LocalAI/core/backend/llm.go
Ettore Di Giacinto 5d1018495f
feat(intel): add diffusers/transformers support (#1746)
* feat(intel): add diffusers support

* try to consume upstream container image

* Debug

* Manually install deps

* Map transformers/hf cache dir to modelpath if not specified

* fix(compel): update initialization, pass by all gRPC options

* fix: add dependencies, implement transformers for xpu

* base it from the oneapi image

* Add pillow

* set threads if specified when launching the API

* Skip conda install if intel

* defaults to non-intel

* ci: add to pipelines

* prepare compel only if enabled

* Skip conda install if intel

* fix cleanup

* Disable compel by default

* Install torch 2.1.0 with Intel

* Skip conda on some setups

* Detect python

* Quiet output

* Do not override system python with conda

* Prefer python3

* Fixups

* exllama2: do not install without conda (overrides pytorch version)

* exllama/exllama2: do not install if not using cuda

* Add missing dataset dependency

* Small fixups, symlink to python, add requirements

* Add neural_speed to the deps

* correctly handle model offloading

* fix: device_map == xpu

* go back at calling python, fixed at dockerfile level

* Exllama2 restricted to only nvidia gpus

* Tokenizer to xpu
2024-03-07 14:37:45 +01:00

171 lines
4.3 KiB
Go

package backend
import (
"context"
"os"
"regexp"
"strings"
"sync"
"unicode/utf8"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/pkg/gallery"
"github.com/go-skynet/LocalAI/pkg/grpc"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
)
type LLMResponse struct {
Response string // should this be []byte?
Usage TokenUsage
}
type TokenUsage struct {
Prompt int
Completion int
}
func ModelInference(ctx context.Context, s string, images []string, loader *model.ModelLoader, c config.BackendConfig, o *config.ApplicationConfig, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
modelFile := c.Model
threads := c.Threads
if threads == 0 && o.Threads != 0 {
threads = o.Threads
}
grpcOpts := gRPCModelOpts(c)
var inferenceModel grpc.Backend
var err error
opts := modelOpts(c, o, []model.Option{
model.WithLoadGRPCLoadModelOpts(grpcOpts),
model.WithThreads(uint32(threads)), // some models uses this to allocate threads during startup
model.WithAssetDir(o.AssetsDestination),
model.WithModel(modelFile),
model.WithContext(o.Context),
})
if c.Backend != "" {
opts = append(opts, model.WithBackendString(c.Backend))
}
// Check if the modelFile exists, if it doesn't try to load it from the gallery
if o.AutoloadGalleries { // experimental
if _, err := os.Stat(modelFile); os.IsNotExist(err) {
utils.ResetDownloadTimers()
// if we failed to load the model, we try to download it
err := gallery.InstallModelFromGalleryByName(o.Galleries, modelFile, loader.ModelPath, gallery.GalleryModel{}, utils.DisplayDownloadFunction)
if err != nil {
return nil, err
}
}
}
if c.Backend == "" {
inferenceModel, err = loader.GreedyLoader(opts...)
} else {
inferenceModel, err = loader.BackendLoader(opts...)
}
if err != nil {
return nil, err
}
// in GRPC, the backend is supposed to answer to 1 single token if stream is not supported
fn := func() (LLMResponse, error) {
opts := gRPCPredictOpts(c, loader.ModelPath)
opts.Prompt = s
opts.Images = images
tokenUsage := TokenUsage{}
// check the per-model feature flag for usage, since tokenCallback may have a cost.
// Defaults to off as for now it is still experimental
if c.FeatureFlag.Enabled("usage") {
userTokenCallback := tokenCallback
if userTokenCallback == nil {
userTokenCallback = func(token string, usage TokenUsage) bool {
return true
}
}
promptInfo, pErr := inferenceModel.TokenizeString(ctx, opts)
if pErr == nil && promptInfo.Length > 0 {
tokenUsage.Prompt = int(promptInfo.Length)
}
tokenCallback = func(token string, usage TokenUsage) bool {
tokenUsage.Completion++
return userTokenCallback(token, tokenUsage)
}
}
if tokenCallback != nil {
ss := ""
var partialRune []byte
err := inferenceModel.PredictStream(ctx, opts, func(chars []byte) {
partialRune = append(partialRune, chars...)
for len(partialRune) > 0 {
r, size := utf8.DecodeRune(partialRune)
if r == utf8.RuneError {
// incomplete rune, wait for more bytes
break
}
tokenCallback(string(r), tokenUsage)
ss += string(r)
partialRune = partialRune[size:]
}
})
return LLMResponse{
Response: ss,
Usage: tokenUsage,
}, err
} else {
// TODO: Is the chicken bit the only way to get here? is that acceptable?
reply, err := inferenceModel.Predict(ctx, opts)
if err != nil {
return LLMResponse{}, err
}
return LLMResponse{
Response: string(reply.Message),
Usage: tokenUsage,
}, err
}
}
return fn, nil
}
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
var mu sync.Mutex = sync.Mutex{}
func Finetune(config config.BackendConfig, input, prediction string) string {
if config.Echo {
prediction = input + prediction
}
for _, c := range config.Cutstrings {
mu.Lock()
reg, ok := cutstrings[c]
if !ok {
cutstrings[c] = regexp.MustCompile(c)
reg = cutstrings[c]
}
mu.Unlock()
prediction = reg.ReplaceAllString(prediction, "")
}
for _, c := range config.TrimSpace {
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
}
for _, c := range config.TrimSuffix {
prediction = strings.TrimSpace(strings.TrimSuffix(prediction, c))
}
return prediction
}