docs: cleanup langchain-chroma example

This commit is contained in:
mudler 2023-05-13 11:16:56 +02:00
parent de36a48861
commit c3622299ce

View File

@ -2,25 +2,14 @@
import os
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter,CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import VectorDBQA
from langchain.document_loaders import TextLoader
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
# Load and process the text
loader = TextLoader('state_of_the_union.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=70)
texts = text_splitter.split_documents(documents)
# Embed and store the texts
# Supplying a persist_directory will store the embeddings on disk
persist_directory = 'db'
embedding = OpenAIEmbeddings()
persist_directory = 'db'
# Now we can load the persisted database from disk, and use it as normal.
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)