mirror of
https://github.com/mudler/LocalAI.git
synced 2024-12-18 20:27:57 +00:00
feat(tools): support Tool calls in the API (#1715)
* feat(tools): support Tools in the API Co-authored-by: =?UTF-8?q?Stephan=20A=C3=9Fmus?= <stephan.assmus@sap.com> * feat(tools): support function streaming * Adhere to new return types when using tools instead of functions * Keep backward compatibility with function calling * Evaluate function names in chat templates * Disable recovery with --debug * Correctly stream out the entire result * Detect when llm chooses to reply and to not perform any action in SSE * Feedback from code review --------- Co-authored-by: =?UTF-8?q?Stephan=20A=C3=9Fmus?= <stephan.assmus@sap.com>
This commit is contained in:
parent
6b539a2972
commit
c72808f18b
@ -146,7 +146,11 @@ func App(opts ...options.AppOption) (*fiber.App, error) {
|
||||
}
|
||||
|
||||
// Default middleware config
|
||||
app.Use(recover.New())
|
||||
|
||||
if !options.Debug {
|
||||
app.Use(recover.New())
|
||||
}
|
||||
|
||||
if options.Metrics != nil {
|
||||
app.Use(metrics.APIMiddleware(options.Metrics))
|
||||
}
|
||||
|
@ -55,6 +55,98 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
})
|
||||
close(responses)
|
||||
}
|
||||
processTools := func(noAction string, prompt string, req *schema.OpenAIRequest, config *config.Config, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
||||
result := ""
|
||||
_, tokenUsage, _ := ComputeChoices(req, prompt, config, o, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
||||
result += s
|
||||
// TODO: Change generated BNF grammar to be compliant with the schema so we can
|
||||
// stream the result token by token here.
|
||||
return true
|
||||
})
|
||||
|
||||
ss := map[string]interface{}{}
|
||||
name, args := parseFunctionCall(result)
|
||||
ss["name"], ss["arguments"] = name, args
|
||||
|
||||
if name == noAction {
|
||||
initialMessage := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
responses <- initialMessage
|
||||
|
||||
result, err := handleQuestion(config, req, o, args, prompt)
|
||||
if err != nil {
|
||||
log.Error().Msgf("error handling question: %s", err.Error())
|
||||
return
|
||||
}
|
||||
|
||||
resp := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Content: &result}, Index: 0}},
|
||||
Object: "chat.completion.chunk",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: tokenUsage.Prompt,
|
||||
CompletionTokens: tokenUsage.Completion,
|
||||
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
|
||||
},
|
||||
}
|
||||
|
||||
responses <- resp
|
||||
close(responses)
|
||||
return
|
||||
}
|
||||
|
||||
initialMessage := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{
|
||||
Delta: &schema.Message{
|
||||
Role: "assistant",
|
||||
ToolCalls: []schema.ToolCall{
|
||||
{
|
||||
Index: 0,
|
||||
ID: id,
|
||||
Type: "function",
|
||||
FunctionCall: schema.FunctionCall{
|
||||
Name: name,
|
||||
},
|
||||
},
|
||||
},
|
||||
}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
responses <- initialMessage
|
||||
|
||||
responses <- schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{
|
||||
Delta: &schema.Message{
|
||||
Role: "assistant",
|
||||
ToolCalls: []schema.ToolCall{
|
||||
{
|
||||
Index: 0,
|
||||
ID: id,
|
||||
Type: "function",
|
||||
FunctionCall: schema.FunctionCall{
|
||||
Arguments: args,
|
||||
},
|
||||
},
|
||||
},
|
||||
}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
close(responses)
|
||||
}
|
||||
|
||||
return func(c *fiber.Ctx) error {
|
||||
processFunctions := false
|
||||
funcs := grammar.Functions{}
|
||||
@ -122,7 +214,7 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
}
|
||||
|
||||
// functions are not supported in stream mode (yet?)
|
||||
toStream := input.Stream && !processFunctions
|
||||
toStream := input.Stream
|
||||
|
||||
log.Debug().Msgf("Parameters: %+v", config)
|
||||
|
||||
@ -145,6 +237,7 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
}
|
||||
r := config.Roles[role]
|
||||
contentExists := i.Content != nil && i.StringContent != ""
|
||||
|
||||
// First attempt to populate content via a chat message specific template
|
||||
if config.TemplateConfig.ChatMessage != "" {
|
||||
chatMessageData := model.ChatMessageTemplateData{
|
||||
@ -152,6 +245,7 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
Role: r,
|
||||
RoleName: role,
|
||||
Content: i.StringContent,
|
||||
FunctionName: i.Name,
|
||||
MessageIndex: messageIndex,
|
||||
}
|
||||
templatedChatMessage, err := o.Loader.EvaluateTemplateForChatMessage(config.TemplateConfig.ChatMessage, chatMessageData)
|
||||
@ -254,17 +348,24 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
log.Debug().Msgf("Grammar: %+v", config.Grammar)
|
||||
}
|
||||
|
||||
if toStream {
|
||||
switch {
|
||||
case toStream:
|
||||
responses := make(chan schema.OpenAIResponse)
|
||||
|
||||
go process(predInput, input, config, o.Loader, responses)
|
||||
if !processFunctions {
|
||||
go process(predInput, input, config, o.Loader, responses)
|
||||
} else {
|
||||
go processTools(noActionName, predInput, input, config, o.Loader, responses)
|
||||
}
|
||||
|
||||
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
|
||||
|
||||
usage := &schema.OpenAIUsage{}
|
||||
|
||||
toolsCalled := false
|
||||
for ev := range responses {
|
||||
usage = &ev.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it
|
||||
if len(ev.Choices[0].Delta.ToolCalls) > 0 {
|
||||
toolsCalled = true
|
||||
}
|
||||
var buf bytes.Buffer
|
||||
enc := json.NewEncoder(&buf)
|
||||
enc.Encode(ev)
|
||||
@ -278,13 +379,20 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
w.Flush()
|
||||
}
|
||||
|
||||
finishReason := "stop"
|
||||
if toolsCalled {
|
||||
finishReason = "tool_calls"
|
||||
} else if toolsCalled && len(input.Tools) == 0 {
|
||||
finishReason = "function_call"
|
||||
}
|
||||
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{
|
||||
{
|
||||
FinishReason: "stop",
|
||||
FinishReason: finishReason,
|
||||
Index: 0,
|
||||
Delta: &schema.Message{Content: &emptyMessage},
|
||||
}},
|
||||
@ -298,102 +406,141 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
w.Flush()
|
||||
}))
|
||||
return nil
|
||||
}
|
||||
|
||||
result, tokenUsage, err := ComputeChoices(input, predInput, config, o, o.Loader, func(s string, c *[]schema.Choice) {
|
||||
if processFunctions {
|
||||
// As we have to change the result before processing, we can't stream the answer (yet?)
|
||||
ss := map[string]interface{}{}
|
||||
// This prevent newlines to break JSON parsing for clients
|
||||
s = utils.EscapeNewLines(s)
|
||||
json.Unmarshal([]byte(s), &ss)
|
||||
log.Debug().Msgf("Function return: %s %+v", s, ss)
|
||||
default:
|
||||
result, tokenUsage, err := ComputeChoices(input, predInput, config, o, o.Loader, func(s string, c *[]schema.Choice) {
|
||||
if processFunctions {
|
||||
ss := map[string]interface{}{}
|
||||
|
||||
// The grammar defines the function name as "function", while OpenAI returns "name"
|
||||
func_name := ss["function"]
|
||||
// Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object
|
||||
args := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix)
|
||||
d, _ := json.Marshal(args)
|
||||
name, args := parseFunctionCall(s)
|
||||
ss["name"], ss["arguments"] = name, args
|
||||
|
||||
ss["arguments"] = string(d)
|
||||
ss["name"] = func_name
|
||||
|
||||
// if do nothing, reply with a message
|
||||
if func_name == noActionName {
|
||||
log.Debug().Msgf("nothing to do, computing a reply")
|
||||
|
||||
// If there is a message that the LLM already sends as part of the JSON reply, use it
|
||||
arguments := map[string]interface{}{}
|
||||
json.Unmarshal([]byte(d), &arguments)
|
||||
m, exists := arguments["message"]
|
||||
if exists {
|
||||
switch message := m.(type) {
|
||||
case string:
|
||||
if message != "" {
|
||||
log.Debug().Msgf("Reply received from LLM: %s", message)
|
||||
message = backend.Finetune(*config, predInput, message)
|
||||
log.Debug().Msgf("Reply received from LLM(finetuned): %s", message)
|
||||
|
||||
*c = append(*c, schema.Choice{Message: &schema.Message{Role: "assistant", Content: &message}})
|
||||
return
|
||||
}
|
||||
// if do nothing, reply with a message
|
||||
if name == noActionName {
|
||||
result, err := handleQuestion(config, input, o, args, predInput)
|
||||
if err != nil {
|
||||
log.Error().Msgf("error handling question: %s", err.Error())
|
||||
return
|
||||
}
|
||||
*c = append(*c, schema.Choice{Message: &schema.Message{Role: "assistant", Content: &result}})
|
||||
} else {
|
||||
if len(input.Tools) > 0 {
|
||||
// Result is different in the case we have a tool call
|
||||
*c = append(*c, schema.Choice{
|
||||
FinishReason: "tool_calls",
|
||||
Message: &schema.Message{
|
||||
Role: "assistant",
|
||||
ToolCalls: []schema.ToolCall{
|
||||
{
|
||||
ID: id,
|
||||
Type: "function",
|
||||
FunctionCall: schema.FunctionCall{
|
||||
Name: name,
|
||||
Arguments: args,
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
})
|
||||
} else {
|
||||
// otherwise reply with the function call
|
||||
*c = append(*c, schema.Choice{
|
||||
FinishReason: "function_call",
|
||||
Message: &schema.Message{
|
||||
Role: "assistant",
|
||||
FunctionCall: ss,
|
||||
},
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
log.Debug().Msgf("No action received from LLM, without a message, computing a reply")
|
||||
// Otherwise ask the LLM to understand the JSON output and the context, and return a message
|
||||
// Note: This costs (in term of CPU) another computation
|
||||
config.Grammar = ""
|
||||
images := []string{}
|
||||
for _, m := range input.Messages {
|
||||
images = append(images, m.StringImages...)
|
||||
}
|
||||
predFunc, err := backend.ModelInference(input.Context, predInput, images, o.Loader, *config, o, nil)
|
||||
if err != nil {
|
||||
log.Error().Msgf("inference error: %s", err.Error())
|
||||
return
|
||||
}
|
||||
|
||||
prediction, err := predFunc()
|
||||
if err != nil {
|
||||
log.Error().Msgf("inference error: %s", err.Error())
|
||||
return
|
||||
}
|
||||
|
||||
fineTunedResponse := backend.Finetune(*config, predInput, prediction.Response)
|
||||
*c = append(*c, schema.Choice{Message: &schema.Message{Role: "assistant", Content: &fineTunedResponse}})
|
||||
} else {
|
||||
// otherwise reply with the function call
|
||||
*c = append(*c, schema.Choice{
|
||||
FinishReason: "function_call",
|
||||
Message: &schema.Message{Role: "assistant", FunctionCall: ss},
|
||||
})
|
||||
return
|
||||
}
|
||||
|
||||
return
|
||||
*c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
|
||||
}, nil)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
*c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
|
||||
}, nil)
|
||||
if err != nil {
|
||||
return err
|
||||
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: result,
|
||||
Object: "chat.completion",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: tokenUsage.Prompt,
|
||||
CompletionTokens: tokenUsage.Completion,
|
||||
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
|
||||
},
|
||||
}
|
||||
respData, _ := json.Marshal(resp)
|
||||
log.Debug().Msgf("Response: %s", respData)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(resp)
|
||||
}
|
||||
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: result,
|
||||
Object: "chat.completion",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: tokenUsage.Prompt,
|
||||
CompletionTokens: tokenUsage.Completion,
|
||||
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
|
||||
},
|
||||
}
|
||||
respData, _ := json.Marshal(resp)
|
||||
log.Debug().Msgf("Response: %s", respData)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(resp)
|
||||
}
|
||||
}
|
||||
|
||||
func handleQuestion(config *config.Config, input *schema.OpenAIRequest, o *options.Option, args, prompt string) (string, error) {
|
||||
log.Debug().Msgf("nothing to do, computing a reply")
|
||||
|
||||
// If there is a message that the LLM already sends as part of the JSON reply, use it
|
||||
arguments := map[string]interface{}{}
|
||||
json.Unmarshal([]byte(args), &arguments)
|
||||
m, exists := arguments["message"]
|
||||
if exists {
|
||||
switch message := m.(type) {
|
||||
case string:
|
||||
if message != "" {
|
||||
log.Debug().Msgf("Reply received from LLM: %s", message)
|
||||
message = backend.Finetune(*config, prompt, message)
|
||||
log.Debug().Msgf("Reply received from LLM(finetuned): %s", message)
|
||||
|
||||
return message, nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
log.Debug().Msgf("No action received from LLM, without a message, computing a reply")
|
||||
// Otherwise ask the LLM to understand the JSON output and the context, and return a message
|
||||
// Note: This costs (in term of CPU/GPU) another computation
|
||||
config.Grammar = ""
|
||||
images := []string{}
|
||||
for _, m := range input.Messages {
|
||||
images = append(images, m.StringImages...)
|
||||
}
|
||||
|
||||
predFunc, err := backend.ModelInference(input.Context, prompt, images, o.Loader, *config, o, nil)
|
||||
if err != nil {
|
||||
log.Error().Msgf("inference error: %s", err.Error())
|
||||
return "", err
|
||||
}
|
||||
|
||||
prediction, err := predFunc()
|
||||
if err != nil {
|
||||
log.Error().Msgf("inference error: %s", err.Error())
|
||||
return "", err
|
||||
}
|
||||
return backend.Finetune(*config, prompt, prediction.Response), nil
|
||||
}
|
||||
|
||||
func parseFunctionCall(llmresult string) (string, string) {
|
||||
// As we have to change the result before processing, we can't stream the answer token-by-token (yet?)
|
||||
ss := map[string]interface{}{}
|
||||
// This prevent newlines to break JSON parsing for clients
|
||||
s := utils.EscapeNewLines(llmresult)
|
||||
json.Unmarshal([]byte(s), &ss)
|
||||
log.Debug().Msgf("Function return: %s %+v", s, ss)
|
||||
|
||||
// The grammar defines the function name as "function", while OpenAI returns "name"
|
||||
func_name := ss["function"]
|
||||
// Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object
|
||||
args := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix)
|
||||
d, _ := json.Marshal(args)
|
||||
|
||||
return func_name.(string), string(d)
|
||||
}
|
||||
|
@ -13,6 +13,7 @@ import (
|
||||
fiberContext "github.com/go-skynet/LocalAI/api/ctx"
|
||||
options "github.com/go-skynet/LocalAI/api/options"
|
||||
"github.com/go-skynet/LocalAI/api/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/grammar"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
@ -136,6 +137,20 @@ func updateRequestConfig(config *config.Config, input *schema.OpenAIRequest) {
|
||||
}
|
||||
}
|
||||
|
||||
if len(input.Tools) > 0 {
|
||||
for _, tool := range input.Tools {
|
||||
input.Functions = append(input.Functions, tool.Function)
|
||||
}
|
||||
}
|
||||
|
||||
if input.ToolsChoice != nil {
|
||||
var toolChoice grammar.Tool
|
||||
json.Unmarshal([]byte(input.ToolsChoice.(string)), &toolChoice)
|
||||
input.FunctionCall = map[string]interface{}{
|
||||
"name": toolChoice.Function.Name,
|
||||
}
|
||||
}
|
||||
|
||||
// Decode each request's message content
|
||||
index := 0
|
||||
for i, m := range input.Messages {
|
||||
|
@ -68,6 +68,10 @@ type ContentURL struct {
|
||||
type Message struct {
|
||||
// The message role
|
||||
Role string `json:"role,omitempty" yaml:"role"`
|
||||
|
||||
// The message name (used for tools calls)
|
||||
Name string `json:"name,omitempty" yaml:"name"`
|
||||
|
||||
// The message content
|
||||
Content interface{} `json:"content" yaml:"content"`
|
||||
|
||||
@ -76,6 +80,20 @@ type Message struct {
|
||||
|
||||
// A result of a function call
|
||||
FunctionCall interface{} `json:"function_call,omitempty" yaml:"function_call,omitempty"`
|
||||
|
||||
ToolCalls []ToolCall `json:"tool_calls,omitempty" yaml:"tool_call,omitempty"`
|
||||
}
|
||||
|
||||
type ToolCall struct {
|
||||
Index int `json:"index"`
|
||||
ID string `json:"id"`
|
||||
Type string `json:"type"`
|
||||
FunctionCall FunctionCall `json:"function"`
|
||||
}
|
||||
|
||||
type FunctionCall struct {
|
||||
Name string `json:"name,omitempty"`
|
||||
Arguments string `json:"arguments"`
|
||||
}
|
||||
|
||||
type OpenAIModel struct {
|
||||
@ -117,6 +135,9 @@ type OpenAIRequest struct {
|
||||
Functions []grammar.Function `json:"functions" yaml:"functions"`
|
||||
FunctionCall interface{} `json:"function_call" yaml:"function_call"` // might be a string or an object
|
||||
|
||||
Tools []grammar.Tool `json:"tools,omitempty" yaml:"tools"`
|
||||
ToolsChoice interface{} `json:"tool_choice,omitempty" yaml:"tool_choice"`
|
||||
|
||||
Stream bool `json:"stream"`
|
||||
|
||||
// Image (not supported by OpenAI)
|
||||
|
@ -11,6 +11,12 @@ type Function struct {
|
||||
}
|
||||
type Functions []Function
|
||||
|
||||
type Tool struct {
|
||||
Type string `json:"type"`
|
||||
Function Function `json:"function,omitempty"`
|
||||
}
|
||||
type Tools []Tool
|
||||
|
||||
func (f Functions) ToJSONStructure() JSONFunctionStructure {
|
||||
js := JSONFunctionStructure{}
|
||||
for _, function := range f {
|
||||
|
@ -33,6 +33,7 @@ type ChatMessageTemplateData struct {
|
||||
SystemPrompt string
|
||||
Role string
|
||||
RoleName string
|
||||
FunctionName string
|
||||
Content string
|
||||
MessageIndex int
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user