LocalAI/docs/content/howtos/easy-setup-docker-gpu.md
lunamidori5 9222bec8b1
How To Updates / Model Used Switched / Removed "docker-compose" (RIP) (#1417)
* Update _index.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-model.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-cpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-gpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update _index.en.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-cpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-gpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-cpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-cpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-gpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-model.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-cpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-gpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-cpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update _index.en.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-gpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

---------

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>
2023-12-11 14:27:29 +00:00

4.6 KiB

+++ disableToc = false title = "Easy Setup - GPU Docker" weight = 2 +++

{{% notice Note %}}

  • You will need about 10gb of RAM Free
  • You will need about 15gb of space free on C drive for Docker compose {{% /notice %}}

We are going to run LocalAI with docker compose for this set up.

Lets Setup our folders for LocalAI {{< tabs >}} {{% tab name="Windows (Batch)" %}}

mkdir "LocalAI"
cd LocalAI
mkdir "models"
mkdir "images"

{{% /tab %}}

{{% tab name="Linux (Bash / WSL)" %}}

mkdir -p "LocalAI"
cd LocalAI
mkdir -p "models"
mkdir -p "images"

{{% /tab %}} {{< /tabs >}}

At this point we want to set up our .env file, here is a copy for you to use if you wish, Make sure this is in the LocalAI folder.

## Set number of threads.
## Note: prefer the number of physical cores. Overbooking the CPU degrades performance notably.
THREADS=2

## Specify a different bind address (defaults to ":8080")
# ADDRESS=127.0.0.1:8080

## Define galleries.
## models will to install will be visible in `/models/available`
GALLERIES=[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.yaml"}, {"url": "github:go-skynet/model-gallery/huggingface.yaml","name":"huggingface"}]

## Default path for models
MODELS_PATH=/models

## Enable debug mode
# DEBUG=true

## Disables COMPEL (Lets Stable Diffuser work, uncomment if you plan on using it)
# COMPEL=0

## Enable/Disable single backend (useful if only one GPU is available)
# SINGLE_ACTIVE_BACKEND=true

## Specify a build type. Available: cublas, openblas, clblas.
BUILD_TYPE=cublas

## Uncomment and set to true to enable rebuilding from source
# REBUILD=true

## Enable go tags, available: stablediffusion, tts
## stablediffusion: image generation with stablediffusion
## tts: enables text-to-speech with go-piper 
## (requires REBUILD=true)
#
#GO_TAGS=tts

## Path where to store generated images
# IMAGE_PATH=/tmp

## Specify a default upload limit in MB (whisper)
# UPLOAD_LIMIT

# HUGGINGFACEHUB_API_TOKEN=Token here

Now that we have the .env set lets set up our docker-compose file. It will use a container from quay.io. Also note this docker-compose file is for CUDA only.

Please change the image to what you need. {{< tabs >}} {{% tab name="GPU Images CUDA 11" %}}

  • master-cublas-cuda11
  • master-cublas-cuda11-core
  • v2.0.0-cublas-cuda11
  • v2.0.0-cublas-cuda11-core
  • v2.0.0-cublas-cuda11-ffmpeg
  • v2.0.0-cublas-cuda11-ffmpeg-core

Core Images - Smaller images without predownload python dependencies {{% /tab %}}

{{% tab name="GPU Images CUDA 12" %}}

  • master-cublas-cuda12
  • master-cublas-cuda12-core
  • v2.0.0-cublas-cuda12
  • v2.0.0-cublas-cuda12-core
  • v2.0.0-cublas-cuda12-ffmpeg
  • v2.0.0-cublas-cuda12-ffmpeg-core

Core Images - Smaller images without predownload python dependencies {{% /tab %}} {{< /tabs >}}

version: '3.6'

services:
  api:
    deploy:
      resources:
        reservations:
          devices:
            - driver: nvidia
              count: 1
              capabilities: [gpu]
    image: quay.io/go-skynet/local-ai:[CHANGEMETOIMAGENEEDED]
    tty: true # enable colorized logs
    restart: always # should this be on-failure ?
    ports:
      - 8080:8080
    env_file:
      - .env
    volumes:
      - ./models:/models
      - ./images/:/tmp/generated/images/
    command: ["/usr/bin/local-ai" ]

Make sure to save that in the root of the LocalAI folder. Then lets spin up the Docker run this in a CMD or BASH

docker compose up -d --pull always

Now we are going to let that set up, once it is done, lets check to make sure our huggingface / localai galleries are working (wait until you see this screen to do this)

You should see:

┌───────────────────────────────────────────────────┐
│                   Fiber v2.42.0                   │
│               http://127.0.0.1:8080               │
│       (bound on host 0.0.0.0 and port 8080)       │
│                                                   │
│ Handlers ............. 1  Processes ........... 1 │
│ Prefork ....... Disabled  PID ................. 1 │
└───────────────────────────────────────────────────┘
curl http://localhost:8080/models/available

Output will look like this:

Now that we got that setup, lets go setup a [model]({{%relref "easy-model" %}})