WIP - to drop

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto 2024-12-28 10:32:21 +01:00
parent 7592984b64
commit 90206830c1

View File

@ -13,6 +13,7 @@ import (
"github.com/gofiber/fiber/v2"
"github.com/gofiber/websocket/v2"
"github.com/mudler/LocalAI/core/application"
"github.com/mudler/LocalAI/core/backend"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/pkg/functions"
@ -687,10 +688,48 @@ func generateResponse(config *config.BackendConfig, evaluator *templates.Evaluat
funcs := session.Functions
shouldUseFn := len(funcs) > 0 && config.ShouldUseFunctions()
// Allow the user to set custom actions via config file
// to be "embedded" in each model
noActionName := "answer"
noActionDescription := "use this action to answer without performing any action"
if config.FunctionsConfig.NoActionFunctionName != "" {
noActionName = config.FunctionsConfig.NoActionFunctionName
}
if config.FunctionsConfig.NoActionDescriptionName != "" {
noActionDescription = config.FunctionsConfig.NoActionDescriptionName
}
if (!config.FunctionsConfig.GrammarConfig.NoGrammar) && shouldUseFn {
noActionGrammar := functions.Function{
Name: noActionName,
Description: noActionDescription,
Parameters: map[string]interface{}{
"properties": map[string]interface{}{
"message": map[string]interface{}{
"type": "string",
"description": "The message to reply the user with",
}},
},
}
// Append the no action function
if !config.FunctionsConfig.DisableNoAction {
funcs = append(funcs, noActionGrammar)
}
// Update input grammar
jsStruct := funcs.ToJSONStructure(config.FunctionsConfig.FunctionNameKey, config.FunctionsConfig.FunctionNameKey)
g, err := jsStruct.Grammar(config.FunctionsConfig.GrammarOptions()...)
if err == nil {
config.Grammar = g
}
}
// Generate a response based on text conversation history
prompt := evaluator.TemplateMessages(conversationHistory, config, funcs, shouldUseFn)
generatedText, functionCall, err = processTextResponse(session, prompt)
generatedText, functionCall, err = processTextResponse(config, session, prompt)
if err != nil {
log.Error().Msgf("failed to process text response: %s", err.Error())
sendError(c, "processing_error", "Failed to generate text response", "", "")
@ -798,11 +837,108 @@ func generateResponse(config *config.BackendConfig, evaluator *templates.Evaluat
}
// Function to process text response and detect function calls
func processTextResponse(session *Session, prompt string) (string, *FunctionCall, error) {
func processTextResponse(config *config.BackendConfig, session *Session, prompt string) (string, *FunctionCall, error) {
// Placeholder implementation
// Replace this with actual model inference logic using session.Model and prompt
// For example, the model might return a special token or JSON indicating a function call
predFunc, err := backend.ModelInference(context.Background(), prompt, input.Messages, images, videos, audios, ml, *config, o, nil)
result, tokenUsage, err := ComputeChoices(input, prompt, config, startupOptions, ml, func(s string, c *[]schema.Choice) {
if !shouldUseFn {
// no function is called, just reply and use stop as finish reason
*c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
return
}
textContentToReturn = functions.ParseTextContent(s, config.FunctionsConfig)
s = functions.CleanupLLMResult(s, config.FunctionsConfig)
results := functions.ParseFunctionCall(s, config.FunctionsConfig)
log.Debug().Msgf("Text content to return: %s", textContentToReturn)
noActionsToRun := len(results) > 0 && results[0].Name == noActionName || len(results) == 0
switch {
case noActionsToRun:
result, err := handleQuestion(config, input, ml, startupOptions, results, s, predInput)
if err != nil {
log.Error().Err(err).Msg("error handling question")
return
}
*c = append(*c, schema.Choice{
Message: &schema.Message{Role: "assistant", Content: &result}})
default:
toolChoice := schema.Choice{
Message: &schema.Message{
Role: "assistant",
},
}
if len(input.Tools) > 0 {
toolChoice.FinishReason = "tool_calls"
}
for _, ss := range results {
name, args := ss.Name, ss.Arguments
if len(input.Tools) > 0 {
// If we are using tools, we condense the function calls into
// a single response choice with all the tools
toolChoice.Message.Content = textContentToReturn
toolChoice.Message.ToolCalls = append(toolChoice.Message.ToolCalls,
schema.ToolCall{
ID: id,
Type: "function",
FunctionCall: schema.FunctionCall{
Name: name,
Arguments: args,
},
},
)
} else {
// otherwise we return more choices directly
*c = append(*c, schema.Choice{
FinishReason: "function_call",
Message: &schema.Message{
Role: "assistant",
Content: &textContentToReturn,
FunctionCall: map[string]interface{}{
"name": name,
"arguments": args,
},
},
})
}
}
if len(input.Tools) > 0 {
// we need to append our result if we are using tools
*c = append(*c, toolChoice)
}
}
}, nil)
if err != nil {
return err
}
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "chat.completion",
Usage: schema.OpenAIUsage{
PromptTokens: tokenUsage.Prompt,
CompletionTokens: tokenUsage.Completion,
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
},
}
respData, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", respData)
// Return the prediction in the response body
return c.JSON(resp)
// TODO: use session.ModelInterface...
// Simulate a function call
if strings.Contains(prompt, "weather") {