mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-25 13:50:00 +00:00
5d1018495f
* feat(intel): add diffusers support * try to consume upstream container image * Debug * Manually install deps * Map transformers/hf cache dir to modelpath if not specified * fix(compel): update initialization, pass by all gRPC options * fix: add dependencies, implement transformers for xpu * base it from the oneapi image * Add pillow * set threads if specified when launching the API * Skip conda install if intel * defaults to non-intel * ci: add to pipelines * prepare compel only if enabled * Skip conda install if intel * fix cleanup * Disable compel by default * Install torch 2.1.0 with Intel * Skip conda on some setups * Detect python * Quiet output * Do not override system python with conda * Prefer python3 * Fixups * exllama2: do not install without conda (overrides pytorch version) * exllama/exllama2: do not install if not using cuda * Add missing dataset dependency * Small fixups, symlink to python, add requirements * Add neural_speed to the deps * correctly handle model offloading * fix: device_map == xpu * go back at calling python, fixed at dockerfile level * Exllama2 restricted to only nvidia gpus * Tokenizer to xpu
452 lines
18 KiB
Python
Executable File
452 lines
18 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
from concurrent import futures
|
|
|
|
import argparse
|
|
from collections import defaultdict
|
|
from enum import Enum
|
|
import signal
|
|
import sys
|
|
import time
|
|
import os
|
|
|
|
from PIL import Image
|
|
import torch
|
|
|
|
import backend_pb2
|
|
import backend_pb2_grpc
|
|
|
|
import grpc
|
|
|
|
from diffusers import StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, EulerAncestralDiscreteScheduler
|
|
from diffusers import StableDiffusionImg2ImgPipeline, AutoPipelineForText2Image, ControlNetModel, StableVideoDiffusionPipeline
|
|
from diffusers.pipelines.stable_diffusion import safety_checker
|
|
from diffusers.utils import load_image,export_to_video
|
|
from compel import Compel, ReturnedEmbeddingsType
|
|
|
|
from transformers import CLIPTextModel
|
|
from safetensors.torch import load_file
|
|
|
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
|
COMPEL=os.environ.get("COMPEL", "0") == "1"
|
|
XPU=os.environ.get("XPU", "0") == "1"
|
|
CLIPSKIP=os.environ.get("CLIPSKIP", "1") == "1"
|
|
SAFETENSORS=os.environ.get("SAFETENSORS", "1") == "1"
|
|
CHUNK_SIZE=os.environ.get("CHUNK_SIZE", "8")
|
|
FPS=os.environ.get("FPS", "7")
|
|
DISABLE_CPU_OFFLOAD=os.environ.get("DISABLE_CPU_OFFLOAD", "0") == "1"
|
|
FRAMES=os.environ.get("FRAMES", "64")
|
|
|
|
if XPU:
|
|
import intel_extension_for_pytorch as ipex
|
|
print(ipex.xpu.get_device_name(0))
|
|
|
|
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
|
|
|
# https://github.com/CompVis/stable-diffusion/issues/239#issuecomment-1627615287
|
|
def sc(self, clip_input, images) : return images, [False for i in images]
|
|
# edit the StableDiffusionSafetyChecker class so that, when called, it just returns the images and an array of True values
|
|
safety_checker.StableDiffusionSafetyChecker.forward = sc
|
|
|
|
from diffusers.schedulers import (
|
|
DDIMScheduler,
|
|
DPMSolverMultistepScheduler,
|
|
DPMSolverSinglestepScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
EulerDiscreteScheduler,
|
|
HeunDiscreteScheduler,
|
|
KDPM2AncestralDiscreteScheduler,
|
|
KDPM2DiscreteScheduler,
|
|
LMSDiscreteScheduler,
|
|
PNDMScheduler,
|
|
UniPCMultistepScheduler,
|
|
)
|
|
# The scheduler list mapping was taken from here: https://github.com/neggles/animatediff-cli/blob/6f336f5f4b5e38e85d7f06f1744ef42d0a45f2a7/src/animatediff/schedulers.py#L39
|
|
# Credits to https://github.com/neggles
|
|
# See https://github.com/huggingface/diffusers/issues/4167 for more details on sched mapping from A1111
|
|
class DiffusionScheduler(str, Enum):
|
|
ddim = "ddim" # DDIM
|
|
pndm = "pndm" # PNDM
|
|
heun = "heun" # Heun
|
|
unipc = "unipc" # UniPC
|
|
euler = "euler" # Euler
|
|
euler_a = "euler_a" # Euler a
|
|
|
|
lms = "lms" # LMS
|
|
k_lms = "k_lms" # LMS Karras
|
|
|
|
dpm_2 = "dpm_2" # DPM2
|
|
k_dpm_2 = "k_dpm_2" # DPM2 Karras
|
|
|
|
dpm_2_a = "dpm_2_a" # DPM2 a
|
|
k_dpm_2_a = "k_dpm_2_a" # DPM2 a Karras
|
|
|
|
dpmpp_2m = "dpmpp_2m" # DPM++ 2M
|
|
k_dpmpp_2m = "k_dpmpp_2m" # DPM++ 2M Karras
|
|
|
|
dpmpp_sde = "dpmpp_sde" # DPM++ SDE
|
|
k_dpmpp_sde = "k_dpmpp_sde" # DPM++ SDE Karras
|
|
|
|
dpmpp_2m_sde = "dpmpp_2m_sde" # DPM++ 2M SDE
|
|
k_dpmpp_2m_sde = "k_dpmpp_2m_sde" # DPM++ 2M SDE Karras
|
|
|
|
|
|
def get_scheduler(name: str, config: dict = {}):
|
|
is_karras = name.startswith("k_")
|
|
if is_karras:
|
|
# strip the k_ prefix and add the karras sigma flag to config
|
|
name = name.lstrip("k_")
|
|
config["use_karras_sigmas"] = True
|
|
|
|
if name == DiffusionScheduler.ddim:
|
|
sched_class = DDIMScheduler
|
|
elif name == DiffusionScheduler.pndm:
|
|
sched_class = PNDMScheduler
|
|
elif name == DiffusionScheduler.heun:
|
|
sched_class = HeunDiscreteScheduler
|
|
elif name == DiffusionScheduler.unipc:
|
|
sched_class = UniPCMultistepScheduler
|
|
elif name == DiffusionScheduler.euler:
|
|
sched_class = EulerDiscreteScheduler
|
|
elif name == DiffusionScheduler.euler_a:
|
|
sched_class = EulerAncestralDiscreteScheduler
|
|
elif name == DiffusionScheduler.lms:
|
|
sched_class = LMSDiscreteScheduler
|
|
elif name == DiffusionScheduler.dpm_2:
|
|
# Equivalent to DPM2 in K-Diffusion
|
|
sched_class = KDPM2DiscreteScheduler
|
|
elif name == DiffusionScheduler.dpm_2_a:
|
|
# Equivalent to `DPM2 a`` in K-Diffusion
|
|
sched_class = KDPM2AncestralDiscreteScheduler
|
|
elif name == DiffusionScheduler.dpmpp_2m:
|
|
# Equivalent to `DPM++ 2M` in K-Diffusion
|
|
sched_class = DPMSolverMultistepScheduler
|
|
config["algorithm_type"] = "dpmsolver++"
|
|
config["solver_order"] = 2
|
|
elif name == DiffusionScheduler.dpmpp_sde:
|
|
# Equivalent to `DPM++ SDE` in K-Diffusion
|
|
sched_class = DPMSolverSinglestepScheduler
|
|
elif name == DiffusionScheduler.dpmpp_2m_sde:
|
|
# Equivalent to `DPM++ 2M SDE` in K-Diffusion
|
|
sched_class = DPMSolverMultistepScheduler
|
|
config["algorithm_type"] = "sde-dpmsolver++"
|
|
else:
|
|
raise ValueError(f"Invalid scheduler '{'k_' if is_karras else ''}{name}'")
|
|
|
|
return sched_class.from_config(config)
|
|
|
|
# Implement the BackendServicer class with the service methods
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
|
def Health(self, request, context):
|
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
|
def LoadModel(self, request, context):
|
|
try:
|
|
print(f"Loading model {request.Model}...", file=sys.stderr)
|
|
print(f"Request {request}", file=sys.stderr)
|
|
torchType = torch.float32
|
|
variant = None
|
|
|
|
if request.F16Memory:
|
|
torchType = torch.float16
|
|
variant="fp16"
|
|
|
|
local = False
|
|
modelFile = request.Model
|
|
|
|
self.cfg_scale = 7
|
|
if request.CFGScale != 0:
|
|
self.cfg_scale = request.CFGScale
|
|
|
|
clipmodel = "runwayml/stable-diffusion-v1-5"
|
|
if request.CLIPModel != "":
|
|
clipmodel = request.CLIPModel
|
|
clipsubfolder = "text_encoder"
|
|
if request.CLIPSubfolder != "":
|
|
clipsubfolder = request.CLIPSubfolder
|
|
|
|
# Check if ModelFile exists
|
|
if request.ModelFile != "":
|
|
if os.path.exists(request.ModelFile):
|
|
local = True
|
|
modelFile = request.ModelFile
|
|
|
|
fromSingleFile = request.Model.startswith("http") or request.Model.startswith("/") or local
|
|
self.img2vid=False
|
|
self.txt2vid=False
|
|
## img2img
|
|
if (request.PipelineType == "StableDiffusionImg2ImgPipeline") or (request.IMG2IMG and request.PipelineType == ""):
|
|
if fromSingleFile:
|
|
self.pipe = StableDiffusionImg2ImgPipeline.from_single_file(modelFile,
|
|
torch_dtype=torchType)
|
|
else:
|
|
self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(request.Model,
|
|
torch_dtype=torchType)
|
|
|
|
elif request.PipelineType == "StableDiffusionDepth2ImgPipeline":
|
|
self.pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(request.Model,
|
|
torch_dtype=torchType)
|
|
## img2vid
|
|
elif request.PipelineType == "StableVideoDiffusionPipeline":
|
|
self.img2vid=True
|
|
self.pipe = StableVideoDiffusionPipeline.from_pretrained(
|
|
request.Model, torch_dtype=torchType, variant=variant
|
|
)
|
|
if not DISABLE_CPU_OFFLOAD:
|
|
self.pipe.enable_model_cpu_offload()
|
|
## text2img
|
|
elif request.PipelineType == "AutoPipelineForText2Image" or request.PipelineType == "":
|
|
self.pipe = AutoPipelineForText2Image.from_pretrained(request.Model,
|
|
torch_dtype=torchType,
|
|
use_safetensors=SAFETENSORS,
|
|
variant=variant)
|
|
elif request.PipelineType == "StableDiffusionPipeline":
|
|
if fromSingleFile:
|
|
self.pipe = StableDiffusionPipeline.from_single_file(modelFile,
|
|
torch_dtype=torchType)
|
|
else:
|
|
self.pipe = StableDiffusionPipeline.from_pretrained(request.Model,
|
|
torch_dtype=torchType)
|
|
elif request.PipelineType == "DiffusionPipeline":
|
|
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
|
|
torch_dtype=torchType)
|
|
elif request.PipelineType == "VideoDiffusionPipeline":
|
|
self.txt2vid=True
|
|
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
|
|
torch_dtype=torchType)
|
|
elif request.PipelineType == "StableDiffusionXLPipeline":
|
|
if fromSingleFile:
|
|
self.pipe = StableDiffusionXLPipeline.from_single_file(modelFile,
|
|
torch_dtype=torchType,
|
|
use_safetensors=True)
|
|
else:
|
|
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
request.Model,
|
|
torch_dtype=torchType,
|
|
use_safetensors=True,
|
|
variant=variant)
|
|
|
|
if CLIPSKIP and request.CLIPSkip != 0:
|
|
self.clip_skip = request.CLIPSkip
|
|
else:
|
|
self.clip_skip = 0
|
|
|
|
# torch_dtype needs to be customized. float16 for GPU, float32 for CPU
|
|
# TODO: this needs to be customized
|
|
if request.SchedulerType != "":
|
|
self.pipe.scheduler = get_scheduler(request.SchedulerType, self.pipe.scheduler.config)
|
|
|
|
if COMPEL:
|
|
self.compel = Compel(
|
|
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2 ],
|
|
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
|
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
|
requires_pooled=[False, True]
|
|
)
|
|
|
|
|
|
if request.ControlNet:
|
|
self.controlnet = ControlNetModel.from_pretrained(
|
|
request.ControlNet, torch_dtype=torchType, variant=variant
|
|
)
|
|
self.pipe.controlnet = self.controlnet
|
|
else:
|
|
self.controlnet = None
|
|
|
|
if request.CUDA:
|
|
self.pipe.to('cuda')
|
|
if self.controlnet:
|
|
self.controlnet.to('cuda')
|
|
if XPU:
|
|
self.pipe = self.pipe.to("xpu")
|
|
# Assume directory from request.ModelFile.
|
|
# Only if request.LoraAdapter it's not an absolute path
|
|
if request.LoraAdapter and request.ModelFile != "" and not os.path.isabs(request.LoraAdapter) and request.LoraAdapter:
|
|
# get base path of modelFile
|
|
modelFileBase = os.path.dirname(request.ModelFile)
|
|
# modify LoraAdapter to be relative to modelFileBase
|
|
request.LoraAdapter = os.path.join(modelFileBase, request.LoraAdapter)
|
|
device = "cpu" if not request.CUDA else "cuda"
|
|
self.device = device
|
|
if request.LoraAdapter:
|
|
# Check if its a local file and not a directory ( we load lora differently for a safetensor file )
|
|
if os.path.exists(request.LoraAdapter) and not os.path.isdir(request.LoraAdapter):
|
|
self.load_lora_weights(request.LoraAdapter, 1, device, torchType)
|
|
else:
|
|
self.pipe.unet.load_attn_procs(request.LoraAdapter)
|
|
|
|
except Exception as err:
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
# Implement your logic here for the LoadModel service
|
|
# Replace this with your desired response
|
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
|
|
|
# https://github.com/huggingface/diffusers/issues/3064
|
|
def load_lora_weights(self, checkpoint_path, multiplier, device, dtype):
|
|
LORA_PREFIX_UNET = "lora_unet"
|
|
LORA_PREFIX_TEXT_ENCODER = "lora_te"
|
|
# load LoRA weight from .safetensors
|
|
state_dict = load_file(checkpoint_path, device=device)
|
|
|
|
updates = defaultdict(dict)
|
|
for key, value in state_dict.items():
|
|
# it is suggested to print out the key, it usually will be something like below
|
|
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
|
|
|
|
layer, elem = key.split('.', 1)
|
|
updates[layer][elem] = value
|
|
|
|
# directly update weight in diffusers model
|
|
for layer, elems in updates.items():
|
|
|
|
if "text" in layer:
|
|
layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
|
|
curr_layer = self.pipe.text_encoder
|
|
else:
|
|
layer_infos = layer.split(LORA_PREFIX_UNET + "_")[-1].split("_")
|
|
curr_layer = self.pipe.unet
|
|
|
|
# find the target layer
|
|
temp_name = layer_infos.pop(0)
|
|
while len(layer_infos) > -1:
|
|
try:
|
|
curr_layer = curr_layer.__getattr__(temp_name)
|
|
if len(layer_infos) > 0:
|
|
temp_name = layer_infos.pop(0)
|
|
elif len(layer_infos) == 0:
|
|
break
|
|
except Exception:
|
|
if len(temp_name) > 0:
|
|
temp_name += "_" + layer_infos.pop(0)
|
|
else:
|
|
temp_name = layer_infos.pop(0)
|
|
|
|
# get elements for this layer
|
|
weight_up = elems['lora_up.weight'].to(dtype)
|
|
weight_down = elems['lora_down.weight'].to(dtype)
|
|
alpha = elems['alpha'] if 'alpha' in elems else None
|
|
if alpha:
|
|
alpha = alpha.item() / weight_up.shape[1]
|
|
else:
|
|
alpha = 1.0
|
|
|
|
# update weight
|
|
if len(weight_up.shape) == 4:
|
|
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up.squeeze(3).squeeze(2), weight_down.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
|
|
else:
|
|
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up, weight_down)
|
|
|
|
def GenerateImage(self, request, context):
|
|
|
|
prompt = request.positive_prompt
|
|
|
|
steps = 1
|
|
|
|
if request.step != 0:
|
|
steps = request.step
|
|
|
|
# create a dictionary of values for the parameters
|
|
options = {
|
|
"negative_prompt": request.negative_prompt,
|
|
"width": request.width,
|
|
"height": request.height,
|
|
"num_inference_steps": steps,
|
|
}
|
|
|
|
if request.src != "" and not self.controlnet and not self.img2vid:
|
|
image = Image.open(request.src)
|
|
options["image"] = image
|
|
elif self.controlnet and request.src:
|
|
pose_image = load_image(request.src)
|
|
options["image"] = pose_image
|
|
|
|
if CLIPSKIP and self.clip_skip != 0:
|
|
options["clip_skip"]=self.clip_skip
|
|
|
|
# Get the keys that we will build the args for our pipe for
|
|
keys = options.keys()
|
|
|
|
if request.EnableParameters != "":
|
|
keys = request.EnableParameters.split(",")
|
|
|
|
if request.EnableParameters == "none":
|
|
keys = []
|
|
|
|
# create a dictionary of parameters by using the keys from EnableParameters and the values from defaults
|
|
kwargs = {key: options[key] for key in keys}
|
|
|
|
# Set seed
|
|
if request.seed > 0:
|
|
kwargs["generator"] = torch.Generator(device=self.device).manual_seed(
|
|
request.seed
|
|
)
|
|
|
|
if self.img2vid:
|
|
# Load the conditioning image
|
|
image = load_image(request.src)
|
|
image = image.resize((1024, 576))
|
|
|
|
generator = torch.manual_seed(request.seed)
|
|
frames = self.pipe(image, guidance_scale=self.cfg_scale, decode_chunk_size=CHUNK_SIZE, generator=generator).frames[0]
|
|
export_to_video(frames, request.dst, fps=FPS)
|
|
return backend_pb2.Result(message="Media generated successfully", success=True)
|
|
|
|
if self.txt2vid:
|
|
video_frames = self.pipe(prompt, guidance_scale=self.cfg_scale, num_inference_steps=steps, num_frames=int(FRAMES)).frames
|
|
export_to_video(video_frames, request.dst)
|
|
return backend_pb2.Result(message="Media generated successfully", success=True)
|
|
|
|
image = {}
|
|
if COMPEL:
|
|
conditioning, pooled = self.compel.build_conditioning_tensor(prompt)
|
|
kwargs["prompt_embeds"] = conditioning
|
|
kwargs["pooled_prompt_embeds"] = pooled
|
|
# pass the kwargs dictionary to the self.pipe method
|
|
image = self.pipe(
|
|
guidance_scale=self.cfg_scale,
|
|
**kwargs
|
|
).images[0]
|
|
else:
|
|
# pass the kwargs dictionary to the self.pipe method
|
|
image = self.pipe(
|
|
prompt,
|
|
guidance_scale=self.cfg_scale,
|
|
**kwargs
|
|
).images[0]
|
|
|
|
# save the result
|
|
image.save(request.dst)
|
|
|
|
return backend_pb2.Result(message="Media generated", success=True)
|
|
|
|
def serve(address):
|
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
|
server.add_insecure_port(address)
|
|
server.start()
|
|
print("Server started. Listening on: " + address, file=sys.stderr)
|
|
|
|
# Define the signal handler function
|
|
def signal_handler(sig, frame):
|
|
print("Received termination signal. Shutting down...")
|
|
server.stop(0)
|
|
sys.exit(0)
|
|
|
|
# Set the signal handlers for SIGINT and SIGTERM
|
|
signal.signal(signal.SIGINT, signal_handler)
|
|
signal.signal(signal.SIGTERM, signal_handler)
|
|
|
|
try:
|
|
while True:
|
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
|
except KeyboardInterrupt:
|
|
server.stop(0)
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
|
parser.add_argument(
|
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
serve(args.addr) |