mirror of
https://github.com/mudler/LocalAI.git
synced 2025-02-20 09:26:15 +00:00
docs: cleanup langchain-chroma example
This commit is contained in:
parent
de36a48861
commit
c3622299ce
@ -2,25 +2,14 @@
|
||||
import os
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter,CharacterTextSplitter
|
||||
from langchain.llms import OpenAI
|
||||
from langchain.chains import VectorDBQA
|
||||
from langchain.document_loaders import TextLoader
|
||||
|
||||
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
|
||||
|
||||
# Load and process the text
|
||||
loader = TextLoader('state_of_the_union.txt')
|
||||
documents = loader.load()
|
||||
|
||||
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=70)
|
||||
texts = text_splitter.split_documents(documents)
|
||||
|
||||
# Embed and store the texts
|
||||
# Supplying a persist_directory will store the embeddings on disk
|
||||
persist_directory = 'db'
|
||||
|
||||
embedding = OpenAIEmbeddings()
|
||||
persist_directory = 'db'
|
||||
|
||||
# Now we can load the persisted database from disk, and use it as normal.
|
||||
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
|
||||
|
Loading…
x
Reference in New Issue
Block a user