* Update _index.md Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com> * Update easy-model.md Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com> * Update easy-setup-docker-cpu.md Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com> * Update easy-setup-docker-gpu.md Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com> * Update _index.en.md Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com> * Update easy-setup-docker-cpu.md Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com> * Update easy-setup-docker-gpu.md Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com> * Update easy-setup-docker-cpu.md Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com> * Update easy-setup-docker-cpu.md Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com> * Update easy-setup-docker-gpu.md Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com> * Update easy-model.md Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com> * Update easy-setup-docker-cpu.md Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com> * Update easy-setup-docker-gpu.md Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com> * Update easy-setup-docker-cpu.md Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com> * Update _index.en.md Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com> * Update easy-setup-docker-gpu.md Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com> --------- Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>
4.6 KiB
+++ disableToc = false title = "Easy Setup - GPU Docker" weight = 2 +++
{{% notice Note %}}
- You will need about 10gb of RAM Free
- You will need about 15gb of space free on C drive for
Docker compose
{{% /notice %}}
We are going to run LocalAI
with docker compose
for this set up.
Lets Setup our folders for LocalAI
{{< tabs >}}
{{% tab name="Windows (Batch)" %}}
mkdir "LocalAI"
cd LocalAI
mkdir "models"
mkdir "images"
{{% /tab %}}
{{% tab name="Linux (Bash / WSL)" %}}
mkdir -p "LocalAI"
cd LocalAI
mkdir -p "models"
mkdir -p "images"
{{% /tab %}} {{< /tabs >}}
At this point we want to set up our .env
file, here is a copy for you to use if you wish, Make sure this is in the LocalAI
folder.
## Set number of threads.
## Note: prefer the number of physical cores. Overbooking the CPU degrades performance notably.
THREADS=2
## Specify a different bind address (defaults to ":8080")
# ADDRESS=127.0.0.1:8080
## Define galleries.
## models will to install will be visible in `/models/available`
GALLERIES=[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.yaml"}, {"url": "github:go-skynet/model-gallery/huggingface.yaml","name":"huggingface"}]
## Default path for models
MODELS_PATH=/models
## Enable debug mode
# DEBUG=true
## Disables COMPEL (Lets Stable Diffuser work, uncomment if you plan on using it)
# COMPEL=0
## Enable/Disable single backend (useful if only one GPU is available)
# SINGLE_ACTIVE_BACKEND=true
## Specify a build type. Available: cublas, openblas, clblas.
BUILD_TYPE=cublas
## Uncomment and set to true to enable rebuilding from source
# REBUILD=true
## Enable go tags, available: stablediffusion, tts
## stablediffusion: image generation with stablediffusion
## tts: enables text-to-speech with go-piper
## (requires REBUILD=true)
#
#GO_TAGS=tts
## Path where to store generated images
# IMAGE_PATH=/tmp
## Specify a default upload limit in MB (whisper)
# UPLOAD_LIMIT
# HUGGINGFACEHUB_API_TOKEN=Token here
Now that we have the .env
set lets set up our docker-compose
file.
It will use a container from quay.io.
Also note this docker-compose
file is for CUDA
only.
Please change the image to what you need. {{< tabs >}} {{% tab name="GPU Images CUDA 11" %}}
master-cublas-cuda11
master-cublas-cuda11-core
v2.0.0-cublas-cuda11
v2.0.0-cublas-cuda11-core
v2.0.0-cublas-cuda11-ffmpeg
v2.0.0-cublas-cuda11-ffmpeg-core
Core Images - Smaller images without predownload python dependencies {{% /tab %}}
{{% tab name="GPU Images CUDA 12" %}}
master-cublas-cuda12
master-cublas-cuda12-core
v2.0.0-cublas-cuda12
v2.0.0-cublas-cuda12-core
v2.0.0-cublas-cuda12-ffmpeg
v2.0.0-cublas-cuda12-ffmpeg-core
Core Images - Smaller images without predownload python dependencies {{% /tab %}} {{< /tabs >}}
version: '3.6'
services:
api:
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
image: quay.io/go-skynet/local-ai:[CHANGEMETOIMAGENEEDED]
tty: true # enable colorized logs
restart: always # should this be on-failure ?
ports:
- 8080:8080
env_file:
- .env
volumes:
- ./models:/models
- ./images/:/tmp/generated/images/
command: ["/usr/bin/local-ai" ]
Make sure to save that in the root of the LocalAI
folder. Then lets spin up the Docker run this in a CMD
or BASH
docker compose up -d --pull always
Now we are going to let that set up, once it is done, lets check to make sure our huggingface / localai galleries are working (wait until you see this screen to do this)
You should see:
┌───────────────────────────────────────────────────┐
│ Fiber v2.42.0 │
│ http://127.0.0.1:8080 │
│ (bound on host 0.0.0.0 and port 8080) │
│ │
│ Handlers ............. 1 Processes ........... 1 │
│ Prefork ....... Disabled PID ................. 1 │
└───────────────────────────────────────────────────┘
curl http://localhost:8080/models/available
Output will look like this:
Now that we got that setup, lets go setup a [model]({{%relref "easy-model" %}})