Capability ID * @param nwid Network ID * @param ts Timestamp (at controller) * @param mccl Maximum custody chain length (1 to create non-transferable capability) * @param rules Network flow rules for this capability * @param ruleCount Number of flow rules */ Capability(uint32_t id, uint64_t nwid, int64_t ts, unsigned int mccl, const ZT_VirtualNetworkRule* rules, unsigned int ruleCount) : _nwid(nwid) , _ts(ts) , _id(id) , _maxCustodyChainLength((mccl > 0) ? ((mccl < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH) ? mccl : (unsigned int)ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH) : 1) , _ruleCount((ruleCount < ZT_MAX_CAPABILITY_RULES) ? ruleCount : ZT_MAX_CAPABILITY_RULES) { if (_ruleCount > 0) { memcpy(_rules, rules, sizeof(ZT_VirtualNetworkRule) * _ruleCount); } } /** * @return Rules -- see ruleCount() for size of array */ inline const ZT_VirtualNetworkRule* rules() const { return _rules; } /** * @return Number of rules in rules() */ inline unsigned int ruleCount() const { return _ruleCount; } /** * @return ID and evaluation order of this capability in network */ inline uint32_t id() const { return _id; } /** * @return Network ID for which this capability was issued */ inline uint64_t networkId() const { return _nwid; } /** * @return Timestamp */ inline int64_t timestamp() const { return _ts; } /** * @return Last 'to' address in chain of custody */ inline Address issuedTo() const { Address i2; for (unsigned int i = 0; i < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH; ++i) { if (! _custody[i].to) { return i2; } else { i2 = _custody[i].to; } } return i2; } /** * Sign this capability and add signature to its chain of custody * * If this returns false, this object should be considered to be * in an undefined state and should be discarded. False can be returned * if there is no more room for signatures (max chain length reached) * or if the 'from' identity does not include a secret key to allow * it to sign anything. * * @param from Signing identity (must have secret) * @param to Recipient of this signature * @return True if signature successful and chain of custody appended */ inline bool sign(const Identity& from, const Address& to) { try { for (unsigned int i = 0; ((i < _maxCustodyChainLength) && (i < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)); ++i) { if (! (_custody[i].to)) { Buffer<(sizeof(Capability) * 2)> tmp; this->serialize(tmp, true); _custody[i].to = to; _custody[i].from = from.address(); _custody[i].signature = from.sign(tmp.data(), tmp.size()); return true; } } } catch (...) { } return false; } /** * Verify this capability's chain of custody and signatures * * @param RR Runtime environment to provide for peer lookup, etc. * @return 0 == OK, 1 == waiting for WHOIS, -1 == BAD signature or chain */ int verify(const RuntimeEnvironment* RR, void* tPtr) const; template static inline void serializeRules(Buffer& b, const ZT_VirtualNetworkRule* rules, unsigned int ruleCount) { for (unsigned int i = 0; i < ruleCount; ++i) { // Each rule consists of its 8-bit type followed by the size of that type's // field followed by field data. The inclusion of the size will allow non-supported // rules to be ignored but still parsed. b.append((uint8_t)rules[i].t); switch ((ZT_VirtualNetworkRuleType)(rules[i].t & 0x3f)) { default: b.append((uint8_t)0); break; case ZT_NETWORK_RULE_ACTION_TEE: case ZT_NETWORK_RULE_ACTION_WATCH: case ZT_NETWORK_RULE_ACTION_REDIRECT: b.append((uint8_t)14); b.append((uint64_t)rules[i].v.fwd.address); b.append((uint32_t)rules[i].v.fwd.flags); b.append((uint16_t)rules[i].v.fwd.length); // unused for redirect break; case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS: case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS: b.append((uint8_t)5); Address(rules[i].v.zt).appendTo(b); break; case ZT_NETWORK_RULE_MATCH_VLAN_ID: b.append((uint8_t)2); b.append((uint16_t)rules[i].v.vlanId); break; case ZT_NETWORK_RULE_MATCH_VLAN_PCP: b.append((uint8_t)1); b.append((uint8_t)rules[i].v.vlanPcp); break; case ZT_NETWORK_RULE_MATCH_VLAN_DEI: b.append((uint8_t)1); b.append((uint8_t)rules[i].v.vlanDei); break; case ZT_NETWORK_RULE_MATCH_MAC_SOURCE: case ZT_NETWORK_RULE_MATCH_MAC_DEST: b.append((uint8_t)6); b.append(rules[i].v.mac, 6); break; case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV4_DEST: b.append((uint8_t)5); b.append(&(rules[i].v.ipv4.ip), 4); b.append((uint8_t)rules[i].v.ipv4.mask); break; case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV6_DEST: b.append((uint8_t)17); b.append(rules[i].v.ipv6.ip, 16); b.append((uint8_t)rules[i].v.ipv6.mask); break; case ZT_NETWORK_RULE_MATCH_IP_TOS: b.append((uint8_t)3); b.append((uint8_t)rules[i].v.ipTos.mask); b.append((uint8_t)rules[i].v.ipTos.value[0]); b.append((uint8_t)rules[i].v.ipTos.value[1]); break; case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL: b.append((uint8_t)1); b.append((uint8_t)rules[i].v.ipProtocol); break; case ZT_NETWORK_RULE_MATCH_ETHERTYPE: b.append((uint8_t)2); b.append((uint16_t)rules[i].v.etherType); break; case ZT_NETWORK_RULE_MATCH_ICMP: b.append((uint8_t)3); b.append((uint8_t)rules[i].v.icmp.type); b.append((uint8_t)rules[i].v.icmp.code); b.append((uint8_t)rules[i].v.icmp.flags); break; case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE: case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE: b.append((uint8_t)4); b.append((uint16_t)rules[i].v.port[0]); b.append((uint16_t)rules[i].v.port[1]); break; case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: b.append((uint8_t)8); b.append((uint64_t)rules[i].v.characteristics); break; case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE: b.append((uint8_t)4); b.append((uint16_t)rules[i].v.frameSize[0]); b.append((uint16_t)rules[i].v.frameSize[1]); break; case ZT_NETWORK_RULE_MATCH_RANDOM: b.append((uint8_t)4); b.append((uint32_t)rules[i].v.randomProbability); break; case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR: case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL: case ZT_NETWORK_RULE_MATCH_TAG_SENDER: case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER: b.append((uint8_t)8); b.append((uint32_t)rules[i].v.tag.id); b.append((uint32_t)rules[i].v.tag.value); break; case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE: b.append((uint8_t)19); b.append((uint64_t)rules[i].v.intRange.start); b.append((uint64_t)(rules[i].v.intRange.start + (uint64_t)rules[i].v.intRange.end)); // more future-proof b.append((uint16_t)rules[i].v.intRange.idx); b.append((uint8_t)rules[i].v.intRange.format); break; } } } template static inline void deserializeRules(const Buffer& b, unsigned int& p, ZT_VirtualNetworkRule* rules, unsigned int& ruleCount, const unsigned int maxRuleCount) { while ((ruleCount < maxRuleCount) && (p < b.size())) { rules[ruleCount].t = (uint8_t)b[p++]; const unsigned int fieldLen = (unsigned int)b[p++]; switch ((ZT_VirtualNetworkRuleType)(rules[ruleCount].t & 0x3f)) { default: break; case ZT_NETWORK_RULE_ACTION_TEE: case ZT_NETWORK_RULE_ACTION_WATCH: case ZT_NETWORK_RULE_ACTION_REDIRECT: rules[ruleCount].v.fwd.address = b.template at(p); rules[ruleCount].v.fwd.flags = b.template at(p + 8); rules[ruleCount].v.fwd.length = b.template at(p + 12); break; case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS: case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS: rules[ruleCount].v.zt = Address(b.field(p, ZT_ADDRESS_LENGTH), ZT_ADDRESS_LENGTH).toInt(); break; case ZT_NETWORK_RULE_MATCH_VLAN_ID: rules[ruleCount].v.vlanId = b.template at(p); break; case ZT_NETWORK_RULE_MATCH_VLAN_PCP: rules[ruleCount].v.vlanPcp = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_VLAN_DEI: rules[ruleCount].v.vlanDei = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_MAC_SOURCE: case ZT_NETWORK_RULE_MATCH_MAC_DEST: memcpy(rules[ruleCount].v.mac, b.field(p, 6), 6); break; case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV4_DEST: memcpy(&(rules[ruleCount].v.ipv4.ip), b.field(p, 4), 4); rules[ruleCount].v.ipv4.mask = (uint8_t)b[p + 4]; break; case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV6_DEST: memcpy(rules[ruleCount].v.ipv6.ip, b.field(p, 16), 16); rules[ruleCount].v.ipv6.mask = (uint8_t)b[p + 16]; break; case ZT_NETWORK_RULE_MATCH_IP_TOS: rules[ruleCount].v.ipTos.mask = (uint8_t)b[p]; rules[ruleCount].v.ipTos.value[0] = (uint8_t)b[p + 1]; rules[ruleCount].v.ipTos.value[1] = (uint8_t)b[p + 2]; break; case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL: rules[ruleCount].v.ipProtocol = (uint8_t)b[p]; break; case ZT_NETWORK_RULE_MATCH_ETHERTYPE: rules[ruleCount].v.etherType = b.template at(p); break; case ZT_NETWORK_RULE_MATCH_ICMP: rules[ruleCount].v.icmp.type = (uint8_t)b[p]; rules[ruleCount].v.icmp.code = (uint8_t)b[p + 1]; rules[ruleCount].v.icmp.flags = (uint8_t)b[p + 2]; break; case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE: case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE: rules[ruleCount].v.port[0] = b.template at(p); rules[ruleCount].v.port[1] = b.template at(p + 2); break; case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: rules[ruleCount].v.characteristics = b.template at(p); break; case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE: rules[ruleCount].v.frameSize[0] = b.template at(p); rules[ruleCount].v.frameSize[1] = b.template at(p + 2); break; case ZT_NETWORK_RULE_MATCH_RANDOM: rules[ruleCount].v.randomProbability = b.template at(p); break; case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR: case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL: case ZT_NETWORK_RULE_MATCH_TAG_SENDER: case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER: rules[ruleCount].v.tag.id = b.template at(p); rules[ruleCount].v.tag.value = b.template at(p + 4); break; case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE: rules[ruleCount].v.intRange.start = b.template at(p); rules[ruleCount].v.intRange.end = (uint32_t)(b.template at(p + 8) - rules[ruleCount].v.intRange.start); rules[ruleCount].v.intRange.idx = b.template at(p + 16); rules[ruleCount].v.intRange.format = (uint8_t)b[p + 18]; break; } p += fieldLen; ++ruleCount; } } template inline void serialize(Buffer& b, const bool forSign = false) const { if (forSign) { b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL); } // These are the same between Tag and Capability b.append(_nwid); b.append(_ts); b.append(_id); b.append((uint16_t)_ruleCount); serializeRules(b, _rules, _ruleCount); b.append((uint8_t)_maxCustodyChainLength); if (! forSign) { for (unsigned int i = 0;; ++i) { if ((i < _maxCustodyChainLength) && (i < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH) && (_custody[i].to)) { _custody[i].to.appendTo(b); _custody[i].from.appendTo(b); b.append((uint8_t)1); // 1 == Ed25519 signature b.append((uint16_t)ZT_ECC_SIGNATURE_LEN); // length of signature b.append(_custody[i].signature.data, ZT_ECC_SIGNATURE_LEN); } else { b.append((unsigned char)0, ZT_ADDRESS_LENGTH); // zero 'to' terminates chain break; } } } // This is the size of any additional fields, currently 0. b.append((uint16_t)0); if (forSign) { b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL); } } template inline unsigned int deserialize(const Buffer& b, unsigned int startAt = 0) { *this = Capability(); unsigned int p = startAt; _nwid = b.template at(p); p += 8; _ts = b.template at(p); p += 8; _id = b.template at(p); p += 4; const unsigned int rc = b.template at(p); p += 2; if (rc > ZT_MAX_CAPABILITY_RULES) { throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW; } deserializeRules(b, p, _rules, _ruleCount, rc); _maxCustodyChainLength = (unsigned int)b[p++]; if ((_maxCustodyChainLength < 1) || (_maxCustodyChainLength > ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)) { throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW; } for (unsigned int i = 0;; ++i) { const Address to(b.field(p, ZT_ADDRESS_LENGTH), ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH; if (! to) { break; } if ((i >= _maxCustodyChainLength) || (i >= ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)) { throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW; } _custody[i].to = to; _custody[i].from.setTo(b.field(p, ZT_ADDRESS_LENGTH), ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH; if (b[p++] == 1) { if (b.template at(p) != ZT_ECC_SIGNATURE_LEN) { throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN; } p += 2; memcpy(_custody[i].signature.data, b.field(p, ZT_ECC_SIGNATURE_LEN), ZT_ECC_SIGNATURE_LEN); p += ZT_ECC_SIGNATURE_LEN; } else { p += 2 + b.template at(p); } } p += 2 + b.template at(p); if (p > b.size()) { throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW; } return (p - startAt); } // Provides natural sort order by ID inline bool operator<(const Capability& c) const { return (_id < c._id); } inline bool operator==(const Capability& c) const { return (memcmp(this, &c, sizeof(Capability)) == 0); } inline bool operator!=(const Capability& c) const { return (memcmp(this, &c, sizeof(Capability)) != 0); } private: uint64_t _nwid; int64_t _ts; uint32_t _id; unsigned int _maxCustodyChainLength; unsigned int _ruleCount; ZT_VirtualNetworkRule _rules[ZT_MAX_CAPABILITY_RULES]; struct { Address to; Address from; ECC::Signature signature; } _custody[ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH]; }; } // namespace ZeroTier #endif