Update README

This commit is contained in:
mudler 2023-04-12 00:02:47 +02:00
parent 5556aa46dd
commit 7858a97254

110
README.md
View File

@ -1,16 +1,27 @@
## :camel: llama-cli
llama-cli is a straightforward golang CLI interface for [llama.cpp](https://github.com/ggerganov/llama.cpp), providing a simple API and a command line interface that allows text generation using a GPT-based model like llama directly from the terminal. It is also compatible with [gpt4all](https://github.com/nomic-ai/gpt4all) and [alpaca](https://github.com/tatsu-lab/stanford_alpaca).
llama-cli is a straightforward golang CLI interface for [llama.cpp](https://github.com/ggerganov/llama.cpp), providing an API compatible with OpenAI with support for multiple-models and a command line interface that allows text generation using a GPT-based model like llama directly from the terminal. It is also compatible with the models supported by `llama.cpp`. You might need to convert older models to the new format, see [here](https://github.com/ggerganov/llama.cpp#using-gpt4all) for instance to run `gpt4all`.
`llama-cli` uses https://github.com/go-skynet/llama, which is a fork of [llama.cpp](https://github.com/ggerganov/llama.cpp) providing golang binding.
`llama-cli` doesn't shell-out, it uses https://github.com/go-skynet/go-llama.cpp, which is a golang binding of [llama.cpp](https://github.com/ggerganov/llama.cpp).
## Container images
`llama-cli` comes by default as a container image.
To begin, run:
```
docker run -ti --rm quay.io/go-skynet/llama-cli:v0.4 --instruction "What's an alpaca?" --topk 10000 --model ...
docker run -ti --rm quay.io/go-skynet/llama-cli:v0.6 --instruction "What's an alpaca?" --topk 10000 --model ...
```
Where `--model` is the path of the model you want to use.
Note: you need to mount a volume to the docker container in order to load a model, for instance:
```
# assuming your model is in /path/to/your/models/foo.bin
docker run -v /path/to/your/models:/models -ti --rm quay.io/go-skynet/llama-cli:v0.6 --instruction "What's an alpaca?" --topk 10000 --model /models/foo.bin
```
You will receive a response like the following:
@ -39,8 +50,6 @@ llama-cli --model <model_path> --instruction <instruction> [--input <input>] [--
| top_p | TOP_P | 0.85 | The cumulative probability for top-p sampling. |
| top_k | TOP_K | 20 | The number of top-k tokens to consider for text generation. |
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
| alpaca | ALPACA | true | Set to true for alpaca models. |
| gpt4all | GPT4ALL | false | Set to true for gpt4all models. |
Here's an example of using `llama-cli`:
@ -50,14 +59,14 @@ llama-cli --model ~/ggml-alpaca-7b-q4.bin --instruction "What's an alpaca?"
This will generate text based on the given model and instruction.
## Advanced usage
## API
`llama-cli` also provides an API for running text generation as a service. The model will be pre-loaded and kept in memory.
`llama-cli` also provides an API for running text generation as a service. The models once loaded the first time will be kept in memory.
Example of starting the API with `docker`:
```bash
docker run -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.4 api --context-size 700 --threads 4
docker run -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.6 api --models-path /path/to/models --context-size 700 --threads 4
```
And you'll see:
@ -72,36 +81,68 @@ And you'll see:
└───────────────────────────────────────────────────┘
```
Note: Models have to end up with `.bin`.
You can control the API server options with command line arguments:
```
llama-cli api --model <model_path> [--address <address>] [--threads <num_threads>]
llama-cli api --models-path <model_path> [--address <address>] [--threads <num_threads>]
```
The API takes takes the following:
| Parameter | Environment Variable | Default Value | Description |
| ------------ | -------------------- | ------------- | -------------------------------------- |
| model | MODEL_PATH | | The path to the pre-trained GPT-based model. |
| models-path | MODELS_PATH | | The path where you have models (ending with `.bin`). |
| threads | THREADS | CPU cores | The number of threads to use for text generation. |
| address | ADDRESS | :8080 | The address and port to listen on. |
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
| alpaca | ALPACA | true | Set to true for alpaca models. |
| gpt4all | GPT4ALL | false | Set to true for gpt4all models. |
Once the server is running, you can start making requests to it using HTTP, using the OpenAI API.
Once the server is running, you can start making requests to it using HTTP. For example, to generate text based on an instruction, you can send a POST request to the `/predict` endpoint with the instruction as the request body:
### Supported OpenAI API endpoints
You can check out the [OpenAI API reference](https://platform.openai.com/docs/api-reference/chat/create).
Following the list of endpoints/parameters supported.
#### Chat completions
For example, to generate a chat completion, you can send a POST request to the `/v1/chat/completions` endpoint with the instruction as the request body:
```
curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
"text": "What is an alpaca?",
"topP": 0.8,
"topK": 50,
"temperature": 0.7,
"tokens": 100
}'
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "ggml-koala-7b-model-q4_0-r2.bin",
"messages": [{"role": "user", "content": "Say this is a test!"}],
"temperature": 0.7
}'
```
Available additional parameters: `top_p`, `top_k`, `max_tokens`
#### Completions
For example, to generate a comletion, you can send a POST request to the `/v1/completions` endpoint with the instruction as the request body:
```
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
"model": "ggml-koala-7b-model-q4_0-r2.bin",
"prompt": "A long time ago in a galaxy far, far away",
"temperature": 0.7
}'
```
Available additional parameters: `top_p`, `top_k`, `max_tokens`
#### List models
You can list all the models available with:
```
curl http://localhost:8080/v1/models
```
## Web interface
There is also available a simple web interface (for instance, http://localhost:8080/) which can be used as a playground.
Note: The API doesn't inject a template for talking to the instance, while the CLI does. You have to use a prompt similar to what's described in the standford-alpaca docs: https://github.com/tatsu-lab/stanford_alpaca#data-release, for instance:
@ -115,18 +156,19 @@ Below is an instruction that describes a task. Write a response that appropriate
### Response:
```
Note: You can use a use a default template for every model in your model path, by creating a corresponding file with the `.tmpl` suffix. For instance, if the model is called `foo.bin`, you can create a sibiling file, `foo.bin.tmpl` which will be used as a default prompt, for instance:
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{{.Input}}
### Response:
```
## Using other models
You can specify a model binary to be used for inference with `--model`.
13B and 30B alpaca models are known to work:
```
# Download the model image, extract the model
# Use the model with llama-cli
docker run -v $PWD:/models -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.4 api --model /models/model.bin
```
gpt4all (https://github.com/nomic-ai/gpt4all) works as well, however the original model needs to be converted (same applies for old alpaca models, too):
```bash
@ -154,7 +196,7 @@ import (
func main() {
cli := client.NewClient("http://ip:30007")
cli := client.NewClient("http://ip:port")
out, err := cli.Predict("What's an alpaca?")
if err != nil {
@ -201,11 +243,11 @@ docker run --privileged -v /var/run/docker.sock:/var/run/docker.sock --rm -t -v
## Short-term roadmap
- Mimic OpenAI API (https://github.com/go-skynet/llama-cli/issues/10)
- [x] Mimic OpenAI API (https://github.com/go-skynet/llama-cli/issues/10)
- Binary releases (https://github.com/go-skynet/llama-cli/issues/6)
- Upstream our golang bindings to llama.cpp (https://github.com/ggerganov/llama.cpp/issues/351)
- Multi-model support
- Full Deployment and compatibility with https://github.com/mckaywrigley/chatbot-ui
- [x] Multi-model support
- Have a webUI!
## License