LocalAI/docs/static/install.sh

658 lines
21 KiB
Bash
Raw Normal View History

#!/bin/sh
# This script installs LocalAI on Linux.
# It detects the current operating system architecture and installs the appropriate version of LocalAI.
# Usage:
# curl ... | ENV_VAR=... sh -
# or
# ENV_VAR=... ./install.sh
set -e
set -o noglob
#set -x
# --- helper functions for logs ---
info()
{
echo ' ' "$@"
}
warn()
{
echo '[WARN] ' "$@" >&2
}
fatal()
{
echo '[ERROR] ' "$@" >&2
exit 1
}
# --- fatal if no systemd or openrc ---
verify_system() {
if [ -x /sbin/openrc-run ]; then
HAS_OPENRC=true
return
fi
if [ -x /bin/systemctl ] || type systemctl > /dev/null 2>&1; then
HAS_SYSTEMD=true
return
fi
fatal 'Can not find systemd or openrc to use as a process supervisor for local-ai.'
}
TEMP_DIR=$(mktemp -d)
cleanup() { rm -rf $TEMP_DIR; }
trap cleanup EXIT
available() { command -v $1 >/dev/null; }
require() {
local MISSING=''
for TOOL in $*; do
if ! available $TOOL; then
MISSING="$MISSING $TOOL"
fi
done
echo $MISSING
}
## VARIABLES
# DOCKER_INSTALL - set to "true" to install Docker images
# USE_AIO - set to "true" to install the all-in-one LocalAI image
PORT=${PORT:-8080}
docker_found=false
if available docker ; then
info "Docker detected."
docker_found=true
if [ -z $DOCKER_INSTALL ]; then
info "Docker detected and no installation method specified. Using Docker."
fi
fi
DOCKER_INSTALL=${DOCKER_INSTALL:-$docker_found}
USE_AIO=${USE_AIO:-false}
API_KEY=${API_KEY:-}
CORE_IMAGES=${CORE_IMAGES:-false}
P2P_TOKEN=${P2P_TOKEN:-}
WORKER=${WORKER:-false}
# nprocs -1
if available nproc; then
procs=$(nproc)
else
procs=1
fi
THREADS=${THREADS:-$procs}
LATEST_VERSION=$(curl -s "https://api.github.com/repos/mudler/LocalAI/releases/latest" | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/')
VERSION="${VERSION:-$LATEST_VERSION}"
MODELS_PATH=${MODELS_PATH:-/usr/share/local-ai/models}
check_gpu() {
# Look for devices based on vendor ID for NVIDIA and AMD
case $1 in
lspci)
case $2 in
nvidia) available lspci && lspci -d '10de:' | grep -q 'NVIDIA' || return 1 ;;
amdgpu) available lspci && lspci -d '1002:' | grep -q 'AMD' || return 1 ;;
intel) available lspci && lspci | grep -E 'VGA|3D' | grep -iq intel | return 1 ;;
esac ;;
lshw)
case $2 in
nvidia) available lshw && $SUDO lshw -c display -numeric | grep -q 'vendor: .* \[10DE\]' || return 1 ;;
amdgpu) available lshw && $SUDO lshw -c display -numeric | grep -q 'vendor: .* \[1002\]' || return 1 ;;
intel) available lshw && $SUDO lshw -c display -numeric | grep -q 'vendor: .* \[8086\]' || return 1 ;;
esac ;;
nvidia-smi) available nvidia-smi || return 1 ;;
esac
}
install_success() {
info "The LocalAI API is now available at 127.0.0.1:$PORT."
if [ "$DOCKER_INSTALL" = "true" ]; then
info "The LocalAI Docker container is now running."
else
info 'Install complete. Run "local-ai" from the command line.'
fi
}
aborted() {
warn 'Installation aborted.'
exit 1
}
trap aborted INT
configure_systemd() {
if ! id local-ai >/dev/null 2>&1; then
info "Creating local-ai user..."
$SUDO useradd -r -s /bin/false -U -m -d /usr/share/local-ai local-ai
fi
info "Adding current user to local-ai group..."
$SUDO usermod -a -G local-ai $(whoami)
STARTCOMMAND="run"
if [ "$WORKER" = true ]; then
if [ -n "$P2P_TOKEN" ]; then
STARTCOMMAND="worker p2p-llama-cpp-rpc"
else
STARTCOMMAND="worker llama-cpp-rpc"
fi
fi
info "Creating local-ai systemd service..."
cat <<EOF | $SUDO tee /etc/systemd/system/local-ai.service >/dev/null
[Unit]
Description=LocalAI Service
After=network-online.target
[Service]
ExecStart=$BINDIR/local-ai $STARTCOMMAND
User=local-ai
Group=local-ai
Restart=always
EnvironmentFile=/etc/localai.env
RestartSec=3
Environment="PATH=$PATH"
WorkingDirectory=/usr/share/local-ai
[Install]
WantedBy=default.target
EOF
$SUDO touch /etc/localai.env
$SUDO echo "ADDRESS=0.0.0.0:$PORT" | $SUDO tee /etc/localai.env >/dev/null
$SUDO echo "API_KEY=$API_KEY" | $SUDO tee -a /etc/localai.env >/dev/null
$SUDO echo "THREADS=$THREADS" | $SUDO tee -a /etc/localai.env >/dev/null
$SUDO echo "MODELS_PATH=$MODELS_PATH" | $SUDO tee -a /etc/localai.env >/dev/null
if [ -n "$P2P_TOKEN" ]; then
$SUDO echo "LOCALAI_P2P_TOKEN=$P2P_TOKEN" | $SUDO tee -a /etc/localai.env >/dev/null
$SUDO echo "LOCALAI_P2P=true" | $SUDO tee -a /etc/localai.env >/dev/null
fi
SYSTEMCTL_RUNNING="$(systemctl is-system-running || true)"
case $SYSTEMCTL_RUNNING in
running|degraded)
info "Enabling and starting local-ai service..."
$SUDO systemctl daemon-reload
$SUDO systemctl enable local-ai
start_service() { $SUDO systemctl restart local-ai; }
trap start_service EXIT
;;
esac
}
# ref: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installing-with-yum-or-dnf
install_container_toolkit_yum() {
info 'Installing NVIDIA repository...'
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo | \
$SUDO tee /etc/yum.repos.d/nvidia-container-toolkit.repo
if [ "$PACKAGE_MANAGER" == "dnf" ]; then
$SUDO $PACKAGE_MANAGER config-manager --enable nvidia-container-toolkit-experimental
else
$SUDO $PACKAGE_MANAGER -y install yum-utils
$SUDO $PACKAGE_MANAGER-config-manager --enable nvidia-container-toolkit-experimental
fi
$SUDO $PACKAGE_MANAGER install -y nvidia-container-toolkit
}
# ref: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installing-with-apt
install_container_toolkit_apt() {
info 'Installing NVIDIA repository...'
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | $SUDO gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
$SUDO tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
$SUDO sudo apt-get update && $SUDO apt-get install -y nvidia-container-toolkit
}
# ref: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installing-with-zypper
install_container_toolkit_zypper() {
info 'Installing NVIDIA repository...'
$SUDO zypper ar https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo
$SUDO zypper modifyrepo --enable nvidia-container-toolkit-experimental
$SUDO zypper --gpg-auto-import-keys install -y nvidia-container-toolkit
}
install_container_toolkit() {
if [ ! -f "/etc/os-release" ]; then
fatal "Unknown distribution. Skipping CUDA installation."
fi
## Check if it's already installed
if check_gpu nvidia-smi && available nvidia-container-runtime; then
info "NVIDIA Container Toolkit already installed."
return
fi
. /etc/os-release
OS_NAME=$ID
OS_VERSION=$VERSION_ID
info "Installing NVIDIA Container Toolkit..."
case $OS_NAME in
amzn|fedora|rocky|centos|rhel) install_container_toolkit_yum ;;
debian|ubuntu) install_container_toolkit_apt ;;
opensuse*|suse*) install_container_toolkit_zypper ;;
*) echo "Could not install nvidia container toolkit - unknown OS" ;;
esac
}
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-7-centos-7
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-8-rocky-8
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-9-rocky-9
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#fedora
install_cuda_driver_yum() {
info 'Installing NVIDIA repository...'
case $PACKAGE_MANAGER in
yum)
$SUDO $PACKAGE_MANAGER -y install yum-utils
$SUDO $PACKAGE_MANAGER-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo
;;
dnf)
$SUDO $PACKAGE_MANAGER config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo
;;
esac
case $1 in
rhel)
info 'Installing EPEL repository...'
# EPEL is required for third-party dependencies such as dkms and libvdpau
$SUDO $PACKAGE_MANAGER -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-$2.noarch.rpm || true
;;
esac
info 'Installing CUDA driver...'
if [ "$1" = 'centos' ] || [ "$1$2" = 'rhel7' ]; then
$SUDO $PACKAGE_MANAGER -y install nvidia-driver-latest-dkms
fi
$SUDO $PACKAGE_MANAGER -y install cuda-drivers
}
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#ubuntu
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#debian
install_cuda_driver_apt() {
info 'Installing NVIDIA repository...'
curl -fsSL -o $TEMP_DIR/cuda-keyring.deb https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-keyring_1.1-1_all.deb
case $1 in
debian)
info 'Enabling contrib sources...'
$SUDO sed 's/main/contrib/' < /etc/apt/sources.list | $SUDO tee /etc/apt/sources.list.d/contrib.list > /dev/null
if [ -f "/etc/apt/sources.list.d/debian.sources" ]; then
$SUDO sed 's/main/contrib/' < /etc/apt/sources.list.d/debian.sources | $SUDO tee /etc/apt/sources.list.d/contrib.sources > /dev/null
fi
;;
esac
info 'Installing CUDA driver...'
$SUDO dpkg -i $TEMP_DIR/cuda-keyring.deb
$SUDO apt-get update
[ -n "$SUDO" ] && SUDO_E="$SUDO -E" || SUDO_E=
DEBIAN_FRONTEND=noninteractive $SUDO_E apt-get -y install cuda-drivers -q
}
install_cuda() {
if [ ! -f "/etc/os-release" ]; then
fatal "Unknown distribution. Skipping CUDA installation."
fi
. /etc/os-release
OS_NAME=$ID
OS_VERSION=$VERSION_ID
if [ -z "$PACKAGE_MANAGER" ]; then
fatal "Unknown package manager. Skipping CUDA installation."
fi
if ! check_gpu nvidia-smi || [ -z "$(nvidia-smi | grep -o "CUDA Version: [0-9]*\.[0-9]*")" ]; then
case $OS_NAME in
centos|rhel) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -d '.' -f 1) ;;
rocky) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -c1) ;;
fedora) [ $OS_VERSION -lt '37' ] && install_cuda_driver_yum $OS_NAME $OS_VERSION || install_cuda_driver_yum $OS_NAME '37';;
amzn) install_cuda_driver_yum 'fedora' '37' ;;
debian) install_cuda_driver_apt $OS_NAME $OS_VERSION ;;
ubuntu) install_cuda_driver_apt $OS_NAME $(echo $OS_VERSION | sed 's/\.//') ;;
*) exit ;;
esac
fi
if ! lsmod | grep -q nvidia || ! lsmod | grep -q nvidia_uvm; then
KERNEL_RELEASE="$(uname -r)"
case $OS_NAME in
rocky) $SUDO $PACKAGE_MANAGER -y install kernel-devel kernel-headers ;;
centos|rhel|amzn) $SUDO $PACKAGE_MANAGER -y install kernel-devel-$KERNEL_RELEASE kernel-headers-$KERNEL_RELEASE ;;
fedora) $SUDO $PACKAGE_MANAGER -y install kernel-devel-$KERNEL_RELEASE ;;
debian|ubuntu) $SUDO apt-get -y install linux-headers-$KERNEL_RELEASE ;;
*) exit ;;
esac
NVIDIA_CUDA_VERSION=$($SUDO dkms info | awk -F: '/added/ { print $1 }')
if [ -n "$NVIDIA_CUDA_VERSION" ]; then
$SUDO dkms install $NVIDIA_CUDA_VERSION
fi
if lsmod | grep -q nouveau; then
info 'Reboot to complete NVIDIA CUDA driver install.'
exit 0
fi
$SUDO modprobe nvidia
$SUDO modprobe nvidia_uvm
fi
# make sure the NVIDIA modules are loaded on boot with nvidia-persistenced
if command -v nvidia-persistenced > /dev/null 2>&1; then
$SUDO touch /etc/modules-load.d/nvidia.conf
MODULES="nvidia nvidia-uvm"
for MODULE in $MODULES; do
if ! grep -qxF "$MODULE" /etc/modules-load.d/nvidia.conf; then
echo "$MODULE" | sudo tee -a /etc/modules-load.d/nvidia.conf > /dev/null
fi
done
fi
info "NVIDIA GPU ready."
install_success
}
install_amd() {
# Look for pre-existing ROCm v6 before downloading the dependencies
for search in "${HIP_PATH:-''}" "${ROCM_PATH:-''}" "/opt/rocm" "/usr/lib64"; do
if [ -n "${search}" ] && [ -e "${search}/libhipblas.so.2" -o -e "${search}/lib/libhipblas.so.2" ]; then
info "Compatible AMD GPU ROCm library detected at ${search}"
install_success
exit 0
fi
done
info "AMD GPU ready."
exit 0
}
install_docker() {
[ "$(uname -s)" = "Linux" ] || fatal 'This script is intended to run on Linux only.'
if ! available docker; then
info "Installing Docker..."
curl -fsSL https://get.docker.com | sh
fi
# Check docker is running
if ! $SUDO systemctl is-active --quiet docker; then
info "Starting Docker..."
$SUDO systemctl start docker
fi
info "Starting LocalAI Docker container..."
# Create volume if doesn't exist already
if ! $SUDO docker volume inspect local-ai-data > /dev/null 2>&1; then
$SUDO docker volume create local-ai-data
fi
# Check if container is already runnning
if $SUDO docker ps -a --format '{{.Names}}' | grep -q local-ai; then
info "LocalAI Docker container already exists, replacing it..."
$SUDO docker rm -f local-ai
# # Check if it is running
# if $SUDO docker ps --format '{{.Names}}' | grep -q local-ai; then
# info "LocalAI Docker container is already running."
# exit 0
# fi
# info "Starting LocalAI Docker container..."
# $SUDO docker start local-ai
# exit 0
fi
STARTCOMMAND="run"
if [ "$WORKER" = true ]; then
if [ -n "$P2P_TOKEN" ]; then
STARTCOMMAND="worker p2p-llama-cpp-rpc"
else
STARTCOMMAND="worker llama-cpp-rpc"
fi
fi
envs=""
if [ -n "$P2P_TOKEN" ]; then
envs="-e LOCALAI_P2P_TOKEN=$P2P_TOKEN -e LOCALAI_P2P=true"
fi
IMAGE_TAG=
if [ "$HAS_CUDA" ]; then
IMAGE_TAG=${VERSION}-cublas-cuda12-ffmpeg
# CORE
if [ "$CORE_IMAGES" = true ]; then
IMAGE_TAG=${VERSION}-cublas-cuda12-ffmpeg-core
fi
# AIO
if [ "$USE_AIO" = true ]; then
IMAGE_TAG=${VERSION}-aio-gpu-nvidia-cuda-12
fi
if ! available nvidia-smi; then
info "Installing nvidia-cuda-toolkit..."
# TODO:
$SUDO apt-get -y install nvidia-cuda-toolkit
fi
$SUDO docker run -v local-ai-data:/build/models \
--gpus all \
--restart=always \
-e API_KEY=$API_KEY \
-e THREADS=$THREADS \
$envs \
-d -p $PORT:8080 --name local-ai localai/localai:$IMAGE_TAG $STARTCOMMAND
elif [ "$HAS_AMD" ]; then
IMAGE_TAG=${VERSION}-hipblas-ffmpeg
# CORE
if [ "$CORE_IMAGES" = true ]; then
IMAGE_TAG=${VERSION}-hipblas-ffmpeg-core
fi
# AIO
if [ "$USE_AIO" = true ]; then
IMAGE_TAG=${VERSION}-aio-gpu-hipblas
fi
$SUDO docker run -v local-ai-data:/build/models \
--device /dev/dri \
--device /dev/kfd \
--restart=always \
-e API_KEY=$API_KEY \
-e THREADS=$THREADS \
$envs \
-d -p $PORT:8080 --name local-ai localai/localai:$IMAGE_TAG $STARTCOMMAND
elif [ "$HAS_INTEL" ]; then
IMAGE_TAG=${VERSION}-sycl-f32-ffmpeg
# CORE
if [ "$CORE_IMAGES" = true ]; then
IMAGE_TAG=${VERSION}-sycl-f32-ffmpeg-core
fi
# AIO
if [ "$USE_AIO" = true ]; then
IMAGE_TAG=${VERSION}-aio-gpu-intel-f32
fi
$SUDO docker run -v local-ai-data:/build/models \
--device /dev/dri \
--restart=always \
-e API_KEY=$API_KEY \
-e THREADS=$THREADS \
$envs \
-d -p $PORT:8080 --name local-ai localai/localai:$IMAGE_TAG $STARTCOMMAND
else
IMAGE_TAG=${VERSION}-ffmpeg
# CORE
if [ "$CORE_IMAGES" = true ]; then
IMAGE_TAG=${VERSION}-ffmpeg-core
fi
# AIO
if [ "$USE_AIO" = true ]; then
IMAGE_TAG=${VERSION}-aio-cpu
fi
$SUDO docker run -v local-ai-data:/models \
--restart=always \
-e MODELS_PATH=/models \
-e API_KEY=$API_KEY \
-e THREADS=$THREADS \
$envs \
-d -p $PORT:8080 --name local-ai localai/localai:$IMAGE_TAG $STARTCOMMAND
fi
install_success
exit 0
}
install_binary_darwin() {
[ "$(uname -s)" = "Darwin" ] || fatal 'This script is intended to run on macOS only.'
info "Downloading local-ai..."
curl --fail --show-error --location --progress-bar -o $TEMP_DIR/local-ai "https://github.com/mudler/LocalAI/releases/download/${VERSION}/local-ai-Darwin-${ARCH}"
info "Installing local-ai..."
install -o0 -g0 -m755 $TEMP_DIR/local-ai /usr/local/bin/local-ai
install_success
}
install_binary() {
[ "$(uname -s)" = "Linux" ] || fatal 'This script is intended to run on Linux only.'
IS_WSL2=false
KERN=$(uname -r)
case "$KERN" in
*icrosoft*WSL2 | *icrosoft*wsl2) IS_WSL2=true;;
*icrosoft) fatal "Microsoft WSL1 is not currently supported. Please upgrade to WSL2 with 'wsl --set-version <distro> 2'" ;;
*) ;;
esac
NEEDS=$(require curl awk grep sed tee xargs)
if [ -n "$NEEDS" ]; then
info "ERROR: The following tools are required but missing:"
for NEED in $NEEDS; do
echo " - $NEED"
done
exit 1
fi
info "Downloading local-ai..."
curl --fail --location --progress-bar -o $TEMP_DIR/local-ai "https://github.com/mudler/LocalAI/releases/download/${VERSION}/local-ai-Linux-${ARCH}"
for BINDIR in /usr/local/bin /usr/bin /bin; do
echo $PATH | grep -q $BINDIR && break || continue
done
info "Installing local-ai to $BINDIR..."
$SUDO install -o0 -g0 -m755 -d $BINDIR
$SUDO install -o0 -g0 -m755 $TEMP_DIR/local-ai $BINDIR/local-ai
verify_system
if [ "$HAS_SYSTEMD" = true ]; then
configure_systemd
fi
# WSL2 only supports GPUs via nvidia passthrough
# so check for nvidia-smi to determine if GPU is available
if [ "$IS_WSL2" = true ]; then
if available nvidia-smi && [ -n "$(nvidia-smi | grep -o "CUDA Version: [0-9]*\.[0-9]*")" ]; then
info "Nvidia GPU detected."
fi
install_success
exit 0
fi
# Install GPU dependencies on Linux
if ! available lspci && ! available lshw; then
warn "Unable to detect NVIDIA/AMD GPU. Install lspci or lshw to automatically detect and install GPU dependencies."
exit 0
fi
if [ "$HAS_AMD" = true ]; then
install_amd
fi
if [ "$HAS_CUDA" = true ]; then
if check_gpu nvidia-smi; then
info "NVIDIA GPU installed."
exit 0
fi
install_cuda
fi
install_success
warn "No NVIDIA/AMD GPU detected. LocalAI will run in CPU-only mode."
exit 0
}
OS="$(uname -s)"
ARCH=$(uname -m)
case "$ARCH" in
x86_64) ARCH="x86_64" ;;
aarch64|arm64) ARCH="arm64" ;;
*) fatal "Unsupported architecture: $ARCH" ;;
esac
if [ "$OS" == "Darwin" ]; then
install_binary_darwin
exit 0
fi
if check_gpu lspci amdgpu || check_gpu lshw amdgpu; then
HAS_AMD=true
fi
if check_gpu lspci nvidia || check_gpu lshw nvidia; then
HAS_CUDA=true
fi
if check_gpu lspci intel || check_gpu lshw intel; then
HAS_INTEL=true
fi
SUDO=
if [ "$(id -u)" -ne 0 ]; then
# Running as root, no need for sudo
if ! available sudo; then
fatal "This script requires superuser permissions. Please re-run as root."
fi
SUDO="sudo"
fi
PACKAGE_MANAGER=
for PACKAGE_MANAGER in dnf yum apt-get; do
if available $PACKAGE_MANAGER; then
break
fi
done
if [ "$DOCKER_INSTALL" = "true" ]; then
if [ "$HAS_CUDA" = true ]; then
install_container_toolkit
fi
install_docker
else
install_binary
fi