LocalAI/docs/content/docs/features/openai-functions.md
Ettore Di Giacinto 92005b9c02
Update openai-functions.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-04-10 16:30:57 +02:00

4.9 KiB

+++ disableToc = false title = "🔥 OpenAI functions and tools" weight = 17 url = "/features/openai-functions/" +++

LocalAI supports running OpenAI functions and tools API with llama.cpp compatible models.

localai-functions-1

To learn more about OpenAI functions, see also the OpenAI API blog post.

LocalAI is also supporting JSON mode out of the box with llama.cpp-compatible models.

💡 Check out also LocalAGI for an example on how to use LocalAI functions.

Setup

OpenAI functions are available only with ggml or gguf models compatible with llama.cpp.

You don't need to do anything specific - just use ggml or gguf models.

Usage example

You can configure a model manually with a YAML config file in the models directory, for example:

name: gpt-3.5-turbo
parameters:
  # Model file name
  model: ggml-openllama.bin
  top_p: 80
  top_k: 0.9
  temperature: 0.1

To use the functions with the OpenAI client in python:

import openai
# ...
# Send the conversation and available functions to GPT
messages = [{"role": "user", "content": "What's the weather like in Boston?"}]
functions = [
    {
        "name": "get_current_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "The city and state, e.g. San Francisco, CA",
                },
                "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
            },
            "required": ["location"],
        },
    }
]
response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=messages,
    functions=functions,
    function_call="auto",
)
# ...

{{% alert note %}} When running the python script, be sure to:

  • Set OPENAI_API_KEY environment variable to a random string (the OpenAI api key is NOT required!)
  • Set OPENAI_API_BASE to point to your LocalAI service, for example OPENAI_API_BASE=http://localhost:8080

{{% /alert %}}

Advanced

Parallel tools calls

This feature is experimental and has to be configured in the YAML of the model by enabling function.parallel_calls:

name: gpt-3.5-turbo
parameters:
  # Model file name
  model: ggml-openllama.bin
  top_p: 80
  top_k: 0.9
  temperature: 0.1

function:
  # set to true to allow the model to call multiple functions in parallel
  parallel_calls: true

Use functions with grammar

It is possible to also specify the full function signature (for debugging, or to use with other clients).

The chat endpoint accepts the grammar_json_functions additional parameter which takes a JSON schema object.

For example, with curl:

curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
     "model": "gpt-4",
     "messages": [{"role": "user", "content": "How are you?"}],
     "temperature": 0.1,
     "grammar_json_functions": {
        "oneOf": [
            {
                "type": "object",
                "properties": {
                    "function": {"const": "create_event"},
                    "arguments": {
                        "type": "object",
                        "properties": {
                            "title": {"type": "string"},
                            "date": {"type": "string"},
                            "time": {"type": "string"}
                        }
                    }
                }
            },
            {
                "type": "object",
                "properties": {
                    "function": {"const": "search"},
                    "arguments": {
                        "type": "object",
                        "properties": {
                            "query": {"type": "string"}
                        }
                    }
                }
            }
        ]
    }
   }'

Grammars and function tools can be used as well in conjunction with vision APIs:

 curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
     "model": "llava", "grammar": "root ::= (\"yes\" | \"no\")",
     "messages": [{"role": "user", "content": [{"type":"text", "text": "Is there some grass in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

💡 Examples

A full e2e example with docker-compose is available here.