mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-19 11:17:08 +00:00
example(add): document query example
This commit is contained in:
parent
d094381e5d
commit
ad301e6ed7
1
examples/query_data/.gitignore
vendored
Normal file
1
examples/query_data/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
storage/
|
49
examples/query_data/README.md
Normal file
49
examples/query_data/README.md
Normal file
@ -0,0 +1,49 @@
|
||||
# Data query example
|
||||
|
||||
This example makes use of [Llama-Index](https://gpt-index.readthedocs.io/en/stable/getting_started/installation.html) to enable question answering on a set of documents.
|
||||
|
||||
It loosely follows [the quickstart](https://gpt-index.readthedocs.io/en/stable/guides/primer/usage_pattern.html).
|
||||
|
||||
## Requirements
|
||||
|
||||
For this in order to work, you will need a model compatible with the `llama.cpp` backend. This is will not work with gpt4all.
|
||||
|
||||
The example uses `WizardLM`. Edit the config files in `models/` accordingly to specify the model you use (change `HERE`).
|
||||
|
||||
You will also need a training data set. Copy that over `data`.
|
||||
|
||||
## Setup
|
||||
|
||||
Start the API:
|
||||
|
||||
```bash
|
||||
# Clone LocalAI
|
||||
git clone https://github.com/go-skynet/LocalAI
|
||||
|
||||
cd LocalAI/examples/query_data
|
||||
|
||||
# Copy your models, edit config files accordingly
|
||||
|
||||
# start with docker-compose
|
||||
docker-compose up -d --build
|
||||
```
|
||||
|
||||
### Create a storage:
|
||||
|
||||
```bash
|
||||
export OPENAI_API_BASE=http://localhost:8080/v1
|
||||
export OPENAI_API_KEY=sk-
|
||||
|
||||
python store.py
|
||||
```
|
||||
|
||||
After it finishes, a directory "storage" will be created with the vector index database.
|
||||
|
||||
## Query
|
||||
|
||||
```bash
|
||||
export OPENAI_API_BASE=http://localhost:8080/v1
|
||||
export OPENAI_API_KEY=sk-
|
||||
|
||||
python query.py
|
||||
```
|
0
examples/query_data/data/.keep
Normal file
0
examples/query_data/data/.keep
Normal file
15
examples/query_data/docker-compose.yml
Normal file
15
examples/query_data/docker-compose.yml
Normal file
@ -0,0 +1,15 @@
|
||||
version: '3.6'
|
||||
|
||||
services:
|
||||
api:
|
||||
image: quay.io/go-skynet/local-ai:latest
|
||||
build:
|
||||
context: .
|
||||
dockerfile: Dockerfile
|
||||
ports:
|
||||
- 8080:8080
|
||||
env_file:
|
||||
- .env
|
||||
volumes:
|
||||
- ./models:/models:cached
|
||||
command: ["/usr/bin/local-ai"]
|
1
examples/query_data/models/completion.tmpl
Normal file
1
examples/query_data/models/completion.tmpl
Normal file
@ -0,0 +1 @@
|
||||
{{.Input}}
|
18
examples/query_data/models/embeddings.yaml
Normal file
18
examples/query_data/models/embeddings.yaml
Normal file
@ -0,0 +1,18 @@
|
||||
name: text-embedding-ada-002
|
||||
parameters:
|
||||
model: HERE
|
||||
top_k: 80
|
||||
temperature: 0.2
|
||||
top_p: 0.7
|
||||
context_size: 1024
|
||||
threads: 14
|
||||
stopwords:
|
||||
- "HUMAN:"
|
||||
- "GPT:"
|
||||
roles:
|
||||
user: " "
|
||||
system: " "
|
||||
embeddings: true
|
||||
template:
|
||||
completion: completion
|
||||
chat: gpt4all
|
18
examples/query_data/models/gpt-3.5-turbo.yaml
Normal file
18
examples/query_data/models/gpt-3.5-turbo.yaml
Normal file
@ -0,0 +1,18 @@
|
||||
name: gpt-3.5-turbo
|
||||
parameters:
|
||||
model: HERE
|
||||
top_k: 80
|
||||
temperature: 0.2
|
||||
top_p: 0.7
|
||||
context_size: 1024
|
||||
threads: 14
|
||||
embeddings: true
|
||||
stopwords:
|
||||
- "HUMAN:"
|
||||
- "GPT:"
|
||||
roles:
|
||||
user: " "
|
||||
system: " "
|
||||
template:
|
||||
completion: completion
|
||||
chat: wizardlm
|
3
examples/query_data/models/wizardlm.tmpl
Normal file
3
examples/query_data/models/wizardlm.tmpl
Normal file
@ -0,0 +1,3 @@
|
||||
{{.Input}}
|
||||
|
||||
### Response:
|
32
examples/query_data/query.py
Normal file
32
examples/query_data/query.py
Normal file
@ -0,0 +1,32 @@
|
||||
import os
|
||||
|
||||
# Uncomment to specify your OpenAI API key here (local testing only, not in production!), or add corresponding environment variable (recommended)
|
||||
# os.environ['OPENAI_API_KEY']= ""
|
||||
|
||||
from llama_index import LLMPredictor, PromptHelper, ServiceContext
|
||||
from langchain.llms.openai import OpenAI
|
||||
from llama_index import StorageContext, load_index_from_storage
|
||||
|
||||
|
||||
# This example uses text-davinci-003 by default; feel free to change if desired
|
||||
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo",openai_api_base="http://localhost:8080/v1"))
|
||||
|
||||
# Configure prompt parameters and initialise helper
|
||||
max_input_size = 1024
|
||||
num_output = 256
|
||||
max_chunk_overlap = 20
|
||||
|
||||
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)
|
||||
|
||||
# Load documents from the 'data' directory
|
||||
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
|
||||
|
||||
# rebuild storage context
|
||||
storage_context = StorageContext.from_defaults(persist_dir='./storage')
|
||||
|
||||
# load index
|
||||
index = load_index_from_storage(storage_context, service_context=service_context, )
|
||||
|
||||
query_engine = index.as_query_engine()
|
||||
response = query_engine.query("XXXXXX your question here XXXXX")
|
||||
print(response)
|
25
examples/query_data/store.py
Normal file
25
examples/query_data/store.py
Normal file
@ -0,0 +1,25 @@
|
||||
import os
|
||||
|
||||
# Uncomment to specify your OpenAI API key here (local testing only, not in production!), or add corresponding environment variable (recommended)
|
||||
# os.environ['OPENAI_API_KEY']= ""
|
||||
|
||||
from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext
|
||||
from langchain.llms.openai import OpenAI
|
||||
from llama_index import StorageContext, load_index_from_storage
|
||||
|
||||
# This example uses text-davinci-003 by default; feel free to change if desired
|
||||
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo",openai_api_base="http://localhost:8080/v1"))
|
||||
|
||||
# Configure prompt parameters and initialise helper
|
||||
max_input_size = 256
|
||||
num_output = 256
|
||||
max_chunk_overlap = 10
|
||||
|
||||
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)
|
||||
|
||||
# Load documents from the 'data' directory
|
||||
documents = SimpleDirectoryReader('data').load_data()
|
||||
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper, chunk_size_limit = 257)
|
||||
index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context)
|
||||
index.storage_context.persist(persist_dir="./storage")
|
||||
|
Loading…
Reference in New Issue
Block a user