24 lines
840 B
Python
Raw Normal View History

import os
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
from langchain.vectorstores.base import VectorStoreRetriever
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
# Load and process the text
embedding = OpenAIEmbeddings()
2023-05-13 11:16:56 +02:00
persist_directory = 'db'
# Now we can load the persisted database from disk, and use it as normal.
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path)
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
retriever = VectorStoreRetriever(vectorstore=vectordb)
qa = RetrievalQA.from_llm(llm=llm, retriever=retriever)
query = "What the president said about taxes ?"
print(qa.run(query))