feat(intel): add diffusers/transformers support (#1746)

* feat(intel): add diffusers support

* try to consume upstream container image

* Debug

* Manually install deps

* Map transformers/hf cache dir to modelpath if not specified

* fix(compel): update initialization, pass by all gRPC options

* fix: add dependencies, implement transformers for xpu

* base it from the oneapi image

* Add pillow

* set threads if specified when launching the API

* Skip conda install if intel

* defaults to non-intel

* ci: add to pipelines

* prepare compel only if enabled

* Skip conda install if intel

* fix cleanup

* Disable compel by default

* Install torch 2.1.0 with Intel

* Skip conda on some setups

* Detect python

* Quiet output

* Do not override system python with conda

* Prefer python3

* Fixups

* exllama2: do not install without conda (overrides pytorch version)

* exllama/exllama2: do not install if not using cuda

* Add missing dataset dependency

* Small fixups, symlink to python, add requirements

* Add neural_speed to the deps

* correctly handle model offloading

* fix: device_map == xpu

* go back at calling python, fixed at dockerfile level

* Exllama2 restricted to only nvidia gpus

* Tokenizer to xpu
This commit is contained in:
Ettore Di Giacinto 2024-03-07 14:37:45 +01:00 committed by GitHub
parent ad6fd7a991
commit 5d1018495f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
23 changed files with 250 additions and 81 deletions

View File

@ -59,6 +59,14 @@ jobs:
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: 'sycl-f16-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
core-image-build:
uses: ./.github/workflows/image_build.yml
with:
@ -105,4 +113,4 @@ jobs:
ffmpeg: 'true'
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
base-image: "ubuntu:22.04"

View File

@ -120,6 +120,22 @@ jobs:
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: '-sycl-f16-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: '-sycl-f32-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
# Core images
- build-type: 'sycl_f16'
platforms: 'linux/amd64'

View File

@ -4,6 +4,8 @@ ARG BASE_IMAGE=ubuntu:22.04
# extras or core
FROM ${BASE_IMAGE} as requirements-core
USER root
ARG GO_VERSION=1.21.7
ARG BUILD_TYPE
ARG CUDA_MAJOR_VERSION=11
@ -21,7 +23,7 @@ RUN apt-get update && \
apt-get install -y ca-certificates curl patch pip cmake git && apt-get clean
# Install Go
RUN curl -L -s https://go.dev/dl/go$GO_VERSION.linux-$TARGETARCH.tar.gz | tar -v -C /usr/local -xz
RUN curl -L -s https://go.dev/dl/go$GO_VERSION.linux-$TARGETARCH.tar.gz | tar -C /usr/local -xz
ENV PATH $PATH:/usr/local/go/bin
COPY --chmod=644 custom-ca-certs/* /usr/local/share/ca-certificates/
@ -79,6 +81,10 @@ RUN pip install --upgrade pip
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
RUN apt-get install -y espeak-ng espeak && apt-get clean
RUN if [ ! -e /usr/bin/python ]; then \
ln -s /usr/bin/python3 /usr/bin/python \
; fi
###################################
###################################
@ -166,43 +172,43 @@ COPY --from=builder /build/backend-assets/grpc/stablediffusion ./backend-assets/
## Duplicated from Makefile to avoid having a big layer that's hard to push
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/autogptq \
make -C backend/python/autogptq \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/bark \
make -C backend/python/bark \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/diffusers \
make -C backend/python/diffusers \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/vllm \
make -C backend/python/vllm \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/mamba \
make -C backend/python/mamba \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/sentencetransformers \
make -C backend/python/sentencetransformers \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/transformers \
make -C backend/python/transformers \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/vall-e-x \
make -C backend/python/vall-e-x \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/exllama \
make -C backend/python/exllama \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/exllama2 \
make -C backend/python/exllama2 \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/petals \
make -C backend/python/petals \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/transformers-musicgen \
make -C backend/python/transformers-musicgen \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/coqui \
make -C backend/python/coqui \
; fi
# Make sure the models directory exists

View File

@ -557,3 +557,10 @@ docker-image-intel:
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="none" \
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .
docker-image-intel-xpu:
docker build \
--build-arg BASE_IMAGE=intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04 \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="none" \
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .

View File

@ -8,6 +8,13 @@ ifeq ($(BUILD_TYPE), hipblas)
CONDA_ENV_PATH = "transformers-rocm.yml"
endif
# Intel GPU are supposed to have dependencies installed in the main python
# environment, so we skip conda installation for SYCL builds.
# https://github.com/intel/intel-extension-for-pytorch/issues/538
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
export SKIP_CONDA=1
endif
.PHONY: transformers
transformers:
@echo "Installing $(CONDA_ENV_PATH)..."

View File

@ -1,24 +1,38 @@
#!/bin/bash
set -ex
SKIP_CONDA=${SKIP_CONDA:-0}
# Check if environment exist
conda_env_exists(){
! conda list --name "${@}" >/dev/null 2>/dev/null
}
if conda_env_exists "transformers" ; then
echo "Creating virtual environment..."
conda env create --name transformers --file $1
echo "Virtual environment created."
else
echo "Virtual environment already exists."
if [ $SKIP_CONDA -eq 1 ]; then
echo "Skipping conda environment installation"
else
export PATH=$PATH:/opt/conda/bin
if conda_env_exists "transformers" ; then
echo "Creating virtual environment..."
conda env create --name transformers --file $1
echo "Virtual environment created."
else
echo "Virtual environment already exists."
fi
fi
if [ -d "/opt/intel" ]; then
# Intel GPU: If the directory exists, we assume we are using the intel image
# (no conda env)
# https://github.com/intel/intel-extension-for-pytorch/issues/538
pip install intel-extension-for-transformers datasets sentencepiece tiktoken neural_speed
fi
if [ "$PIP_CACHE_PURGE" = true ] ; then
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate transformers
if [ $SKIP_CONDA -eq 0 ]; then
# Activate conda environment
source activate transformers
fi
pip cache purge
fi

View File

@ -4,6 +4,13 @@ ifeq ($(BUILD_TYPE), hipblas)
export CONDA_ENV_PATH = "diffusers-rocm.yml"
endif
# Intel GPU are supposed to have dependencies installed in the main python
# environment, so we skip conda installation for SYCL builds.
# https://github.com/intel/intel-extension-for-pytorch/issues/538
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
export SKIP_CONDA=1
endif
.PHONY: diffusers
diffusers:
@echo "Installing $(CONDA_ENV_PATH)..."

View File

@ -21,14 +21,15 @@ from diffusers import StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipelin
from diffusers import StableDiffusionImg2ImgPipeline, AutoPipelineForText2Image, ControlNetModel, StableVideoDiffusionPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from diffusers.utils import load_image,export_to_video
from compel import Compel
from compel import Compel, ReturnedEmbeddingsType
from transformers import CLIPTextModel
from safetensors.torch import load_file
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
COMPEL=os.environ.get("COMPEL", "1") == "1"
COMPEL=os.environ.get("COMPEL", "0") == "1"
XPU=os.environ.get("XPU", "0") == "1"
CLIPSKIP=os.environ.get("CLIPSKIP", "1") == "1"
SAFETENSORS=os.environ.get("SAFETENSORS", "1") == "1"
CHUNK_SIZE=os.environ.get("CHUNK_SIZE", "8")
@ -36,6 +37,10 @@ FPS=os.environ.get("FPS", "7")
DISABLE_CPU_OFFLOAD=os.environ.get("DISABLE_CPU_OFFLOAD", "0") == "1"
FRAMES=os.environ.get("FRAMES", "64")
if XPU:
import intel_extension_for_pytorch as ipex
print(ipex.xpu.get_device_name(0))
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
@ -231,8 +236,13 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if request.SchedulerType != "":
self.pipe.scheduler = get_scheduler(request.SchedulerType, self.pipe.scheduler.config)
if not self.img2vid:
self.compel = Compel(tokenizer=self.pipe.tokenizer, text_encoder=self.pipe.text_encoder)
if COMPEL:
self.compel = Compel(
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2 ],
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True]
)
if request.ControlNet:
@ -247,6 +257,8 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
self.pipe.to('cuda')
if self.controlnet:
self.controlnet.to('cuda')
if XPU:
self.pipe = self.pipe.to("xpu")
# Assume directory from request.ModelFile.
# Only if request.LoraAdapter it's not an absolute path
if request.LoraAdapter and request.ModelFile != "" and not os.path.isabs(request.LoraAdapter) and request.LoraAdapter:
@ -386,8 +398,9 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
image = {}
if COMPEL:
conditioning = self.compel.build_conditioning_tensor(prompt)
kwargs["prompt_embeds"]= conditioning
conditioning, pooled = self.compel.build_conditioning_tensor(prompt)
kwargs["prompt_embeds"] = conditioning
kwargs["pooled_prompt_embeds"] = pooled
# pass the kwargs dictionary to the self.pipe method
image = self.pipe(
guidance_scale=self.cfg_scale,

View File

@ -1,24 +1,50 @@
#!/bin/bash
set -ex
SKIP_CONDA=${SKIP_CONDA:-0}
# Check if environment exist
conda_env_exists(){
! conda list --name "${@}" >/dev/null 2>/dev/null
}
if conda_env_exists "diffusers" ; then
echo "Creating virtual environment..."
conda env create --name diffusers --file $1
echo "Virtual environment created."
else
echo "Virtual environment already exists."
if [ $SKIP_CONDA -eq 1 ]; then
echo "Skipping conda environment installation"
else
export PATH=$PATH:/opt/conda/bin
if conda_env_exists "diffusers" ; then
echo "Creating virtual environment..."
conda env create --name diffusers --file $1
echo "Virtual environment created."
else
echo "Virtual environment already exists."
fi
fi
if [ -d "/opt/intel" ]; then
# Intel GPU: If the directory exists, we assume we are using the Intel image
# https://github.com/intel/intel-extension-for-pytorch/issues/538
pip install torch==2.1.0a0 \
torchvision==0.16.0a0 \
torchaudio==2.1.0a0 \
intel-extension-for-pytorch==2.1.10+xpu \
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install google-api-python-client \
grpcio \
grpcio-tools \
diffusers==0.24.0 \
transformers>=4.25.1 \
accelerate \
compel==2.0.2 \
Pillow
fi
if [ "$PIP_CACHE_PURGE" = true ] ; then
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate diffusers
if [ $SKIP_CONDA -ne 1 ]; then
# Activate conda environment
source activate diffusers
fi
pip cache purge
fi

View File

@ -3,10 +3,15 @@
##
## A bash script wrapper that runs the diffusers server with conda
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate diffusers
if [ -d "/opt/intel" ]; then
# Assumes we are using the Intel oneAPI container image
# https://github.com/intel/intel-extension-for-pytorch/issues/538
export XPU=1
else
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate diffusers
fi
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"

View File

@ -3,6 +3,11 @@ set -ex
export PATH=$PATH:/opt/conda/bin
if [ "$BUILD_TYPE" != "cublas" ]; then
echo "[exllama] Attention!!! Nvidia GPU is required - skipping installation"
exit 0
fi
# Check if environment exist
conda_env_exists(){
! conda list --name "${@}" >/dev/null 2>/dev/null

View File

@ -2,10 +2,14 @@
set -e
##
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
export PATH=$PATH:/opt/conda/bin
export SHA=c0ddebaaaf8ffd1b3529c2bb654e650bce2f790f
# Activate conda environment
if [ "$BUILD_TYPE" != "cublas" ]; then
echo "[exllamav2] Attention!!! Nvidia GPU is required - skipping installation"
exit 0
fi
export PATH=$PATH:/opt/conda/bin
source activate transformers
echo $CONDA_PREFIX

View File

@ -2,13 +2,14 @@
set -e
##
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
export PATH=$PATH:/opt/conda/bin
if [ "$BUILD_TYPE" != "cublas" ]; then
echo "[mamba] Attention!!! nvcc is required - skipping installation"
exit 0
fi
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate transformers

View File

@ -1,7 +1,7 @@
.PHONY: petals
petals:
@echo "Creating virtual environment..."
@conda env create --name petals --file petals.yml
bash install.sh "petals.yml"
@echo "Virtual environment created."
.PHONY: run

View File

@ -0,0 +1,5 @@
#!/bin/bash
export PATH=$PATH:/opt/conda/bin
conda env create --name petals --file $1

View File

@ -3,10 +3,16 @@
##
## A bash script wrapper that runs the transformers server with conda
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate transformers
if [ -d "/opt/intel" ]; then
# Assumes we are using the Intel oneAPI container image
# https://github.com/intel/intel-extension-for-pytorch/issues/538
export XPU=1
else
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate transformers
fi
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"

View File

@ -16,7 +16,15 @@ import backend_pb2_grpc
import grpc
import torch
import torch.cuda
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, set_seed
XPU=os.environ.get("XPU", "0") == "1"
if XPU:
import intel_extension_for_pytorch as ipex
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
from transformers import AutoTokenizer, AutoModel, set_seed
else:
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, set_seed
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
@ -69,12 +77,25 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
model_name = request.Model
try:
if request.Type == "AutoModelForCausalLM":
self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode)
if XPU:
self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode,
device_map="xpu", load_in_4bit=True)
else:
self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode)
else:
self.model = AutoModel.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.CUDA = False
self.XPU = False
if XPU:
self.XPU = True
try:
print("Optimizing model", model_name, "to XPU.", file=sys.stderr)
self.model = ipex.optimize_transformers(self.model, inplace=True, dtype=torch.float16, device="xpu")
except Exception as err:
print("Not using XPU:", err, file=sys.stderr)
if request.CUDA or torch.cuda.is_available():
try:
@ -139,6 +160,8 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
inputs = self.tokenizer(request.Prompt, return_tensors="pt").input_ids
if self.CUDA:
inputs = inputs.to("cuda")
if XPU:
inputs = inputs.to("xpu")
outputs = self.model.generate(inputs,max_new_tokens=max_tokens, temperature=request.Temperature, top_p=request.TopP)

View File

@ -1,3 +1,7 @@
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
export SKIP_CONDA=1
endif
.PHONY: ttsvalle
ttsvalle:
$(MAKE) -C ../common-env/transformers

View File

@ -2,13 +2,16 @@
##
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
export PATH=$PATH:/opt/conda/bin
export SHA=3faaf8ccadb154d63b38070caf518ce9309ea0f4
# Activate conda environment
source activate transformers
SKIP_CONDA=${SKIP_CONDA:-0}
echo $CONDA_PREFIX
if [ $SKIP_CONDA -ne 1 ]; then
source activate transformers
else
export PATH=$PATH:/opt/conda/bin
CONDA_PREFIX=$PWD
fi
git clone https://github.com/Plachtaa/VALL-E-X.git $CONDA_PREFIX/vall-e-x && pushd $CONDA_PREFIX/vall-e-x && git checkout -b build $SHA && popd

View File

@ -8,27 +8,18 @@ import (
)
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (func() error, error) {
threads := backendConfig.Threads
if threads == 0 && appConfig.Threads != 0 {
threads = appConfig.Threads
}
gRPCOpts := gRPCModelOpts(backendConfig)
opts := modelOpts(backendConfig, appConfig, []model.Option{
model.WithBackendString(backendConfig.Backend),
model.WithAssetDir(appConfig.AssetsDestination),
model.WithThreads(uint32(backendConfig.Threads)),
model.WithThreads(uint32(threads)),
model.WithContext(appConfig.Context),
model.WithModel(backendConfig.Model),
model.WithLoadGRPCLoadModelOpts(&proto.ModelOptions{
CUDA: backendConfig.CUDA || backendConfig.Diffusers.CUDA,
SchedulerType: backendConfig.Diffusers.SchedulerType,
PipelineType: backendConfig.Diffusers.PipelineType,
CFGScale: backendConfig.Diffusers.CFGScale,
LoraAdapter: backendConfig.LoraAdapter,
LoraScale: backendConfig.LoraScale,
LoraBase: backendConfig.LoraBase,
IMG2IMG: backendConfig.Diffusers.IMG2IMG,
CLIPModel: backendConfig.Diffusers.ClipModel,
CLIPSubfolder: backendConfig.Diffusers.ClipSubFolder,
CLIPSkip: int32(backendConfig.Diffusers.ClipSkip),
ControlNet: backendConfig.Diffusers.ControlNet,
}),
model.WithLoadGRPCLoadModelOpts(gRPCOpts),
})
inferenceModel, err := loader.BackendLoader(

View File

@ -28,7 +28,10 @@ type TokenUsage struct {
func ModelInference(ctx context.Context, s string, images []string, loader *model.ModelLoader, c config.BackendConfig, o *config.ApplicationConfig, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
modelFile := c.Model
threads := c.Threads
if threads == 0 && o.Threads != 0 {
threads = o.Threads
}
grpcOpts := gRPCModelOpts(c)
var inferenceModel grpc.Backend
@ -36,7 +39,7 @@ func ModelInference(ctx context.Context, s string, images []string, loader *mode
opts := modelOpts(c, o, []model.Option{
model.WithLoadGRPCLoadModelOpts(grpcOpts),
model.WithThreads(uint32(c.Threads)), // some models uses this to allocate threads during startup
model.WithThreads(uint32(threads)), // some models uses this to allocate threads during startup
model.WithAssetDir(o.AssetsDestination),
model.WithModel(modelFile),
model.WithContext(o.Context),

View File

@ -40,11 +40,23 @@ func gRPCModelOpts(c config.BackendConfig) *pb.ModelOptions {
}
return &pb.ModelOptions{
CUDA: c.CUDA || c.Diffusers.CUDA,
SchedulerType: c.Diffusers.SchedulerType,
PipelineType: c.Diffusers.PipelineType,
CFGScale: c.Diffusers.CFGScale,
LoraAdapter: c.LoraAdapter,
LoraScale: c.LoraScale,
F16Memory: c.F16,
LoraBase: c.LoraBase,
IMG2IMG: c.Diffusers.IMG2IMG,
CLIPModel: c.Diffusers.ClipModel,
CLIPSubfolder: c.Diffusers.ClipSubFolder,
CLIPSkip: int32(c.Diffusers.ClipSkip),
ControlNet: c.Diffusers.ControlNet,
ContextSize: int32(c.ContextSize),
Seed: int32(c.Seed),
NBatch: int32(b),
NoMulMatQ: c.NoMulMatQ,
CUDA: c.CUDA, // diffusers, transformers
DraftModel: c.DraftModel,
AudioPath: c.VallE.AudioPath,
Quantization: c.Quantization,
@ -58,12 +70,8 @@ func gRPCModelOpts(c config.BackendConfig) *pb.ModelOptions {
YarnAttnFactor: c.YarnAttnFactor,
YarnBetaFast: c.YarnBetaFast,
YarnBetaSlow: c.YarnBetaSlow,
LoraAdapter: c.LoraAdapter,
LoraBase: c.LoraBase,
LoraScale: c.LoraScale,
NGQA: c.NGQA,
RMSNormEps: c.RMSNormEps,
F16Memory: c.F16,
MLock: c.MMlock,
RopeFreqBase: c.RopeFreqBase,
RopeScaling: c.RopeScaling,

View File

@ -69,6 +69,13 @@ func (ml *ModelLoader) grpcModel(backend string, o *Options) func(string, string
return fmt.Sprintf("127.0.0.1:%d", port), nil
}
// If no specific model path is set for transformers/HF, set it to the model path
for _, env := range []string{"HF_HOME", "TRANSFORMERS_CACHE", "HUGGINGFACE_HUB_CACHE"} {
if os.Getenv(env) == "" {
os.Setenv(env, ml.ModelPath)
}
}
// Check if the backend is provided as external
if uri, ok := o.externalBackends[backend]; ok {
log.Debug().Msgf("Loading external backend: %s", uri)