mirror of
https://github.com/mudler/LocalAI.git
synced 2025-02-20 09:26:15 +00:00
Update README
This commit is contained in:
parent
5556aa46dd
commit
7858a97254
110
README.md
110
README.md
@ -1,16 +1,27 @@
|
||||
## :camel: llama-cli
|
||||
|
||||
|
||||
llama-cli is a straightforward golang CLI interface for [llama.cpp](https://github.com/ggerganov/llama.cpp), providing a simple API and a command line interface that allows text generation using a GPT-based model like llama directly from the terminal. It is also compatible with [gpt4all](https://github.com/nomic-ai/gpt4all) and [alpaca](https://github.com/tatsu-lab/stanford_alpaca).
|
||||
llama-cli is a straightforward golang CLI interface for [llama.cpp](https://github.com/ggerganov/llama.cpp), providing an API compatible with OpenAI with support for multiple-models and a command line interface that allows text generation using a GPT-based model like llama directly from the terminal. It is also compatible with the models supported by `llama.cpp`. You might need to convert older models to the new format, see [here](https://github.com/ggerganov/llama.cpp#using-gpt4all) for instance to run `gpt4all`.
|
||||
|
||||
`llama-cli` uses https://github.com/go-skynet/llama, which is a fork of [llama.cpp](https://github.com/ggerganov/llama.cpp) providing golang binding.
|
||||
`llama-cli` doesn't shell-out, it uses https://github.com/go-skynet/go-llama.cpp, which is a golang binding of [llama.cpp](https://github.com/ggerganov/llama.cpp).
|
||||
|
||||
## Container images
|
||||
|
||||
`llama-cli` comes by default as a container image.
|
||||
|
||||
To begin, run:
|
||||
|
||||
```
|
||||
docker run -ti --rm quay.io/go-skynet/llama-cli:v0.4 --instruction "What's an alpaca?" --topk 10000 --model ...
|
||||
docker run -ti --rm quay.io/go-skynet/llama-cli:v0.6 --instruction "What's an alpaca?" --topk 10000 --model ...
|
||||
```
|
||||
|
||||
Where `--model` is the path of the model you want to use.
|
||||
|
||||
Note: you need to mount a volume to the docker container in order to load a model, for instance:
|
||||
|
||||
```
|
||||
# assuming your model is in /path/to/your/models/foo.bin
|
||||
docker run -v /path/to/your/models:/models -ti --rm quay.io/go-skynet/llama-cli:v0.6 --instruction "What's an alpaca?" --topk 10000 --model /models/foo.bin
|
||||
```
|
||||
|
||||
You will receive a response like the following:
|
||||
@ -39,8 +50,6 @@ llama-cli --model <model_path> --instruction <instruction> [--input <input>] [--
|
||||
| top_p | TOP_P | 0.85 | The cumulative probability for top-p sampling. |
|
||||
| top_k | TOP_K | 20 | The number of top-k tokens to consider for text generation. |
|
||||
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
|
||||
| alpaca | ALPACA | true | Set to true for alpaca models. |
|
||||
| gpt4all | GPT4ALL | false | Set to true for gpt4all models. |
|
||||
|
||||
Here's an example of using `llama-cli`:
|
||||
|
||||
@ -50,14 +59,14 @@ llama-cli --model ~/ggml-alpaca-7b-q4.bin --instruction "What's an alpaca?"
|
||||
|
||||
This will generate text based on the given model and instruction.
|
||||
|
||||
## Advanced usage
|
||||
## API
|
||||
|
||||
`llama-cli` also provides an API for running text generation as a service. The model will be pre-loaded and kept in memory.
|
||||
`llama-cli` also provides an API for running text generation as a service. The models once loaded the first time will be kept in memory.
|
||||
|
||||
Example of starting the API with `docker`:
|
||||
|
||||
```bash
|
||||
docker run -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.4 api --context-size 700 --threads 4
|
||||
docker run -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.6 api --models-path /path/to/models --context-size 700 --threads 4
|
||||
```
|
||||
|
||||
And you'll see:
|
||||
@ -72,36 +81,68 @@ And you'll see:
|
||||
└───────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
Note: Models have to end up with `.bin`.
|
||||
|
||||
You can control the API server options with command line arguments:
|
||||
|
||||
```
|
||||
llama-cli api --model <model_path> [--address <address>] [--threads <num_threads>]
|
||||
llama-cli api --models-path <model_path> [--address <address>] [--threads <num_threads>]
|
||||
```
|
||||
|
||||
The API takes takes the following:
|
||||
|
||||
| Parameter | Environment Variable | Default Value | Description |
|
||||
| ------------ | -------------------- | ------------- | -------------------------------------- |
|
||||
| model | MODEL_PATH | | The path to the pre-trained GPT-based model. |
|
||||
| models-path | MODELS_PATH | | The path where you have models (ending with `.bin`). |
|
||||
| threads | THREADS | CPU cores | The number of threads to use for text generation. |
|
||||
| address | ADDRESS | :8080 | The address and port to listen on. |
|
||||
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
|
||||
| alpaca | ALPACA | true | Set to true for alpaca models. |
|
||||
| gpt4all | GPT4ALL | false | Set to true for gpt4all models. |
|
||||
|
||||
Once the server is running, you can start making requests to it using HTTP, using the OpenAI API.
|
||||
|
||||
Once the server is running, you can start making requests to it using HTTP. For example, to generate text based on an instruction, you can send a POST request to the `/predict` endpoint with the instruction as the request body:
|
||||
### Supported OpenAI API endpoints
|
||||
|
||||
You can check out the [OpenAI API reference](https://platform.openai.com/docs/api-reference/chat/create).
|
||||
|
||||
Following the list of endpoints/parameters supported.
|
||||
|
||||
#### Chat completions
|
||||
|
||||
For example, to generate a chat completion, you can send a POST request to the `/v1/chat/completions` endpoint with the instruction as the request body:
|
||||
|
||||
```
|
||||
curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
|
||||
"text": "What is an alpaca?",
|
||||
"topP": 0.8,
|
||||
"topK": 50,
|
||||
"temperature": 0.7,
|
||||
"tokens": 100
|
||||
}'
|
||||
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
|
||||
"model": "ggml-koala-7b-model-q4_0-r2.bin",
|
||||
"messages": [{"role": "user", "content": "Say this is a test!"}],
|
||||
"temperature": 0.7
|
||||
}'
|
||||
```
|
||||
|
||||
Available additional parameters: `top_p`, `top_k`, `max_tokens`
|
||||
|
||||
#### Completions
|
||||
|
||||
For example, to generate a comletion, you can send a POST request to the `/v1/completions` endpoint with the instruction as the request body:
|
||||
```
|
||||
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
|
||||
"model": "ggml-koala-7b-model-q4_0-r2.bin",
|
||||
"prompt": "A long time ago in a galaxy far, far away",
|
||||
"temperature": 0.7
|
||||
}'
|
||||
```
|
||||
|
||||
Available additional parameters: `top_p`, `top_k`, `max_tokens`
|
||||
|
||||
#### List models
|
||||
|
||||
You can list all the models available with:
|
||||
|
||||
```
|
||||
curl http://localhost:8080/v1/models
|
||||
```
|
||||
|
||||
## Web interface
|
||||
|
||||
There is also available a simple web interface (for instance, http://localhost:8080/) which can be used as a playground.
|
||||
|
||||
Note: The API doesn't inject a template for talking to the instance, while the CLI does. You have to use a prompt similar to what's described in the standford-alpaca docs: https://github.com/tatsu-lab/stanford_alpaca#data-release, for instance:
|
||||
@ -115,18 +156,19 @@ Below is an instruction that describes a task. Write a response that appropriate
|
||||
### Response:
|
||||
```
|
||||
|
||||
Note: You can use a use a default template for every model in your model path, by creating a corresponding file with the `.tmpl` suffix. For instance, if the model is called `foo.bin`, you can create a sibiling file, `foo.bin.tmpl` which will be used as a default prompt, for instance:
|
||||
|
||||
```
|
||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||||
|
||||
### Instruction:
|
||||
{{.Input}}
|
||||
|
||||
### Response:
|
||||
```
|
||||
|
||||
## Using other models
|
||||
|
||||
You can specify a model binary to be used for inference with `--model`.
|
||||
|
||||
13B and 30B alpaca models are known to work:
|
||||
|
||||
```
|
||||
# Download the model image, extract the model
|
||||
# Use the model with llama-cli
|
||||
docker run -v $PWD:/models -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.4 api --model /models/model.bin
|
||||
```
|
||||
|
||||
gpt4all (https://github.com/nomic-ai/gpt4all) works as well, however the original model needs to be converted (same applies for old alpaca models, too):
|
||||
|
||||
```bash
|
||||
@ -154,7 +196,7 @@ import (
|
||||
|
||||
func main() {
|
||||
|
||||
cli := client.NewClient("http://ip:30007")
|
||||
cli := client.NewClient("http://ip:port")
|
||||
|
||||
out, err := cli.Predict("What's an alpaca?")
|
||||
if err != nil {
|
||||
@ -201,11 +243,11 @@ docker run --privileged -v /var/run/docker.sock:/var/run/docker.sock --rm -t -v
|
||||
|
||||
## Short-term roadmap
|
||||
|
||||
- Mimic OpenAI API (https://github.com/go-skynet/llama-cli/issues/10)
|
||||
- [x] Mimic OpenAI API (https://github.com/go-skynet/llama-cli/issues/10)
|
||||
- Binary releases (https://github.com/go-skynet/llama-cli/issues/6)
|
||||
- Upstream our golang bindings to llama.cpp (https://github.com/ggerganov/llama.cpp/issues/351)
|
||||
- Multi-model support
|
||||
- Full Deployment and compatibility with https://github.com/mckaywrigley/chatbot-ui
|
||||
- [x] Multi-model support
|
||||
- Have a webUI!
|
||||
|
||||
## License
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user