LocalAI/core/backend/options.go

161 lines
5.1 KiB
Go
Raw Normal View History

package backend
import (
"math/rand"
"os"
"path/filepath"
"github.com/mudler/LocalAI/core/config"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/mudler/LocalAI/pkg/model"
"github.com/rs/zerolog/log"
)
func modelOpts(c config.BackendConfig, so *config.ApplicationConfig, opts []model.Option) []model.Option {
if so.SingleBackend {
opts = append(opts, model.WithSingleActiveBackend())
}
if so.ParallelBackendRequests {
opts = append(opts, model.EnableParallelRequests)
}
if c.GRPC.Attempts != 0 {
opts = append(opts, model.WithGRPCAttempts(c.GRPC.Attempts))
}
if c.GRPC.AttemptsSleepTime != 0 {
opts = append(opts, model.WithGRPCAttemptsDelay(c.GRPC.AttemptsSleepTime))
}
for k, v := range so.ExternalGRPCBackends {
opts = append(opts, model.WithExternalBackend(k, v))
}
return opts
}
func getSeed(c config.BackendConfig) int32 {
seed := int32(*c.Seed)
if seed == config.RAND_SEED {
seed = rand.Int31()
}
return seed
}
func gRPCModelOpts(c config.BackendConfig) *pb.ModelOptions {
b := 512
if c.Batch != 0 {
b = c.Batch
}
return &pb.ModelOptions{
CUDA: c.CUDA || c.Diffusers.CUDA,
SchedulerType: c.Diffusers.SchedulerType,
PipelineType: c.Diffusers.PipelineType,
CFGScale: c.Diffusers.CFGScale,
LoraAdapter: c.LoraAdapter,
LoraScale: c.LoraScale,
F16Memory: *c.F16,
LoraBase: c.LoraBase,
IMG2IMG: c.Diffusers.IMG2IMG,
CLIPModel: c.Diffusers.ClipModel,
CLIPSubfolder: c.Diffusers.ClipSubFolder,
CLIPSkip: int32(c.Diffusers.ClipSkip),
ControlNet: c.Diffusers.ControlNet,
ContextSize: int32(*c.ContextSize),
Seed: getSeed(c),
NBatch: int32(b),
NoMulMatQ: c.NoMulMatQ,
DraftModel: c.DraftModel,
AudioPath: c.VallE.AudioPath,
Quantization: c.Quantization,
GPUMemoryUtilization: c.GPUMemoryUtilization,
TrustRemoteCode: c.TrustRemoteCode,
EnforceEager: c.EnforceEager,
SwapSpace: int32(c.SwapSpace),
MaxModelLen: int32(c.MaxModelLen),
TensorParallelSize: int32(c.TensorParallelSize),
MMProj: c.MMProj,
FlashAttention: c.FlashAttention,
NoKVOffload: c.NoKVOffloading,
YarnExtFactor: c.YarnExtFactor,
YarnAttnFactor: c.YarnAttnFactor,
YarnBetaFast: c.YarnBetaFast,
YarnBetaSlow: c.YarnBetaSlow,
NGQA: c.NGQA,
RMSNormEps: c.RMSNormEps,
MLock: *c.MMlock,
RopeFreqBase: c.RopeFreqBase,
RopeScaling: c.RopeScaling,
Type: c.ModelType,
RopeFreqScale: c.RopeFreqScale,
NUMA: c.NUMA,
Embeddings: c.Embeddings,
LowVRAM: *c.LowVRAM,
NGPULayers: int32(*c.NGPULayers),
MMap: *c.MMap,
MainGPU: c.MainGPU,
Threads: int32(*c.Threads),
TensorSplit: c.TensorSplit,
// AutoGPTQ
ModelBaseName: c.AutoGPTQ.ModelBaseName,
Device: c.AutoGPTQ.Device,
UseTriton: c.AutoGPTQ.Triton,
UseFastTokenizer: c.AutoGPTQ.UseFastTokenizer,
2023-08-22 16:48:06 +00:00
// RWKV
Tokenizer: c.Tokenizer,
}
}
func gRPCPredictOpts(c config.BackendConfig, modelPath string) *pb.PredictOptions {
promptCachePath := ""
if c.PromptCachePath != "" {
p := filepath.Join(modelPath, c.PromptCachePath)
err := os.MkdirAll(filepath.Dir(p), 0750)
if err == nil {
promptCachePath = p
} else {
log.Error().Err(err).Str("promptCachePath", promptCachePath).Msg("error creating prompt cache folder")
}
}
return &pb.PredictOptions{
Temperature: float32(*c.Temperature),
TopP: float32(*c.TopP),
NDraft: c.NDraft,
TopK: int32(*c.TopK),
Tokens: int32(*c.Maxtokens),
Threads: int32(*c.Threads),
PromptCacheAll: c.PromptCacheAll,
PromptCacheRO: c.PromptCacheRO,
PromptCachePath: promptCachePath,
F16KV: *c.F16,
DebugMode: *c.Debug,
Grammar: c.Grammar,
NegativePromptScale: c.NegativePromptScale,
RopeFreqBase: c.RopeFreqBase,
RopeFreqScale: c.RopeFreqScale,
NegativePrompt: c.NegativePrompt,
Mirostat: int32(*c.LLMConfig.Mirostat),
MirostatETA: float32(*c.LLMConfig.MirostatETA),
MirostatTAU: float32(*c.LLMConfig.MirostatTAU),
Debug: *c.Debug,
StopPrompts: c.StopWords,
Repeat: int32(c.RepeatLastN),
FrequencyPenalty: float32(c.FrequencyPenalty),
PresencePenalty: float32(c.PresencePenalty),
Penalty: float32(c.RepeatPenalty),
NKeep: int32(c.Keep),
Batch: int32(c.Batch),
IgnoreEOS: c.IgnoreEOS,
Seed: getSeed(c),
MLock: *c.MMlock,
MMap: *c.MMap,
MainGPU: c.MainGPU,
TensorSplit: c.TensorSplit,
TailFreeSamplingZ: float32(*c.TFZ),
TypicalP: float32(*c.TypicalP),
}
}