models(gallery): add hermes-3-llama-3.1(8B,70B,405B) with vLLM (#3360)

models(gallery): add hermes-3-llama-3.1 with vLLM

it adds 8b, 70b and 405b to the gallery

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto 2024-08-23 09:24:34 +02:00 committed by GitHub
parent fbaae8528d
commit a913fd310d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 152 additions and 0 deletions

91
gallery/hermes-vllm.yaml Normal file
View File

@ -0,0 +1,91 @@
---
name: "hermes-vllm"
config_file: |
backend: vllm
context_size: 8192
stopwords:
- "<|im_end|>"
- "<dummy32000>"
- "<|eot_id|>"
- "<|end_of_text|>"
function:
disable_no_action: true
grammar:
# Uncomment the line below to enable grammar matching for JSON results if the model is breaking
# the output. This will make the model more accurate and won't break the JSON output.
# This however, will make parallel_calls not functional (it is a known bug)
# mixed_mode: true
disable: true
parallel_calls: true
expect_strings_after_json: true
json_regex_match:
- "(?s)<tool_call>(.*?)</tool_call>"
- "(?s)<tool_call>(.*)"
capture_llm_results:
- (?s)<scratchpad>(.*?)</scratchpad>
replace_llm_results:
- key: (?s)<scratchpad>(.*?)</scratchpad>
value: ""
template:
use_tokenizer_template: true
chat: |
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
{{- if .FunctionCall }}
<tool_call>
{{- else if eq .RoleName "tool" }}
<tool_response>
{{- end }}
{{- if .Content}}
{{.Content }}
{{- end }}
{{- if .FunctionCall}}
{{toJson .FunctionCall}}
{{- end }}
{{- if .FunctionCall }}
</tool_call>
{{- else if eq .RoleName "tool" }}
</tool_response>
{{- end }}<|im_end|>
completion: |
{{.Input}}
function: |
<|im_start|>system
You are a function calling AI model.
Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
</tools>
You should call the tools provided to you sequentially
Please use <scratchpad> XML tags to record your reasoning and planning before you call the functions as follows:
<scratchpad>
{step-by-step reasoning and plan in bullet points}
</scratchpad>
For each function call return a json object with function name and arguments within <tool_call> XML tags as follows:
<tool_call>
{"arguments": <args-dict>, "name": <function-name>}
</tool_call><|im_end|>
{{.Input -}}
<|im_start|>assistant
# Uncomment to specify a quantization method (optional)
# quantization: "awq"
# Uncomment to limit the GPU memory utilization (vLLM default is 0.9 for 90%)
# gpu_memory_utilization: 0.5
# Uncomment to trust remote code from huggingface
# trust_remote_code: true
# Uncomment to enable eager execution
# enforce_eager: true
# Uncomment to specify the size of the CPU swap space per GPU (in GiB)
# swap_space: 2
# Uncomment to specify the maximum length of a sequence (including prompt and output)
# max_model_len: 32768
# Uncomment and specify the number of Tensor divisions.
# Allows you to partition and run large models. Performance gains are limited.
# https://github.com/vllm-project/vllm/issues/1435
# tensor_parallel_size: 2

View File

@ -4752,6 +4752,38 @@
- filename: Hermes-3-Llama-3.1-70B.Q4_K_M.gguf
sha256: 955c2f42caade4278f3c9dbffa32bb74572652b20e49e5340e782de3585bbe3f
uri: huggingface://NousResearch/Hermes-3-Llama-3.1-70B-GGUF/Hermes-3-Llama-3.1-70B.Q4_K_M.gguf
- &hermes-vllm
url: "github:mudler/LocalAI/gallery/hermes-vllm.yaml@master"
name: "hermes-3-llama-3.1-8b:vllm"
icon: https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/vG6j5WxHX09yj32vgjJlI.jpeg
tags:
- llm
- vllm
- gpu
- function-calling
license: llama-3
urls:
- https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B
description: |
Hermes 3 is a generalist language model with many improvements over Hermes 2, including advanced agentic capabilities, much better roleplaying, reasoning, multi-turn conversation, long context coherence, and improvements across the board. It is designed to focus on aligning LLMs to the user, with powerful steering capabilities and control given to the end user. The model uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue. It also supports function calling and structured output capabilities, generalist assistant capabilities, and improved code generation skills.
overrides:
parameters:
model: NousResearch/Hermes-3-Llama-3.1-8B
- !!merge <<: *hermes-vllm
name: "hermes-3-llama-3.1-70b:vllm"
urls:
- https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-70B
overrides:
parameters:
model: NousResearch/Hermes-3-Llama-3.1-70B
- !!merge <<: *hermes-vllm
name: "hermes-3-llama-3.1-405b:vllm"
icon: https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/-kj_KflXsdpcZoTQsvx7W.jpeg
urls:
- https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-405B
overrides:
parameters:
model: NousResearch/Hermes-3-Llama-3.1-405B
- !!merge <<: *hermes-2-pro-mistral
name: "biomistral-7b"
description: |

29
gallery/vllm.yaml Normal file
View File

@ -0,0 +1,29 @@
---
name: "vllm"
config_file: |
backend: vllm
function:
disable_no_action: true
grammar:
disable: true
parallel_calls: true
expect_strings_after_json: true
template:
use_tokenizer_template: true
# Uncomment to specify a quantization method (optional)
# quantization: "awq"
# Uncomment to limit the GPU memory utilization (vLLM default is 0.9 for 90%)
# gpu_memory_utilization: 0.5
# Uncomment to trust remote code from huggingface
# trust_remote_code: true
# Uncomment to enable eager execution
# enforce_eager: true
# Uncomment to specify the size of the CPU swap space per GPU (in GiB)
# swap_space: 2
# Uncomment to specify the maximum length of a sequence (including prompt and output)
# max_model_len: 32768
# Uncomment and specify the number of Tensor divisions.
# Allows you to partition and run large models. Performance gains are limited.
# https://github.com/vllm-project/vllm/issues/1435
# tensor_parallel_size: 2