Ettore Di Giacinto 5d1018495f
feat(intel): add diffusers/transformers support (#1746)
* feat(intel): add diffusers support

* try to consume upstream container image

* Debug

* Manually install deps

* Map transformers/hf cache dir to modelpath if not specified

* fix(compel): update initialization, pass by all gRPC options

* fix: add dependencies, implement transformers for xpu

* base it from the oneapi image

* Add pillow

* set threads if specified when launching the API

* Skip conda install if intel

* defaults to non-intel

* ci: add to pipelines

* prepare compel only if enabled

* Skip conda install if intel

* fix cleanup

* Disable compel by default

* Install torch 2.1.0 with Intel

* Skip conda on some setups

* Detect python

* Quiet output

* Do not override system python with conda

* Prefer python3

* Fixups

* exllama2: do not install without conda (overrides pytorch version)

* exllama/exllama2: do not install if not using cuda

* Add missing dataset dependency

* Small fixups, symlink to python, add requirements

* Add neural_speed to the deps

* correctly handle model offloading

* fix: device_map == xpu

* go back at calling python, fixed at dockerfile level

* Exllama2 restricted to only nvidia gpus

* Tokenizer to xpu
2024-03-07 14:37:45 +01:00

32 lines
724 B
Bash
Executable File

#!/bin/bash
set -e
##
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
export SHA=c0ddebaaaf8ffd1b3529c2bb654e650bce2f790f
if [ "$BUILD_TYPE" != "cublas" ]; then
echo "[exllamav2] Attention!!! Nvidia GPU is required - skipping installation"
exit 0
fi
export PATH=$PATH:/opt/conda/bin
source activate transformers
echo $CONDA_PREFIX
git clone https://github.com/turboderp/exllamav2 $CONDA_PREFIX/exllamav2
pushd $CONDA_PREFIX/exllamav2
git checkout -b build $SHA
# TODO: this needs to be pinned within the conda environments
pip install -r requirements.txt
popd
cp -rfv $CONDA_PREFIX/exllamav2/* ./
if [ "$PIP_CACHE_PURGE" = true ] ; then
pip cache purge
fi