mirror of
https://github.com/AFLplusplus/AFLplusplus.git
synced 2025-06-11 17:51:32 +00:00
updated binary_fuzzing document
This commit is contained in:
@ -1,6 +1,4 @@
|
||||
|
||||
Fuzzing binary-only programs with afl++
|
||||
=======================================
|
||||
#Fuzzing binary-only programs with afl++
|
||||
|
||||
afl++, libfuzzer and others are great if you have the source code, and
|
||||
it allows for very fast and coverage guided fuzzing.
|
||||
@ -16,36 +14,42 @@ TL;DR: try DYNINST with afl-dyninst. If it produces too many crashes then
|
||||
!!!!!
|
||||
|
||||
|
||||
QEMU
|
||||
----
|
||||
##QEMU
|
||||
Qemu is the "native" solution to the program.
|
||||
It is available in the ./qemu_mode/ directory and once compiled it can
|
||||
be accessed by the afl-fuzz -Q command line option.
|
||||
The speed decrease is at about 50%
|
||||
It is the easiest to use alternative and even works for cross-platform binaries.
|
||||
|
||||
Note that there is also honggfuzz: [https://github.com/google/honggfuzz](https://github.com/google/honggfuzz)
|
||||
which now has a qemu_mode, but its performance is just 1.5%!
|
||||
|
||||
As it is included in afl++ this needs no URL.
|
||||
|
||||
WINE+QEMU
|
||||
---------
|
||||
|
||||
##WINE+QEMU
|
||||
Wine mode can run Win32 PE binaries with the QEMU instrumentation.
|
||||
It needs Wine, python3 and the pefile python package installed.
|
||||
|
||||
UNICORN
|
||||
-------
|
||||
As it is included in afl++ this needs no URL.
|
||||
|
||||
|
||||
##UNICORN
|
||||
Unicorn is a fork of QEMU. The instrumentation is, therefore, very similar.
|
||||
In contrast to QEMU, Unicorn does not offer a full system or even userland emulation.
|
||||
Runtime environment and/or loaders have to be written from scratch, if needed.
|
||||
On top, block chaining has been removed. This means the speed boost introduced in
|
||||
the patched QEMU Mode of afl++ cannot simply be ported over to Unicorn.
|
||||
For further information, check out ./unicorn_mode.txt.
|
||||
In contrast to QEMU, Unicorn does not offer a full system or even userland
|
||||
emulation. Runtime environment and/or loaders have to be written from scratch,
|
||||
if needed. On top, block chaining has been removed. This means the speed boost
|
||||
introduced in the patched QEMU Mode of afl++ cannot simply be ported over to
|
||||
Unicorn. For further information, check out ./unicorn_mode.txt.
|
||||
|
||||
As it is included in afl++ this needs no URL.
|
||||
|
||||
|
||||
DYNINST
|
||||
-------
|
||||
##DYNINST
|
||||
Dyninst is a binary instrumentation framework similar to Pintool and Dynamorio
|
||||
(see far below). However whereas Pintool and Dynamorio work at runtime, dyninst
|
||||
instruments the target at load time, and then let it run.
|
||||
instruments the target at load time, and then let it run - or save the
|
||||
binary with the changes.
|
||||
This is great for some things, e.g. fuzzing, and not so effective for others,
|
||||
e.g. malware analysis.
|
||||
|
||||
@ -53,9 +57,9 @@ So what we can do with dyninst is taking every basic block, and put afl's
|
||||
instrumention code in there - and then save the binary.
|
||||
Afterwards we can just fuzz the newly saved target binary with afl-fuzz.
|
||||
Sounds great? It is. The issue though - it is a non-trivial problem to
|
||||
insert instructions, which change addresses in the process space, so
|
||||
insert instructions, which change addresses in the process space, so that
|
||||
everything is still working afterwards. Hence more often than not binaries
|
||||
crash when they are run (because of instrumentation).
|
||||
crash when they are run.
|
||||
|
||||
The speed decrease is about 15-35%, depending on the optimization options
|
||||
used with afl-dyninst.
|
||||
@ -63,11 +67,10 @@ used with afl-dyninst.
|
||||
So if dyninst works, it is the best option available. Otherwise it just doesn't
|
||||
work well.
|
||||
|
||||
https://github.com/vanhauser-thc/afl-dyninst
|
||||
[https://github.com/vanhauser-thc/afl-dyninst](https://github.com/vanhauser-thc/afl-dyninst)
|
||||
|
||||
|
||||
INTEL-PT
|
||||
--------
|
||||
##INTEL-PT
|
||||
If you have a newer Intel CPU, you can make use of Intels processor trace.
|
||||
The big issue with Intel's PT is the small buffer size and the complex
|
||||
encoding of the debug information collected through PT.
|
||||
@ -77,30 +80,39 @@ the implementation and other factors).
|
||||
|
||||
There are two afl intel-pt implementations:
|
||||
|
||||
1. https://github.com/junxzm1990/afl-pt
|
||||
1. [https://github.com/junxzm1990/afl-pt](https://github.com/junxzm1990/afl-pt)
|
||||
=> this needs Ubuntu 14.04.05 without any updates and the 4.4 kernel.
|
||||
|
||||
2. https://github.com/hunter-ht-2018/ptfuzzer
|
||||
2. [https://github.com/hunter-ht-2018/ptfuzzer](https://github.com/hunter-ht-2018/ptfuzzer)
|
||||
=> this needs a 4.14 or 4.15 kernel. the "nopti" kernel boot option must
|
||||
be used. This one is faster than the other.
|
||||
|
||||
Note that there is also honggfuzz: https://github.com/google/honggfuzz
|
||||
But its IPT performance is just 6%!
|
||||
|
||||
CORESIGHT
|
||||
---------
|
||||
|
||||
##CORESIGHT
|
||||
Coresight is ARM's answer to Intel's PT.
|
||||
There is no implementation so far which handle coresight and getting
|
||||
it working on an ARM Linux is very difficult due to custom kernel building
|
||||
on embedded systems is difficult. And finding one that has coresight in
|
||||
the ARM chip is difficult too.
|
||||
My guess is that it is slower than Qemu, but faster than Intel PT.
|
||||
|
||||
If anyone finds any coresight implementation for afl please ping me:
|
||||
vh@thc.org
|
||||
|
||||
|
||||
PIN & DYNAMORIO
|
||||
---------------
|
||||
##FRIDA
|
||||
Frida is a dynamic instrumentation engine like Pintool, Dyninst and Dynamorio.
|
||||
What is special is that it is written Python, and scripted with Javascript.
|
||||
It is mostly used to reverse binaries on mobile phones however can be used
|
||||
everywhere.
|
||||
|
||||
There is a WIP fuzzer available at [https://github.com/andreafioraldi/frida-fuzzer](https://github.com/andreafioraldi/frida-fuzzer)
|
||||
|
||||
|
||||
##PIN & DYNAMORIO
|
||||
Pintool and Dynamorio are dynamic instrumentation engines, and they can be
|
||||
used for getting basic block information at runtime.
|
||||
Pintool is only available for Intel x32/x64 on Linux, Mac OS and Windows
|
||||
@ -115,30 +127,27 @@ Hence Dynamorio is the option to go for if everything fails, and Pintool
|
||||
only if Dynamorio fails too.
|
||||
|
||||
Dynamorio solutions:
|
||||
https://github.com/vanhauser-thc/afl-dynamorio
|
||||
https://github.com/mxmssh/drAFL
|
||||
https://github.com/googleprojectzero/winafl/ <= very good but windows only
|
||||
* [https://github.com/vanhauser-thc/afl-dynamorio](https://github.com/vanhauser-thc/afl-dynamorio)
|
||||
* [https://github.com/mxmssh/drAFL](https://github.com/mxmssh/drAFL)
|
||||
* [https://github.com/googleprojectzero/winafl/](https://github.com/googleprojectzero/winafl/) <= very good but windows only
|
||||
|
||||
Pintool solutions:
|
||||
https://github.com/vanhauser-thc/afl-pin
|
||||
https://github.com/mothran/aflpin
|
||||
https://github.com/spinpx/afl_pin_mode <= only old Pintool version supported
|
||||
* [https://github.com/vanhauser-thc/afl-pin](https://github.com/vanhauser-thc/afl-pin)
|
||||
* [https://github.com/mothran/aflpin](https://github.com/mothran/aflpin)
|
||||
* [https://github.com/spinpx/afl_pin_mode](https://github.com/spinpx/afl_pin_mode) <= only old Pintool version supported
|
||||
|
||||
|
||||
Non-AFL solutions
|
||||
-----------------
|
||||
##Non-AFL solutions
|
||||
There are many binary-only fuzzing frameworks.
|
||||
Some are great for CTFs but don't work with large binaries, others are very
|
||||
slow but have good path discovery, some are very hard to set-up ...
|
||||
|
||||
There are many binary-only fuzzing frameworks. Some are great for CTFs but don't
|
||||
work with large binaries, others are very slow but have good path discovery,
|
||||
some are very hard to set-up ...
|
||||
|
||||
QSYM: https://github.com/sslab-gatech/qsym
|
||||
Manticore: https://github.com/trailofbits/manticore
|
||||
S2E: https://github.com/S2E
|
||||
<please send me any missing that are good>
|
||||
* QSYM: [https://github.com/sslab-gatech/qsym](https://github.com/sslab-gatech/qsym)
|
||||
* Manticore: [https://github.com/trailofbits/manticore](https://github.com/trailofbits/manticore)
|
||||
* S2E: [https://github.com/S2E](https://github.com/S2E)
|
||||
* <please send me any missing that are good>
|
||||
|
||||
|
||||
## Closing words
|
||||
|
||||
That's it!
|
||||
News, corrections, updates?
|
||||
Email vh@thc.org
|
||||
That's it! News, corrections, updates? Send an email to vh@thc.org
|
Reference in New Issue
Block a user