LocalAI/api/openai/request.go

281 lines
6.7 KiB
Go
Raw Normal View History

package openai
import (
"context"
"encoding/base64"
"encoding/json"
"fmt"
"io/ioutil"
"net/http"
"strings"
fiberContext "github.com/go-skynet/LocalAI/api/ctx"
config "github.com/go-skynet/LocalAI/core/config"
options "github.com/go-skynet/LocalAI/core/options"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/grammar"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
func readRequest(c *fiber.Ctx, o *options.Option, firstModel bool) (string, *schema.OpenAIRequest, error) {
input := new(schema.OpenAIRequest)
ctx, cancel := context.WithCancel(o.Context)
input.Context = ctx
input.Cancel = cancel
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return "", nil, fmt.Errorf("failed parsing request body: %w", err)
}
received, _ := json.Marshal(input)
log.Debug().Msgf("Request received: %s", string(received))
modelFile, err := fiberContext.ModelFromContext(c, o.Loader, input.Model, firstModel)
return modelFile, input, err
}
// this function check if the string is an URL, if it's an URL downloads the image in memory
// encodes it in base64 and returns the base64 string
func getBase64Image(s string) (string, error) {
if strings.HasPrefix(s, "http") {
// download the image
resp, err := http.Get(s)
if err != nil {
return "", err
}
defer resp.Body.Close()
// read the image data into memory
data, err := ioutil.ReadAll(resp.Body)
if err != nil {
return "", err
}
// encode the image data in base64
encoded := base64.StdEncoding.EncodeToString(data)
// return the base64 string
return encoded, nil
}
// if the string instead is prefixed with "data:image/jpeg;base64,", drop it
if strings.HasPrefix(s, "data:image/jpeg;base64,") {
return strings.ReplaceAll(s, "data:image/jpeg;base64,", ""), nil
}
return "", fmt.Errorf("not valid string")
}
func updateRequestConfig(config *config.Config, input *schema.OpenAIRequest) {
if input.Echo {
config.Echo = input.Echo
}
if input.TopK != 0 {
config.TopK = input.TopK
}
if input.TopP != 0 {
config.TopP = input.TopP
}
if input.Backend != "" {
config.Backend = input.Backend
}
if input.ClipSkip != 0 {
config.Diffusers.ClipSkip = input.ClipSkip
}
if input.ModelBaseName != "" {
config.AutoGPTQ.ModelBaseName = input.ModelBaseName
}
if input.NegativePromptScale != 0 {
config.NegativePromptScale = input.NegativePromptScale
}
if input.UseFastTokenizer {
config.UseFastTokenizer = input.UseFastTokenizer
}
if input.NegativePrompt != "" {
config.NegativePrompt = input.NegativePrompt
}
if input.RopeFreqBase != 0 {
config.RopeFreqBase = input.RopeFreqBase
}
if input.RopeFreqScale != 0 {
config.RopeFreqScale = input.RopeFreqScale
}
if input.Grammar != "" {
config.Grammar = input.Grammar
}
if input.Temperature != 0 {
config.Temperature = input.Temperature
}
if input.Maxtokens != 0 {
config.Maxtokens = input.Maxtokens
}
switch stop := input.Stop.(type) {
case string:
if stop != "" {
config.StopWords = append(config.StopWords, stop)
}
case []interface{}:
for _, pp := range stop {
if s, ok := pp.(string); ok {
config.StopWords = append(config.StopWords, s)
}
}
}
if len(input.Tools) > 0 {
for _, tool := range input.Tools {
input.Functions = append(input.Functions, tool.Function)
}
}
if input.ToolsChoice != nil {
var toolChoice grammar.Tool
json.Unmarshal([]byte(input.ToolsChoice.(string)), &toolChoice)
input.FunctionCall = map[string]interface{}{
"name": toolChoice.Function.Name,
}
}
// Decode each request's message content
index := 0
for i, m := range input.Messages {
switch content := m.Content.(type) {
case string:
input.Messages[i].StringContent = content
case []interface{}:
dat, _ := json.Marshal(content)
c := []schema.Content{}
json.Unmarshal(dat, &c)
for _, pp := range c {
if pp.Type == "text" {
input.Messages[i].StringContent = pp.Text
} else if pp.Type == "image_url" {
// Detect if pp.ImageURL is an URL, if it is download the image and encode it in base64:
base64, err := getBase64Image(pp.ImageURL.URL)
if err == nil {
input.Messages[i].StringImages = append(input.Messages[i].StringImages, base64) // TODO: make sure that we only return base64 stuff
// set a placeholder for each image
input.Messages[i].StringContent = fmt.Sprintf("[img-%d]", index) + input.Messages[i].StringContent
index++
} else {
fmt.Print("Failed encoding image", err)
}
}
}
}
}
if input.RepeatPenalty != 0 {
config.RepeatPenalty = input.RepeatPenalty
}
if input.Keep != 0 {
config.Keep = input.Keep
}
if input.Batch != 0 {
config.Batch = input.Batch
}
if input.F16 {
config.F16 = input.F16
}
if input.IgnoreEOS {
config.IgnoreEOS = input.IgnoreEOS
}
if input.Seed != 0 {
config.Seed = input.Seed
}
if input.Mirostat != 0 {
config.LLMConfig.Mirostat = input.Mirostat
}
if input.MirostatETA != 0 {
config.LLMConfig.MirostatETA = input.MirostatETA
}
if input.MirostatTAU != 0 {
config.LLMConfig.MirostatTAU = input.MirostatTAU
}
if input.TypicalP != 0 {
config.TypicalP = input.TypicalP
}
switch inputs := input.Input.(type) {
case string:
if inputs != "" {
config.InputStrings = append(config.InputStrings, inputs)
}
case []interface{}:
for _, pp := range inputs {
switch i := pp.(type) {
case string:
config.InputStrings = append(config.InputStrings, i)
case []interface{}:
tokens := []int{}
for _, ii := range i {
tokens = append(tokens, int(ii.(float64)))
}
config.InputToken = append(config.InputToken, tokens)
}
}
}
// Can be either a string or an object
switch fnc := input.FunctionCall.(type) {
case string:
if fnc != "" {
config.SetFunctionCallString(fnc)
}
case map[string]interface{}:
var name string
n, exists := fnc["name"]
if exists {
nn, e := n.(string)
if e {
name = nn
}
}
config.SetFunctionCallNameString(name)
}
switch p := input.Prompt.(type) {
case string:
config.PromptStrings = append(config.PromptStrings, p)
case []interface{}:
for _, pp := range p {
if s, ok := pp.(string); ok {
config.PromptStrings = append(config.PromptStrings, s)
}
}
}
}
func mergeRequestWithConfig(modelFile string, input *schema.OpenAIRequest, cm *config.ConfigLoader, loader *model.ModelLoader, debug bool, threads, ctx int, f16 bool) (*config.Config, *schema.OpenAIRequest, error) {
cfg, err := config.Load(modelFile, loader.ModelPath, cm, debug, threads, ctx, f16)
// Set the parameters for the language model prediction
updateRequestConfig(cfg, input)
return cfg, input, err
}