#!/bin/sh # This script installs LocalAI on Linux. # It detects the current operating system architecture and installs the appropriate version of LocalAI. # Usage: # curl ... | ENV_VAR=... sh - # or # ENV_VAR=... ./install.sh set -e set -o noglob #set -x # --- helper functions for logs --- info() { echo ' ' "$@" } warn() { echo '[WARN] ' "$@" >&2 } fatal() { echo '[ERROR] ' "$@" >&2 exit 1 } # --- fatal if no systemd or openrc --- verify_system() { if [ -x /sbin/openrc-run ]; then HAS_OPENRC=true return fi if [ -x /bin/systemctl ] || type systemctl > /dev/null 2>&1; then HAS_SYSTEMD=true return fi fatal 'Can not find systemd or openrc to use as a process supervisor for local-ai.' } TEMP_DIR=$(mktemp -d) cleanup() { rm -rf $TEMP_DIR; } trap cleanup EXIT available() { command -v $1 >/dev/null; } require() { local MISSING='' for TOOL in $*; do if ! available $TOOL; then MISSING="$MISSING $TOOL" fi done echo $MISSING } ## VARIABLES # DOCKER_INSTALL - set to "true" to install Docker images # USE_AIO - set to "true" to install the all-in-one LocalAI image PORT=${PORT:-8080} docker_found=false if available docker ; then info "Docker detected." docker_found=true if [ -z $DOCKER_INSTALL ]; then info "Docker detected and no installation method specified. Using Docker." fi fi DOCKER_INSTALL=${DOCKER_INSTALL:-$docker_found} USE_AIO=${USE_AIO:-false} API_KEY=${API_KEY:-} CORE_IMAGES=${CORE_IMAGES:-false} P2P_TOKEN=${P2P_TOKEN:-} WORKER=${WORKER:-false} # nprocs -1 if available nproc; then procs=$(nproc) else procs=1 fi THREADS=${THREADS:-$procs} LATEST_VERSION=$(curl -s "https://api.github.com/repos/mudler/LocalAI/releases/latest" | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/') VERSION="${VERSION:-$LATEST_VERSION}" MODELS_PATH=${MODELS_PATH:-/usr/share/local-ai/models} check_gpu() { # Look for devices based on vendor ID for NVIDIA and AMD case $1 in lspci) case $2 in nvidia) available lspci && lspci -d '10de:' | grep -q 'NVIDIA' || return 1 ;; amdgpu) available lspci && lspci -d '1002:' | grep -q 'AMD' || return 1 ;; intel) available lspci && lspci | grep -E 'VGA|3D' | grep -iq intel | return 1 ;; esac ;; lshw) case $2 in nvidia) available lshw && $SUDO lshw -c display -numeric | grep -q 'vendor: .* \[10DE\]' || return 1 ;; amdgpu) available lshw && $SUDO lshw -c display -numeric | grep -q 'vendor: .* \[1002\]' || return 1 ;; intel) available lshw && $SUDO lshw -c display -numeric | grep -q 'vendor: .* \[8086\]' || return 1 ;; esac ;; nvidia-smi) available nvidia-smi || return 1 ;; esac } install_success() { info "The LocalAI API is now available at 127.0.0.1:$PORT." if [ "$DOCKER_INSTALL" = "true" ]; then info "The LocalAI Docker container is now running." else info 'Install complete. Run "local-ai" from the command line.' fi } aborted() { warn 'Installation aborted.' exit 1 } trap aborted INT configure_systemd() { if ! id local-ai >/dev/null 2>&1; then info "Creating local-ai user..." $SUDO useradd -r -s /bin/false -U -m -d /usr/share/local-ai local-ai fi info "Adding current user to local-ai group..." $SUDO usermod -a -G local-ai $(whoami) STARTCOMMAND="run" if [ "$WORKER" = true ]; then if [ -n "$P2P_TOKEN" ]; then STARTCOMMAND="worker p2p-llama-cpp-rpc" else STARTCOMMAND="worker llama-cpp-rpc" fi fi info "Creating local-ai systemd service..." cat </dev/null [Unit] Description=LocalAI Service After=network-online.target [Service] ExecStart=$BINDIR/local-ai $STARTCOMMAND User=local-ai Group=local-ai Restart=always EnvironmentFile=/etc/localai.env RestartSec=3 Environment="PATH=$PATH" WorkingDirectory=/usr/share/local-ai [Install] WantedBy=default.target EOF $SUDO touch /etc/localai.env $SUDO echo "ADDRESS=0.0.0.0:$PORT" | $SUDO tee /etc/localai.env >/dev/null $SUDO echo "API_KEY=$API_KEY" | $SUDO tee -a /etc/localai.env >/dev/null $SUDO echo "THREADS=$THREADS" | $SUDO tee -a /etc/localai.env >/dev/null $SUDO echo "MODELS_PATH=$MODELS_PATH" | $SUDO tee -a /etc/localai.env >/dev/null if [ -n "$P2P_TOKEN" ]; then $SUDO echo "LOCALAI_P2P_TOKEN=$P2P_TOKEN" | $SUDO tee -a /etc/localai.env >/dev/null $SUDO echo "LOCALAI_P2P=true" | $SUDO tee -a /etc/localai.env >/dev/null fi SYSTEMCTL_RUNNING="$(systemctl is-system-running || true)" case $SYSTEMCTL_RUNNING in running|degraded) info "Enabling and starting local-ai service..." $SUDO systemctl daemon-reload $SUDO systemctl enable local-ai start_service() { $SUDO systemctl restart local-ai; } trap start_service EXIT ;; esac } # ref: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installing-with-yum-or-dnf install_container_toolkit_yum() { info 'Installing NVIDIA repository...' curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo | \ $SUDO tee /etc/yum.repos.d/nvidia-container-toolkit.repo if [ "$PACKAGE_MANAGER" == "dnf" ]; then $SUDO $PACKAGE_MANAGER config-manager --enable nvidia-container-toolkit-experimental else $SUDO $PACKAGE_MANAGER -y install yum-utils $SUDO $PACKAGE_MANAGER-config-manager --enable nvidia-container-toolkit-experimental fi $SUDO $PACKAGE_MANAGER install -y nvidia-container-toolkit } # ref: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installing-with-apt install_container_toolkit_apt() { info 'Installing NVIDIA repository...' curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | $SUDO gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \ && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \ sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \ $SUDO tee /etc/apt/sources.list.d/nvidia-container-toolkit.list $SUDO sudo apt-get update && $SUDO apt-get install -y nvidia-container-toolkit } # ref: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installing-with-zypper install_container_toolkit_zypper() { info 'Installing NVIDIA repository...' $SUDO zypper ar https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo $SUDO zypper modifyrepo --enable nvidia-container-toolkit-experimental $SUDO zypper --gpg-auto-import-keys install -y nvidia-container-toolkit } install_container_toolkit() { if [ ! -f "/etc/os-release" ]; then fatal "Unknown distribution. Skipping CUDA installation." fi ## Check if it's already installed if check_gpu nvidia-smi && available nvidia-container-runtime; then info "NVIDIA Container Toolkit already installed." return fi . /etc/os-release OS_NAME=$ID OS_VERSION=$VERSION_ID info "Installing NVIDIA Container Toolkit..." case $OS_NAME in amzn|fedora|rocky|centos|rhel) install_container_toolkit_yum ;; debian|ubuntu) install_container_toolkit_apt ;; opensuse*|suse*) install_container_toolkit_zypper ;; *) echo "Could not install nvidia container toolkit - unknown OS" ;; esac } # ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-7-centos-7 # ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-8-rocky-8 # ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-9-rocky-9 # ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#fedora install_cuda_driver_yum() { info 'Installing NVIDIA repository...' case $PACKAGE_MANAGER in yum) $SUDO $PACKAGE_MANAGER -y install yum-utils $SUDO $PACKAGE_MANAGER-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo ;; dnf) $SUDO $PACKAGE_MANAGER config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo ;; esac case $1 in rhel) info 'Installing EPEL repository...' # EPEL is required for third-party dependencies such as dkms and libvdpau $SUDO $PACKAGE_MANAGER -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-$2.noarch.rpm || true ;; esac info 'Installing CUDA driver...' if [ "$1" = 'centos' ] || [ "$1$2" = 'rhel7' ]; then $SUDO $PACKAGE_MANAGER -y install nvidia-driver-latest-dkms fi $SUDO $PACKAGE_MANAGER -y install cuda-drivers } # ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#ubuntu # ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#debian install_cuda_driver_apt() { info 'Installing NVIDIA repository...' curl -fsSL -o $TEMP_DIR/cuda-keyring.deb https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-keyring_1.1-1_all.deb case $1 in debian) info 'Enabling contrib sources...' $SUDO sed 's/main/contrib/' < /etc/apt/sources.list | $SUDO tee /etc/apt/sources.list.d/contrib.list > /dev/null if [ -f "/etc/apt/sources.list.d/debian.sources" ]; then $SUDO sed 's/main/contrib/' < /etc/apt/sources.list.d/debian.sources | $SUDO tee /etc/apt/sources.list.d/contrib.sources > /dev/null fi ;; esac info 'Installing CUDA driver...' $SUDO dpkg -i $TEMP_DIR/cuda-keyring.deb $SUDO apt-get update [ -n "$SUDO" ] && SUDO_E="$SUDO -E" || SUDO_E= DEBIAN_FRONTEND=noninteractive $SUDO_E apt-get -y install cuda-drivers -q } install_cuda() { if [ ! -f "/etc/os-release" ]; then fatal "Unknown distribution. Skipping CUDA installation." fi . /etc/os-release OS_NAME=$ID OS_VERSION=$VERSION_ID if [ -z "$PACKAGE_MANAGER" ]; then fatal "Unknown package manager. Skipping CUDA installation." fi if ! check_gpu nvidia-smi || [ -z "$(nvidia-smi | grep -o "CUDA Version: [0-9]*\.[0-9]*")" ]; then case $OS_NAME in centos|rhel) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -d '.' -f 1) ;; rocky) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -c1) ;; fedora) [ $OS_VERSION -lt '37' ] && install_cuda_driver_yum $OS_NAME $OS_VERSION || install_cuda_driver_yum $OS_NAME '37';; amzn) install_cuda_driver_yum 'fedora' '37' ;; debian) install_cuda_driver_apt $OS_NAME $OS_VERSION ;; ubuntu) install_cuda_driver_apt $OS_NAME $(echo $OS_VERSION | sed 's/\.//') ;; *) exit ;; esac fi if ! lsmod | grep -q nvidia || ! lsmod | grep -q nvidia_uvm; then KERNEL_RELEASE="$(uname -r)" case $OS_NAME in rocky) $SUDO $PACKAGE_MANAGER -y install kernel-devel kernel-headers ;; centos|rhel|amzn) $SUDO $PACKAGE_MANAGER -y install kernel-devel-$KERNEL_RELEASE kernel-headers-$KERNEL_RELEASE ;; fedora) $SUDO $PACKAGE_MANAGER -y install kernel-devel-$KERNEL_RELEASE ;; debian|ubuntu) $SUDO apt-get -y install linux-headers-$KERNEL_RELEASE ;; *) exit ;; esac NVIDIA_CUDA_VERSION=$($SUDO dkms info | awk -F: '/added/ { print $1 }') if [ -n "$NVIDIA_CUDA_VERSION" ]; then $SUDO dkms install $NVIDIA_CUDA_VERSION fi if lsmod | grep -q nouveau; then info 'Reboot to complete NVIDIA CUDA driver install.' exit 0 fi $SUDO modprobe nvidia $SUDO modprobe nvidia_uvm fi # make sure the NVIDIA modules are loaded on boot with nvidia-persistenced if command -v nvidia-persistenced > /dev/null 2>&1; then $SUDO touch /etc/modules-load.d/nvidia.conf MODULES="nvidia nvidia-uvm" for MODULE in $MODULES; do if ! grep -qxF "$MODULE" /etc/modules-load.d/nvidia.conf; then echo "$MODULE" | sudo tee -a /etc/modules-load.d/nvidia.conf > /dev/null fi done fi info "NVIDIA GPU ready." install_success } install_amd() { # Look for pre-existing ROCm v6 before downloading the dependencies for search in "${HIP_PATH:-''}" "${ROCM_PATH:-''}" "/opt/rocm" "/usr/lib64"; do if [ -n "${search}" ] && [ -e "${search}/libhipblas.so.2" -o -e "${search}/lib/libhipblas.so.2" ]; then info "Compatible AMD GPU ROCm library detected at ${search}" install_success exit 0 fi done info "AMD GPU ready." exit 0 } install_docker() { [ "$(uname -s)" = "Linux" ] || fatal 'This script is intended to run on Linux only.' if ! available docker; then info "Installing Docker..." curl -fsSL https://get.docker.com | sh fi # Check docker is running if ! $SUDO systemctl is-active --quiet docker; then info "Starting Docker..." $SUDO systemctl start docker fi info "Starting LocalAI Docker container..." # Create volume if doesn't exist already if ! $SUDO docker volume inspect local-ai-data > /dev/null 2>&1; then $SUDO docker volume create local-ai-data fi # Check if container is already runnning if $SUDO docker ps -a --format '{{.Names}}' | grep -q local-ai; then info "LocalAI Docker container already exists, replacing it..." $SUDO docker rm -f local-ai # # Check if it is running # if $SUDO docker ps --format '{{.Names}}' | grep -q local-ai; then # info "LocalAI Docker container is already running." # exit 0 # fi # info "Starting LocalAI Docker container..." # $SUDO docker start local-ai # exit 0 fi STARTCOMMAND="run" if [ "$WORKER" = true ]; then if [ -n "$P2P_TOKEN" ]; then STARTCOMMAND="worker p2p-llama-cpp-rpc" else STARTCOMMAND="worker llama-cpp-rpc" fi fi envs="" if [ -n "$P2P_TOKEN" ]; then envs="-e LOCALAI_P2P_TOKEN=$P2P_TOKEN -e LOCALAI_P2P=true" fi IMAGE_TAG= if [ "$HAS_CUDA" ]; then IMAGE_TAG=${VERSION}-cublas-cuda12-ffmpeg # CORE if [ "$CORE_IMAGES" = true ]; then IMAGE_TAG=${VERSION}-cublas-cuda12-ffmpeg-core fi # AIO if [ "$USE_AIO" = true ]; then IMAGE_TAG=${VERSION}-aio-gpu-nvidia-cuda-12 fi if ! available nvidia-smi; then info "Installing nvidia-cuda-toolkit..." # TODO: $SUDO apt-get -y install nvidia-cuda-toolkit fi $SUDO docker run -v local-ai-data:/build/models \ --gpus all \ --restart=always \ -e API_KEY=$API_KEY \ -e THREADS=$THREADS \ $envs \ -d -p $PORT:8080 --name local-ai localai/localai:$IMAGE_TAG $STARTCOMMAND elif [ "$HAS_AMD" ]; then IMAGE_TAG=${VERSION}-hipblas-ffmpeg # CORE if [ "$CORE_IMAGES" = true ]; then IMAGE_TAG=${VERSION}-hipblas-ffmpeg-core fi # AIO if [ "$USE_AIO" = true ]; then IMAGE_TAG=${VERSION}-aio-gpu-hipblas fi $SUDO docker run -v local-ai-data:/build/models \ --device /dev/dri \ --device /dev/kfd \ --restart=always \ -e API_KEY=$API_KEY \ -e THREADS=$THREADS \ $envs \ -d -p $PORT:8080 --name local-ai localai/localai:$IMAGE_TAG $STARTCOMMAND elif [ "$HAS_INTEL" ]; then IMAGE_TAG=${VERSION}-sycl-f32-ffmpeg # CORE if [ "$CORE_IMAGES" = true ]; then IMAGE_TAG=${VERSION}-sycl-f32-ffmpeg-core fi # AIO if [ "$USE_AIO" = true ]; then IMAGE_TAG=${VERSION}-aio-gpu-intel-f32 fi $SUDO docker run -v local-ai-data:/build/models \ --device /dev/dri \ --restart=always \ -e API_KEY=$API_KEY \ -e THREADS=$THREADS \ $envs \ -d -p $PORT:8080 --name local-ai localai/localai:$IMAGE_TAG $STARTCOMMAND else IMAGE_TAG=${VERSION}-ffmpeg # CORE if [ "$CORE_IMAGES" = true ]; then IMAGE_TAG=${VERSION}-ffmpeg-core fi # AIO if [ "$USE_AIO" = true ]; then IMAGE_TAG=${VERSION}-aio-cpu fi $SUDO docker run -v local-ai-data:/models \ --restart=always \ -e MODELS_PATH=/models \ -e API_KEY=$API_KEY \ -e THREADS=$THREADS \ $envs \ -d -p $PORT:8080 --name local-ai localai/localai:$IMAGE_TAG $STARTCOMMAND fi install_success exit 0 } install_binary_darwin() { [ "$(uname -s)" = "Darwin" ] || fatal 'This script is intended to run on macOS only.' info "Downloading local-ai..." curl --fail --show-error --location --progress-bar -o $TEMP_DIR/local-ai "https://github.com/mudler/LocalAI/releases/download/${VERSION}/local-ai-Darwin-${ARCH}" info "Installing local-ai..." install -o0 -g0 -m755 $TEMP_DIR/local-ai /usr/local/bin/local-ai install_success } install_binary() { [ "$(uname -s)" = "Linux" ] || fatal 'This script is intended to run on Linux only.' IS_WSL2=false KERN=$(uname -r) case "$KERN" in *icrosoft*WSL2 | *icrosoft*wsl2) IS_WSL2=true;; *icrosoft) fatal "Microsoft WSL1 is not currently supported. Please upgrade to WSL2 with 'wsl --set-version 2'" ;; *) ;; esac NEEDS=$(require curl awk grep sed tee xargs) if [ -n "$NEEDS" ]; then info "ERROR: The following tools are required but missing:" for NEED in $NEEDS; do echo " - $NEED" done exit 1 fi info "Downloading local-ai..." curl --fail --location --progress-bar -o $TEMP_DIR/local-ai "https://github.com/mudler/LocalAI/releases/download/${VERSION}/local-ai-Linux-${ARCH}" for BINDIR in /usr/local/bin /usr/bin /bin; do echo $PATH | grep -q $BINDIR && break || continue done info "Installing local-ai to $BINDIR..." $SUDO install -o0 -g0 -m755 -d $BINDIR $SUDO install -o0 -g0 -m755 $TEMP_DIR/local-ai $BINDIR/local-ai verify_system if [ "$HAS_SYSTEMD" = true ]; then configure_systemd fi # WSL2 only supports GPUs via nvidia passthrough # so check for nvidia-smi to determine if GPU is available if [ "$IS_WSL2" = true ]; then if available nvidia-smi && [ -n "$(nvidia-smi | grep -o "CUDA Version: [0-9]*\.[0-9]*")" ]; then info "Nvidia GPU detected." fi install_success exit 0 fi # Install GPU dependencies on Linux if ! available lspci && ! available lshw; then warn "Unable to detect NVIDIA/AMD GPU. Install lspci or lshw to automatically detect and install GPU dependencies." exit 0 fi if [ "$HAS_AMD" = true ]; then install_amd fi if [ "$HAS_CUDA" = true ]; then if check_gpu nvidia-smi; then info "NVIDIA GPU installed." exit 0 fi install_cuda fi install_success warn "No NVIDIA/AMD GPU detected. LocalAI will run in CPU-only mode." exit 0 } OS="$(uname -s)" ARCH=$(uname -m) case "$ARCH" in x86_64) ARCH="x86_64" ;; aarch64|arm64) ARCH="arm64" ;; *) fatal "Unsupported architecture: $ARCH" ;; esac if [ "$OS" == "Darwin" ]; then install_binary_darwin exit 0 fi if check_gpu lspci amdgpu || check_gpu lshw amdgpu; then HAS_AMD=true fi if check_gpu lspci nvidia || check_gpu lshw nvidia; then HAS_CUDA=true fi if check_gpu lspci intel || check_gpu lshw intel; then HAS_INTEL=true fi SUDO= if [ "$(id -u)" -ne 0 ]; then # Running as root, no need for sudo if ! available sudo; then fatal "This script requires superuser permissions. Please re-run as root." fi SUDO="sudo" fi PACKAGE_MANAGER= for PACKAGE_MANAGER in dnf yum apt-get; do if available $PACKAGE_MANAGER; then break fi done if [ "$DOCKER_INSTALL" = "true" ]; then if [ "$HAS_CUDA" = true ]; then install_container_toolkit fi install_docker else install_binary fi