example(add): document query example

This commit is contained in:
mudler 2023-05-05 21:56:31 +02:00
parent d094381e5d
commit ad301e6ed7
10 changed files with 162 additions and 0 deletions

1
examples/query_data/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
storage/

View File

@ -0,0 +1,49 @@
# Data query example
This example makes use of [Llama-Index](https://gpt-index.readthedocs.io/en/stable/getting_started/installation.html) to enable question answering on a set of documents.
It loosely follows [the quickstart](https://gpt-index.readthedocs.io/en/stable/guides/primer/usage_pattern.html).
## Requirements
For this in order to work, you will need a model compatible with the `llama.cpp` backend. This is will not work with gpt4all.
The example uses `WizardLM`. Edit the config files in `models/` accordingly to specify the model you use (change `HERE`).
You will also need a training data set. Copy that over `data`.
## Setup
Start the API:
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/query_data
# Copy your models, edit config files accordingly
# start with docker-compose
docker-compose up -d --build
```
### Create a storage:
```bash
export OPENAI_API_BASE=http://localhost:8080/v1
export OPENAI_API_KEY=sk-
python store.py
```
After it finishes, a directory "storage" will be created with the vector index database.
## Query
```bash
export OPENAI_API_BASE=http://localhost:8080/v1
export OPENAI_API_KEY=sk-
python query.py
```

View File

View File

@ -0,0 +1,15 @@
version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:latest
build:
context: .
dockerfile: Dockerfile
ports:
- 8080:8080
env_file:
- .env
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai"]

View File

@ -0,0 +1 @@
{{.Input}}

View File

@ -0,0 +1,18 @@
name: text-embedding-ada-002
parameters:
model: HERE
top_k: 80
temperature: 0.2
top_p: 0.7
context_size: 1024
threads: 14
stopwords:
- "HUMAN:"
- "GPT:"
roles:
user: " "
system: " "
embeddings: true
template:
completion: completion
chat: gpt4all

View File

@ -0,0 +1,18 @@
name: gpt-3.5-turbo
parameters:
model: HERE
top_k: 80
temperature: 0.2
top_p: 0.7
context_size: 1024
threads: 14
embeddings: true
stopwords:
- "HUMAN:"
- "GPT:"
roles:
user: " "
system: " "
template:
completion: completion
chat: wizardlm

View File

@ -0,0 +1,3 @@
{{.Input}}
### Response:

View File

@ -0,0 +1,32 @@
import os
# Uncomment to specify your OpenAI API key here (local testing only, not in production!), or add corresponding environment variable (recommended)
# os.environ['OPENAI_API_KEY']= ""
from llama_index import LLMPredictor, PromptHelper, ServiceContext
from langchain.llms.openai import OpenAI
from llama_index import StorageContext, load_index_from_storage
# This example uses text-davinci-003 by default; feel free to change if desired
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo",openai_api_base="http://localhost:8080/v1"))
# Configure prompt parameters and initialise helper
max_input_size = 1024
num_output = 256
max_chunk_overlap = 20
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)
# Load documents from the 'data' directory
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir='./storage')
# load index
index = load_index_from_storage(storage_context, service_context=service_context, )
query_engine = index.as_query_engine()
response = query_engine.query("XXXXXX your question here XXXXX")
print(response)

View File

@ -0,0 +1,25 @@
import os
# Uncomment to specify your OpenAI API key here (local testing only, not in production!), or add corresponding environment variable (recommended)
# os.environ['OPENAI_API_KEY']= ""
from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext
from langchain.llms.openai import OpenAI
from llama_index import StorageContext, load_index_from_storage
# This example uses text-davinci-003 by default; feel free to change if desired
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo",openai_api_base="http://localhost:8080/v1"))
# Configure prompt parameters and initialise helper
max_input_size = 256
num_output = 256
max_chunk_overlap = 10
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)
# Load documents from the 'data' directory
documents = SimpleDirectoryReader('data').load_data()
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper, chunk_size_limit = 257)
index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context)
index.storage_context.persist(persist_dir="./storage")