🤖 The free, Open Source alternative to OpenAI, Claude and others. Self-hosted and local-first. Drop-in replacement for OpenAI, running on consumer-grade hardware. No GPU required. Runs gguf, transformers, diffusers and many more models architectures. Features: Generate Text, Audio, Video, Images, Voice Cloning, Distributed, P2P inference
Go to file
2023-03-23 18:50:43 +01:00
.github/workflows Cleanup workers to have more free space 2023-03-20 10:12:31 +01:00
client Add simple client 2023-03-20 23:25:39 +01:00
kubernetes Use tagged image in kubernetes deployment 2023-03-21 21:33:11 +01:00
.goreleaser.yaml Add GitHub action workflows 2023-03-19 23:50:31 +01:00
api.go Update llama-go, allow to set context-size and enable alpaca model by default 2023-03-21 19:20:23 +01:00
Earthfile Build images without model 2023-03-23 18:50:43 +01:00
go.mod Update llama-go, allow to set context-size and enable alpaca model by default 2023-03-21 19:20:23 +01:00
go.sum Update llama-go, allow to set context-size and enable alpaca model by default 2023-03-21 19:20:23 +01:00
interactive.go Add interactive.go 2023-03-21 19:21:58 +01:00
LICENSE First import 2023-03-18 23:59:06 +01:00
main.go Update llama-go, allow to set context-size and enable alpaca model by default 2023-03-21 19:20:23 +01:00
README.md Build images without model 2023-03-23 18:50:43 +01:00

🐫 llama-cli

llama-cli is a straightforward golang CLI interface for llama.cpp, providing a simple API and a command line interface that allows text generation using a GPT-based model like llama directly from the terminal.

Container images

The llama-cli container images come preloaded with the alpaca.cpp 7B model, enabling you to start making predictions immediately! To begin, run:

docker run -ti --rm quay.io/go-skynet/llama-cli:v0.2  --instruction "What's an alpaca?" --topk 10000

You will receive a response like the following:

An alpaca is a member of the South American Camelid family, which includes the llama, guanaco and vicuña. It is a domesticated species that originates from the Andes mountain range in South America. Alpacas are used in the textile industry for their fleece, which is much softer than wool. Alpacas are also used for meat, milk, and fiber.

Basic usage

To use llama-cli, specify a pre-trained GPT-based model, an input text, and an instruction for text generation. llama-cli takes the following arguments when running from the CLI:

llama-cli --model <model_path> --instruction <instruction> [--input <input>] [--template <template_path>] [--tokens <num_tokens>] [--threads <num_threads>] [--temperature <temperature>] [--topp <top_p>] [--topk <top_k>]
Parameter Environment Variable Default Value Description
template TEMPLATE A file containing a template for output formatting (optional).
instruction INSTRUCTION Input prompt text or instruction. "-" for STDIN.
input INPUT - Path to text or "-" for STDIN.
model MODEL_PATH The path to the pre-trained GPT-based model.
tokens TOKENS 128 The maximum number of tokens to generate.
threads THREADS NumCPU() The number of threads to use for text generation.
temperature TEMPERATURE 0.95 Sampling temperature for model output.
top_p TOP_P 0.85 The cumulative probability for top-p sampling.
top_k TOP_K 20 The number of top-k tokens to consider for text generation.

Here's an example of using llama-cli:

llama-cli --model ~/ggml-alpaca-7b-q4.bin --instruction "What's an alpaca?"

This will generate text based on the given model and instruction.

Advanced usage

llama-cli also provides an API for running text generation as a service.

Example of starting the API with docker:

docker run -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.2 api

And you'll see:

┌───────────────────────────────────────────────────┐ 
│                   Fiber v2.42.0                   │ 
│               http://127.0.0.1:8080               │ 
│       (bound on host 0.0.0.0 and port 8080)       │ 
│                                                   │ 
│ Handlers ............. 1  Processes ........... 1 │ 
│ Prefork ....... Disabled  PID ................. 1 │ 
└───────────────────────────────────────────────────┘ 

You can control the API server options with command line arguments:

llama-cli api --model <model_path> [--address <address>] [--threads <num_threads>]

The API takes takes the following:

Parameter Environment Variable Default Value Description
model MODEL_PATH The path to the pre-trained GPT-based model.
threads THREADS CPU cores The number of threads to use for text generation.
address ADDRESS :8080 The address and port to listen on.

Once the server is running, you can make requests to it using HTTP. For example, to generate text based on an instruction, you can send a POST request to the /predict endpoint with the instruction as the request body:

curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
    "text": "What is an alpaca?",
    "topP": 0.8,
    "topK": 50,
    "temperature": 0.7,
    "tokens": 100
}'

Using other models

13B and 30B models are known to work:

13B

docker run --name model --entrypoint /models quay.io/go-skynet/models:ggml2-alpaca-13b-v0.2
docker cp model:/models/model.bin ./

# Use the model with llama-cli
docker run -v $PWD:/models -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.2 api --model /models/model.bin

30B

docker run --name model --entrypoint /models quay.io/go-skynet/models:ggml2-alpaca-30b-v0.2
docker cp model:/models/model.bin ./

# Use the model with llama-cli
docker run -v $PWD:/models -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.2 api --model /models/model.bin

Golang client API

The llama-cli codebase has also a small client in go that can be used alongside with the api:

package main

import (
	"fmt"

	client "github.com/go-skynet/llama-cli/client"
)

func main() {

	cli := client.NewClient("http://ip:30007")

	out, err := cli.Predict("What's an alpaca?")
	if err != nil {
		panic(err)
	}

	fmt.Println(out)
}

Kubernetes

You can run the API directly in Kubernetes:

kubectl apply -f https://raw.githubusercontent.com/go-skynet/llama-cli/master/kubernetes/deployment.yaml