2024-01-05 12:04:46 -05:00
|
|
|
package openai
|
|
|
|
|
|
|
|
import (
|
|
|
|
"bufio"
|
|
|
|
"bytes"
|
|
|
|
"encoding/json"
|
|
|
|
"fmt"
|
2024-04-17 23:33:49 +02:00
|
|
|
"strings"
|
|
|
|
"time"
|
2024-01-05 12:04:46 -05:00
|
|
|
|
|
|
|
"github.com/gofiber/fiber/v2"
|
2024-04-17 23:33:49 +02:00
|
|
|
"github.com/google/uuid"
|
2024-06-23 01:24:36 -07:00
|
|
|
"github.com/mudler/LocalAI/core/backend"
|
|
|
|
"github.com/mudler/LocalAI/core/config"
|
|
|
|
"github.com/mudler/LocalAI/core/schema"
|
|
|
|
"github.com/mudler/LocalAI/pkg/functions"
|
2024-12-08 13:50:33 +01:00
|
|
|
"github.com/mudler/LocalAI/pkg/templates"
|
|
|
|
|
2024-06-23 01:24:36 -07:00
|
|
|
model "github.com/mudler/LocalAI/pkg/model"
|
2024-01-05 12:04:46 -05:00
|
|
|
"github.com/rs/zerolog/log"
|
|
|
|
"github.com/valyala/fasthttp"
|
|
|
|
)
|
|
|
|
|
2024-03-29 22:29:33 +01:00
|
|
|
// ChatEndpoint is the OpenAI Completion API endpoint https://platform.openai.com/docs/api-reference/chat/create
|
|
|
|
// @Summary Generate a chat completions for a given prompt and model.
|
|
|
|
// @Param request body schema.OpenAIRequest true "query params"
|
|
|
|
// @Success 200 {object} schema.OpenAIResponse "Response"
|
|
|
|
// @Router /v1/chat/completions [post]
|
2024-12-08 13:50:33 +01:00
|
|
|
func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, evaluator *templates.Evaluator, startupOptions *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
2024-08-22 10:56:05 +02:00
|
|
|
var id, textContentToReturn string
|
|
|
|
var created int
|
2024-04-17 23:33:49 +02:00
|
|
|
|
|
|
|
process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
|
|
|
initialMessage := schema.OpenAIResponse{
|
|
|
|
ID: id,
|
|
|
|
Created: created,
|
|
|
|
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
2024-05-28 21:06:09 +02:00
|
|
|
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &textContentToReturn}}},
|
2024-04-17 23:33:49 +02:00
|
|
|
Object: "chat.completion.chunk",
|
|
|
|
}
|
|
|
|
responses <- initialMessage
|
|
|
|
|
|
|
|
ComputeChoices(req, s, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
|
|
|
resp := schema.OpenAIResponse{
|
|
|
|
ID: id,
|
|
|
|
Created: created,
|
|
|
|
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
2024-12-08 17:53:36 +01:00
|
|
|
Choices: []schema.Choice{{Delta: &schema.Message{Content: &s}, Index: 0}},
|
2024-04-17 23:33:49 +02:00
|
|
|
Object: "chat.completion.chunk",
|
|
|
|
Usage: schema.OpenAIUsage{
|
|
|
|
PromptTokens: usage.Prompt,
|
|
|
|
CompletionTokens: usage.Completion,
|
|
|
|
TotalTokens: usage.Prompt + usage.Completion,
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
responses <- resp
|
|
|
|
return true
|
|
|
|
})
|
|
|
|
close(responses)
|
|
|
|
}
|
|
|
|
processTools := func(noAction string, prompt string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
|
|
|
result := ""
|
|
|
|
_, tokenUsage, _ := ComputeChoices(req, prompt, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
|
|
|
result += s
|
|
|
|
// TODO: Change generated BNF grammar to be compliant with the schema so we can
|
|
|
|
// stream the result token by token here.
|
|
|
|
return true
|
|
|
|
})
|
|
|
|
|
2024-05-31 09:36:27 +02:00
|
|
|
textContentToReturn = functions.ParseTextContent(result, config.FunctionsConfig)
|
2024-05-22 00:14:16 +02:00
|
|
|
result = functions.CleanupLLMResult(result, config.FunctionsConfig)
|
2024-09-13 13:27:36 +02:00
|
|
|
functionResults := functions.ParseFunctionCall(result, config.FunctionsConfig)
|
2024-05-31 09:36:27 +02:00
|
|
|
log.Debug().Msgf("Text content to return: %s", textContentToReturn)
|
2024-09-13 13:27:36 +02:00
|
|
|
noActionToRun := len(functionResults) > 0 && functionResults[0].Name == noAction || len(functionResults) == 0
|
2024-04-17 23:33:49 +02:00
|
|
|
|
|
|
|
switch {
|
|
|
|
case noActionToRun:
|
|
|
|
initialMessage := schema.OpenAIResponse{
|
|
|
|
ID: id,
|
|
|
|
Created: created,
|
|
|
|
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
2024-05-28 21:06:09 +02:00
|
|
|
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &textContentToReturn}}},
|
2024-04-17 23:33:49 +02:00
|
|
|
Object: "chat.completion.chunk",
|
|
|
|
}
|
|
|
|
responses <- initialMessage
|
|
|
|
|
2024-09-13 13:27:36 +02:00
|
|
|
result, err := handleQuestion(config, req, ml, startupOptions, functionResults, result, prompt)
|
2024-04-17 23:33:49 +02:00
|
|
|
if err != nil {
|
|
|
|
log.Error().Err(err).Msg("error handling question")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
resp := schema.OpenAIResponse{
|
|
|
|
ID: id,
|
|
|
|
Created: created,
|
|
|
|
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
|
|
|
Choices: []schema.Choice{{Delta: &schema.Message{Content: &result}, Index: 0}},
|
|
|
|
Object: "chat.completion.chunk",
|
|
|
|
Usage: schema.OpenAIUsage{
|
|
|
|
PromptTokens: tokenUsage.Prompt,
|
|
|
|
CompletionTokens: tokenUsage.Completion,
|
|
|
|
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
responses <- resp
|
|
|
|
|
|
|
|
default:
|
2024-09-13 13:27:36 +02:00
|
|
|
for i, ss := range functionResults {
|
2024-04-18 22:43:12 +02:00
|
|
|
name, args := ss.Name, ss.Arguments
|
2024-04-17 23:33:49 +02:00
|
|
|
|
|
|
|
initialMessage := schema.OpenAIResponse{
|
|
|
|
ID: id,
|
|
|
|
Created: created,
|
|
|
|
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
|
|
|
Choices: []schema.Choice{{
|
|
|
|
Delta: &schema.Message{
|
|
|
|
Role: "assistant",
|
|
|
|
ToolCalls: []schema.ToolCall{
|
|
|
|
{
|
|
|
|
Index: i,
|
|
|
|
ID: id,
|
|
|
|
Type: "function",
|
|
|
|
FunctionCall: schema.FunctionCall{
|
|
|
|
Name: name,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
},
|
|
|
|
}}},
|
|
|
|
Object: "chat.completion.chunk",
|
|
|
|
}
|
|
|
|
responses <- initialMessage
|
|
|
|
|
|
|
|
responses <- schema.OpenAIResponse{
|
|
|
|
ID: id,
|
|
|
|
Created: created,
|
|
|
|
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
|
|
|
Choices: []schema.Choice{{
|
|
|
|
Delta: &schema.Message{
|
2024-05-31 09:36:27 +02:00
|
|
|
Role: "assistant",
|
|
|
|
Content: &textContentToReturn,
|
2024-04-17 23:33:49 +02:00
|
|
|
ToolCalls: []schema.ToolCall{
|
|
|
|
{
|
|
|
|
Index: i,
|
|
|
|
ID: id,
|
|
|
|
Type: "function",
|
|
|
|
FunctionCall: schema.FunctionCall{
|
|
|
|
Arguments: args,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
},
|
|
|
|
}}},
|
|
|
|
Object: "chat.completion.chunk",
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
close(responses)
|
|
|
|
}
|
|
|
|
|
2024-01-05 12:04:46 -05:00
|
|
|
return func(c *fiber.Ctx) error {
|
2024-08-22 10:56:05 +02:00
|
|
|
textContentToReturn = ""
|
|
|
|
id = uuid.New().String()
|
|
|
|
created = int(time.Now().Unix())
|
2024-09-28 08:23:56 -07:00
|
|
|
// Set CorrelationID
|
|
|
|
correlationID := c.Get("X-Correlation-ID")
|
|
|
|
if len(strings.TrimSpace(correlationID)) == 0 {
|
|
|
|
correlationID = id
|
|
|
|
}
|
|
|
|
c.Set("X-Correlation-ID", correlationID)
|
2024-08-22 10:56:05 +02:00
|
|
|
|
2024-07-10 15:28:39 +02:00
|
|
|
modelFile, input, err := readRequest(c, cl, ml, startupOptions, true)
|
2024-01-05 12:04:46 -05:00
|
|
|
if err != nil {
|
2024-04-17 23:33:49 +02:00
|
|
|
return fmt.Errorf("failed reading parameters from request:%w", err)
|
2024-01-05 12:04:46 -05:00
|
|
|
}
|
|
|
|
|
2024-04-17 23:33:49 +02:00
|
|
|
config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, startupOptions.Debug, startupOptions.Threads, startupOptions.ContextSize, startupOptions.F16)
|
2024-01-05 12:04:46 -05:00
|
|
|
if err != nil {
|
2024-04-17 23:33:49 +02:00
|
|
|
return fmt.Errorf("failed reading parameters from request:%w", err)
|
|
|
|
}
|
|
|
|
log.Debug().Msgf("Configuration read: %+v", config)
|
|
|
|
|
2024-04-18 22:43:12 +02:00
|
|
|
funcs := input.Functions
|
|
|
|
shouldUseFn := len(input.Functions) > 0 && config.ShouldUseFunctions()
|
2024-08-07 21:27:02 +02:00
|
|
|
strictMode := false
|
|
|
|
|
|
|
|
for _, f := range input.Functions {
|
|
|
|
if f.Strict {
|
|
|
|
strictMode = true
|
|
|
|
break
|
|
|
|
}
|
|
|
|
}
|
2024-04-18 22:43:12 +02:00
|
|
|
|
2024-04-17 23:33:49 +02:00
|
|
|
// Allow the user to set custom actions via config file
|
|
|
|
// to be "embedded" in each model
|
|
|
|
noActionName := "answer"
|
|
|
|
noActionDescription := "use this action to answer without performing any action"
|
|
|
|
|
|
|
|
if config.FunctionsConfig.NoActionFunctionName != "" {
|
|
|
|
noActionName = config.FunctionsConfig.NoActionFunctionName
|
|
|
|
}
|
|
|
|
if config.FunctionsConfig.NoActionDescriptionName != "" {
|
|
|
|
noActionDescription = config.FunctionsConfig.NoActionDescriptionName
|
|
|
|
}
|
|
|
|
|
2024-05-29 18:10:54 +05:30
|
|
|
if config.ResponseFormatMap != nil {
|
|
|
|
d := schema.ChatCompletionResponseFormat{}
|
2024-08-07 21:27:02 +02:00
|
|
|
dat, err := json.Marshal(config.ResponseFormatMap)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
err = json.Unmarshal(dat, &d)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
2024-05-29 18:10:54 +05:30
|
|
|
if d.Type == "json_object" {
|
|
|
|
input.Grammar = functions.JSONBNF
|
2024-08-07 21:27:02 +02:00
|
|
|
} else if d.Type == "json_schema" {
|
|
|
|
d := schema.JsonSchemaRequest{}
|
|
|
|
dat, err := json.Marshal(config.ResponseFormatMap)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
err = json.Unmarshal(dat, &d)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
fs := &functions.JSONFunctionStructure{
|
|
|
|
AnyOf: []functions.Item{d.JsonSchema.Schema},
|
|
|
|
}
|
|
|
|
g, err := fs.Grammar(config.FunctionsConfig.GrammarOptions()...)
|
|
|
|
if err == nil {
|
|
|
|
input.Grammar = g
|
|
|
|
}
|
2024-05-29 18:10:54 +05:30
|
|
|
}
|
2024-04-17 23:33:49 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
config.Grammar = input.Grammar
|
|
|
|
|
2024-04-18 22:43:12 +02:00
|
|
|
if shouldUseFn {
|
2024-04-17 23:33:49 +02:00
|
|
|
log.Debug().Msgf("Response needs to process functions")
|
2024-04-18 22:43:12 +02:00
|
|
|
}
|
2024-04-17 23:33:49 +02:00
|
|
|
|
2024-04-18 22:43:12 +02:00
|
|
|
switch {
|
2024-08-07 21:27:02 +02:00
|
|
|
case (!config.FunctionsConfig.GrammarConfig.NoGrammar || strictMode) && shouldUseFn:
|
2024-04-18 22:43:12 +02:00
|
|
|
noActionGrammar := functions.Function{
|
2024-04-17 23:33:49 +02:00
|
|
|
Name: noActionName,
|
|
|
|
Description: noActionDescription,
|
|
|
|
Parameters: map[string]interface{}{
|
|
|
|
"properties": map[string]interface{}{
|
|
|
|
"message": map[string]interface{}{
|
|
|
|
"type": "string",
|
|
|
|
"description": "The message to reply the user with",
|
|
|
|
}},
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
// Append the no action function
|
|
|
|
if !config.FunctionsConfig.DisableNoAction {
|
|
|
|
funcs = append(funcs, noActionGrammar)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Force picking one of the functions by the request
|
|
|
|
if config.FunctionToCall() != "" {
|
|
|
|
funcs = funcs.Select(config.FunctionToCall())
|
|
|
|
}
|
|
|
|
|
|
|
|
// Update input grammar
|
2024-07-18 17:52:22 +02:00
|
|
|
jsStruct := funcs.ToJSONStructure(config.FunctionsConfig.FunctionNameKey, config.FunctionsConfig.FunctionNameKey)
|
2024-07-26 20:11:29 +02:00
|
|
|
g, err := jsStruct.Grammar(config.FunctionsConfig.GrammarOptions()...)
|
2024-07-25 08:41:00 +02:00
|
|
|
if err == nil {
|
|
|
|
config.Grammar = g
|
|
|
|
}
|
2024-04-18 22:43:12 +02:00
|
|
|
case input.JSONFunctionGrammarObject != nil:
|
2024-07-26 20:11:29 +02:00
|
|
|
g, err := input.JSONFunctionGrammarObject.Grammar(config.FunctionsConfig.GrammarOptions()...)
|
2024-07-25 08:41:00 +02:00
|
|
|
if err == nil {
|
|
|
|
config.Grammar = g
|
|
|
|
}
|
2024-04-18 22:43:12 +02:00
|
|
|
default:
|
|
|
|
// Force picking one of the functions by the request
|
|
|
|
if config.FunctionToCall() != "" {
|
|
|
|
funcs = funcs.Select(config.FunctionToCall())
|
|
|
|
}
|
2024-01-05 12:04:46 -05:00
|
|
|
}
|
|
|
|
|
2024-04-18 22:43:12 +02:00
|
|
|
// process functions if we have any defined or if we have a function call string
|
|
|
|
|
2024-04-17 23:33:49 +02:00
|
|
|
// functions are not supported in stream mode (yet?)
|
|
|
|
toStream := input.Stream
|
|
|
|
|
|
|
|
log.Debug().Msgf("Parameters: %+v", config)
|
|
|
|
|
|
|
|
var predInput string
|
|
|
|
|
|
|
|
// If we are using the tokenizer template, we don't need to process the messages
|
|
|
|
// unless we are processing functions
|
2024-04-18 22:43:12 +02:00
|
|
|
if !config.TemplateConfig.UseTokenizerTemplate || shouldUseFn {
|
2024-12-08 13:50:33 +01:00
|
|
|
predInput = evaluator.TemplateMessages(input.Messages, config, funcs, shouldUseFn)
|
2024-01-05 12:04:46 -05:00
|
|
|
|
2024-04-17 23:33:49 +02:00
|
|
|
log.Debug().Msgf("Prompt (after templating): %s", predInput)
|
2024-12-08 13:50:33 +01:00
|
|
|
if config.Grammar != "" {
|
2024-04-17 23:33:49 +02:00
|
|
|
log.Debug().Msgf("Grammar: %+v", config.Grammar)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
switch {
|
|
|
|
case toStream:
|
|
|
|
|
|
|
|
log.Debug().Msgf("Stream request received")
|
2024-01-05 12:04:46 -05:00
|
|
|
c.Context().SetContentType("text/event-stream")
|
|
|
|
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
|
2024-04-17 23:33:49 +02:00
|
|
|
// c.Set("Content-Type", "text/event-stream")
|
2024-01-05 12:04:46 -05:00
|
|
|
c.Set("Cache-Control", "no-cache")
|
|
|
|
c.Set("Connection", "keep-alive")
|
|
|
|
c.Set("Transfer-Encoding", "chunked")
|
2024-09-28 08:23:56 -07:00
|
|
|
c.Set("X-Correlation-ID", id)
|
2024-01-05 12:04:46 -05:00
|
|
|
|
2024-04-17 23:33:49 +02:00
|
|
|
responses := make(chan schema.OpenAIResponse)
|
|
|
|
|
2024-04-18 22:43:12 +02:00
|
|
|
if !shouldUseFn {
|
2024-04-17 23:33:49 +02:00
|
|
|
go process(predInput, input, config, ml, responses)
|
|
|
|
} else {
|
|
|
|
go processTools(noActionName, predInput, input, config, ml, responses)
|
|
|
|
}
|
|
|
|
|
2024-01-05 12:04:46 -05:00
|
|
|
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
|
|
|
|
usage := &schema.OpenAIUsage{}
|
2024-02-17 10:00:34 +01:00
|
|
|
toolsCalled := false
|
2024-04-17 23:33:49 +02:00
|
|
|
for ev := range responses {
|
|
|
|
usage = &ev.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it
|
|
|
|
if len(ev.Choices[0].Delta.ToolCalls) > 0 {
|
2024-02-17 10:00:34 +01:00
|
|
|
toolsCalled = true
|
|
|
|
}
|
2024-01-05 12:04:46 -05:00
|
|
|
var buf bytes.Buffer
|
|
|
|
enc := json.NewEncoder(&buf)
|
2024-04-17 23:33:49 +02:00
|
|
|
enc.Encode(ev)
|
|
|
|
log.Debug().Msgf("Sending chunk: %s", buf.String())
|
2024-01-05 12:04:46 -05:00
|
|
|
_, err := fmt.Fprintf(w, "data: %v\n", buf.String())
|
|
|
|
if err != nil {
|
2024-04-17 23:33:49 +02:00
|
|
|
log.Debug().Msgf("Sending chunk failed: %v", err)
|
|
|
|
input.Cancel()
|
2024-01-05 12:04:46 -05:00
|
|
|
}
|
2024-04-17 23:33:49 +02:00
|
|
|
w.Flush()
|
2024-01-05 12:04:46 -05:00
|
|
|
}
|
|
|
|
|
2024-02-17 10:00:34 +01:00
|
|
|
finishReason := "stop"
|
|
|
|
if toolsCalled {
|
|
|
|
finishReason = "tool_calls"
|
2024-04-17 23:33:49 +02:00
|
|
|
} else if toolsCalled && len(input.Tools) == 0 {
|
2024-02-17 10:00:34 +01:00
|
|
|
finishReason = "function_call"
|
|
|
|
}
|
|
|
|
|
2024-01-05 12:04:46 -05:00
|
|
|
resp := &schema.OpenAIResponse{
|
2024-04-17 23:33:49 +02:00
|
|
|
ID: id,
|
|
|
|
Created: created,
|
|
|
|
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
2024-01-05 12:04:46 -05:00
|
|
|
Choices: []schema.Choice{
|
|
|
|
{
|
2024-02-17 10:00:34 +01:00
|
|
|
FinishReason: finishReason,
|
2024-01-05 12:04:46 -05:00
|
|
|
Index: 0,
|
2024-05-28 21:06:09 +02:00
|
|
|
Delta: &schema.Message{Content: &textContentToReturn},
|
2024-01-05 12:04:46 -05:00
|
|
|
}},
|
|
|
|
Object: "chat.completion.chunk",
|
|
|
|
Usage: *usage,
|
|
|
|
}
|
|
|
|
respData, _ := json.Marshal(resp)
|
|
|
|
|
|
|
|
w.WriteString(fmt.Sprintf("data: %s\n\n", respData))
|
|
|
|
w.WriteString("data: [DONE]\n\n")
|
|
|
|
w.Flush()
|
|
|
|
}))
|
2024-04-13 03:45:34 -04:00
|
|
|
return nil
|
2024-04-17 23:33:49 +02:00
|
|
|
|
|
|
|
// no streaming mode
|
|
|
|
default:
|
|
|
|
result, tokenUsage, err := ComputeChoices(input, predInput, config, startupOptions, ml, func(s string, c *[]schema.Choice) {
|
2024-04-18 22:43:12 +02:00
|
|
|
if !shouldUseFn {
|
2024-04-17 23:33:49 +02:00
|
|
|
// no function is called, just reply and use stop as finish reason
|
|
|
|
*c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
2024-05-31 09:36:27 +02:00
|
|
|
textContentToReturn = functions.ParseTextContent(s, config.FunctionsConfig)
|
2024-05-22 00:14:16 +02:00
|
|
|
s = functions.CleanupLLMResult(s, config.FunctionsConfig)
|
2024-04-18 22:43:12 +02:00
|
|
|
results := functions.ParseFunctionCall(s, config.FunctionsConfig)
|
2024-05-31 09:36:27 +02:00
|
|
|
log.Debug().Msgf("Text content to return: %s", textContentToReturn)
|
2024-04-18 22:43:12 +02:00
|
|
|
noActionsToRun := len(results) > 0 && results[0].Name == noActionName || len(results) == 0
|
2024-04-17 23:33:49 +02:00
|
|
|
|
|
|
|
switch {
|
|
|
|
case noActionsToRun:
|
2024-05-14 09:39:20 +02:00
|
|
|
result, err := handleQuestion(config, input, ml, startupOptions, results, s, predInput)
|
2024-04-17 23:33:49 +02:00
|
|
|
if err != nil {
|
|
|
|
log.Error().Err(err).Msg("error handling question")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
*c = append(*c, schema.Choice{
|
|
|
|
Message: &schema.Message{Role: "assistant", Content: &result}})
|
|
|
|
default:
|
|
|
|
toolChoice := schema.Choice{
|
|
|
|
Message: &schema.Message{
|
|
|
|
Role: "assistant",
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
if len(input.Tools) > 0 {
|
|
|
|
toolChoice.FinishReason = "tool_calls"
|
|
|
|
}
|
|
|
|
|
|
|
|
for _, ss := range results {
|
2024-04-18 22:43:12 +02:00
|
|
|
name, args := ss.Name, ss.Arguments
|
2024-04-17 23:33:49 +02:00
|
|
|
if len(input.Tools) > 0 {
|
|
|
|
// If we are using tools, we condense the function calls into
|
|
|
|
// a single response choice with all the tools
|
2024-05-31 09:36:27 +02:00
|
|
|
toolChoice.Message.Content = textContentToReturn
|
2024-04-17 23:33:49 +02:00
|
|
|
toolChoice.Message.ToolCalls = append(toolChoice.Message.ToolCalls,
|
|
|
|
schema.ToolCall{
|
|
|
|
ID: id,
|
|
|
|
Type: "function",
|
|
|
|
FunctionCall: schema.FunctionCall{
|
|
|
|
Name: name,
|
|
|
|
Arguments: args,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
)
|
|
|
|
} else {
|
|
|
|
// otherwise we return more choices directly
|
|
|
|
*c = append(*c, schema.Choice{
|
|
|
|
FinishReason: "function_call",
|
|
|
|
Message: &schema.Message{
|
2024-05-31 09:36:27 +02:00
|
|
|
Role: "assistant",
|
|
|
|
Content: &textContentToReturn,
|
2024-04-17 23:33:49 +02:00
|
|
|
FunctionCall: map[string]interface{}{
|
|
|
|
"name": name,
|
|
|
|
"arguments": args,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
})
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if len(input.Tools) > 0 {
|
|
|
|
// we need to append our result if we are using tools
|
|
|
|
*c = append(*c, toolChoice)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}, nil)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
|
|
|
|
resp := &schema.OpenAIResponse{
|
|
|
|
ID: id,
|
|
|
|
Created: created,
|
|
|
|
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
|
|
|
Choices: result,
|
|
|
|
Object: "chat.completion",
|
|
|
|
Usage: schema.OpenAIUsage{
|
|
|
|
PromptTokens: tokenUsage.Prompt,
|
|
|
|
CompletionTokens: tokenUsage.Completion,
|
|
|
|
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
|
|
|
|
},
|
|
|
|
}
|
|
|
|
respData, _ := json.Marshal(resp)
|
|
|
|
log.Debug().Msgf("Response: %s", respData)
|
|
|
|
|
|
|
|
// Return the prediction in the response body
|
|
|
|
return c.JSON(resp)
|
2024-01-05 12:04:46 -05:00
|
|
|
}
|
2024-04-17 23:33:49 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-05-14 09:39:20 +02:00
|
|
|
func handleQuestion(config *config.BackendConfig, input *schema.OpenAIRequest, ml *model.ModelLoader, o *config.ApplicationConfig, funcResults []functions.FuncCallResults, result, prompt string) (string, error) {
|
|
|
|
|
|
|
|
if len(funcResults) == 0 && result != "" {
|
|
|
|
log.Debug().Msgf("nothing function results but we had a message from the LLM")
|
|
|
|
|
|
|
|
return result, nil
|
|
|
|
}
|
|
|
|
|
2024-04-17 23:33:49 +02:00
|
|
|
log.Debug().Msgf("nothing to do, computing a reply")
|
2024-04-18 22:43:12 +02:00
|
|
|
arg := ""
|
|
|
|
if len(funcResults) > 0 {
|
|
|
|
arg = funcResults[0].Arguments
|
|
|
|
}
|
2024-04-17 23:33:49 +02:00
|
|
|
// If there is a message that the LLM already sends as part of the JSON reply, use it
|
|
|
|
arguments := map[string]interface{}{}
|
2024-04-18 22:43:12 +02:00
|
|
|
if err := json.Unmarshal([]byte(arg), &arguments); err != nil {
|
|
|
|
log.Debug().Msg("handleQuestion: function result did not contain a valid JSON object")
|
|
|
|
}
|
2024-04-17 23:33:49 +02:00
|
|
|
m, exists := arguments["message"]
|
|
|
|
if exists {
|
|
|
|
switch message := m.(type) {
|
|
|
|
case string:
|
|
|
|
if message != "" {
|
|
|
|
log.Debug().Msgf("Reply received from LLM: %s", message)
|
|
|
|
message = backend.Finetune(*config, prompt, message)
|
|
|
|
log.Debug().Msgf("Reply received from LLM(finetuned): %s", message)
|
|
|
|
|
|
|
|
return message, nil
|
|
|
|
}
|
2024-01-05 12:04:46 -05:00
|
|
|
}
|
2024-04-17 23:33:49 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
log.Debug().Msgf("No action received from LLM, without a message, computing a reply")
|
|
|
|
// Otherwise ask the LLM to understand the JSON output and the context, and return a message
|
|
|
|
// Note: This costs (in term of CPU/GPU) another computation
|
|
|
|
config.Grammar = ""
|
|
|
|
images := []string{}
|
|
|
|
for _, m := range input.Messages {
|
|
|
|
images = append(images, m.StringImages...)
|
|
|
|
}
|
2024-09-19 11:21:59 +02:00
|
|
|
videos := []string{}
|
|
|
|
for _, m := range input.Messages {
|
|
|
|
videos = append(videos, m.StringVideos...)
|
|
|
|
}
|
2024-09-19 12:26:53 +02:00
|
|
|
audios := []string{}
|
|
|
|
for _, m := range input.Messages {
|
|
|
|
audios = append(audios, m.StringAudios...)
|
|
|
|
}
|
2024-02-17 10:00:34 +01:00
|
|
|
|
2024-09-19 12:26:53 +02:00
|
|
|
predFunc, err := backend.ModelInference(input.Context, prompt, input.Messages, images, videos, audios, ml, *config, o, nil)
|
2024-04-17 23:33:49 +02:00
|
|
|
if err != nil {
|
|
|
|
log.Error().Err(err).Msg("model inference failed")
|
|
|
|
return "", err
|
|
|
|
}
|
2024-01-05 12:04:46 -05:00
|
|
|
|
2024-04-17 23:33:49 +02:00
|
|
|
prediction, err := predFunc()
|
|
|
|
if err != nil {
|
|
|
|
log.Error().Err(err).Msg("prediction failed")
|
|
|
|
return "", err
|
2024-01-05 12:04:46 -05:00
|
|
|
}
|
2024-04-17 23:33:49 +02:00
|
|
|
return backend.Finetune(*config, prompt, prediction.Response), nil
|
|
|
|
}
|