/****************************************************************************\ * Signal Server 1.3.5: Server optimised SPLAT! by Alex Farrant * ****************************************************************************** * SPLAT! Project started in 1997 by John A. Magliacane, KD2BD * * * ****************************************************************************** * Please consult the SPLAT! documentation for a complete list of * * individuals who have contributed to this project. * ****************************************************************************** * * * This program is free software; you can redistribute it and/or modify it * * under the terms of the GNU General Public License as published by the * * Free Software Foundation; either version 2 of the License or any later * * version. * * * * This program is distributed in the hope that it will useful, but WITHOUT * * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * * for more details. * * * ****************************************************************************** * g++ -Wall -O3 -s -lm -fomit-frame-pointer itm.cpp main.cpp -o ss * \****************************************************************************/ #include #include #include #include #include #include #define GAMMA 2.5 #define MAXPAGES 9 #define ARRAYSIZE 32600 #define IPPD 3600 #ifndef PI #define PI 3.141592653589793 #endif #ifndef TWOPI #define TWOPI 6.283185307179586 #endif #ifndef HALFPI #define HALFPI 1.570796326794896 #endif #define DEG2RAD 1.74532925199e-02 #define EARTHRADIUS 20902230.97 #define METERS_PER_MILE 1609.344 #define METERS_PER_FOOT 0.3048 #define KM_PER_MILE 1.609344 #define FOUR_THIRDS 1.3333333333333 char string[255], sdf_path[255], udt_file[255], opened=0, gpsav=0, ss_name[16], ss_version[6], dashes[80]; double earthradius, max_range=0.0, forced_erp, dpp, ppd, fzone_clearance=0.6, forced_freq, clutter, lat,lon,txh,tercon,terdic, north,east,south,west; int min_north=90, max_north=-90, min_west=360, max_west=-1, ippd, mpi, max_elevation=-32768, min_elevation=32768, bzerror, contour_threshold, pred,pblue,pgreen,ter,multiplier=256,debug=0,loops=64,jgets=0, MAXRAD; unsigned char got_elevation_pattern, got_azimuth_pattern, metric=0, dbm=0; struct site { double lat; double lon; float alt; char name[50]; char filename[255]; } site; struct path { double lat[ARRAYSIZE]; double lon[ARRAYSIZE]; double elevation[ARRAYSIZE]; double distance[ARRAYSIZE]; int length; } path; struct dem { int min_north; int max_north; int min_west; int max_west; int max_el; int min_el; short data[IPPD][IPPD]; unsigned char mask[IPPD][IPPD]; unsigned char signal[IPPD][IPPD]; } dem[MAXPAGES]; struct LR { double eps_dielect; double sgm_conductivity; double eno_ns_surfref; double frq_mhz; double conf; double rel; double erp; int radio_climate; int pol; float antenna_pattern[361][1001]; } LR; struct region { unsigned char color[128][3]; int level[128]; int levels; } region; double elev[ARRAYSIZE+10]; void point_to_point(double elev[], double tht_m, double rht_m, double eps_dielect, double sgm_conductivity, double eno_ns_surfref, double frq_mhz, int radio_climate, int pol, double conf, double rel, double &dbloss, char *strmode, int &errnum); double arccos(double x, double y) { /* This function implements the arc cosine function, returning a value between 0 and TWOPI. */ double result=0.0; if (y>0.0) result=acos(x/y); if (y<0.0) result=PI+acos(x/y); return result; } int ReduceAngle(double angle) { /* This function normalizes the argument to an integer angle between 0 and 180 degrees */ double temp; temp=acos(cos(angle*DEG2RAD)); return (int)rint(temp/DEG2RAD); } double LonDiff(double lon1, double lon2) { /* This function returns the short path longitudinal difference between longitude1 and longitude2 as an angle between -180.0 and +180.0 degrees. If lon1 is west of lon2, the result is positive. If lon1 is east of lon2, the result is negative. */ double diff; diff=lon1-lon2; if (diff<=-180.0) diff+=360.0; if (diff>=180.0) diff-=360.0; return diff; } char *dec2dms(double decimal) { /* Converts decimal degrees to degrees, minutes, seconds, (DMS) and returns the result as a character string. */ char sign; int degrees, minutes, seconds; double a, b, c, d; if (decimal<0.0) { decimal=-decimal; sign=-1; } else sign=1; a=floor(decimal); b=60.0*(decimal-a); c=floor(b); d=60.0*(b-c); degrees=(int)a; minutes=(int)c; seconds=(int)d; if (seconds<0) seconds=0; if (seconds>59) seconds=59; string[0]=0; snprintf(string,250,"%d%c %d\' %d\"", degrees*sign, 176, minutes, seconds); return (string); } int PutMask(double lat, double lon, int value) { /* Lines, text, markings, and coverage areas are stored in a mask that is combined with topology data when topographic maps are generated by ss. This function sets and resets bits in the mask based on the latitude and longitude of the area pointed to. */ int x, y, indx; char found; for (indx=0, found=0; indx=0 && x<=mpi && y>=0 && y<=mpi) found=1; else indx++; } if (found) { dem[indx].mask[x][y]=value; return ((int)dem[indx].mask[x][y]); } else return -1; } int OrMask(double lat, double lon, int value) { /* Lines, text, markings, and coverage areas are stored in a mask that is combined with topology data when topographic maps are generated by ss. This function sets bits in the mask based on the latitude and longitude of the area pointed to. */ int x, y, indx; char found; for (indx=0, found=0; indx=0 && x<=mpi && y>=0 && y<=mpi) found=1; else indx++; } if (found) { dem[indx].mask[x][y]|=value; return ((int)dem[indx].mask[x][y]); } else return -1; } int GetMask(double lat, double lon) { /* This function returns the mask bits based on the latitude and longitude given. */ return (OrMask(lat,lon,0)); } int PutSignal(double lat, double lon, unsigned char signal) { /* This function writes a signal level (0-255) at the specified location for later recall. */ int x, y, indx; char found; for (indx=0, found=0; indx=0 && x<=mpi && y>=0 && y<=mpi) found=1; else indx++; } if (found) { dem[indx].signal[x][y]=signal; return (dem[indx].signal[x][y]); } else return 0; } unsigned char GetSignal(double lat, double lon) { /* This function reads the signal level (0-255) at the specified location that was previously written by the complimentary PutSignal() function. */ int x, y, indx; char found; for (indx=0, found=0; indx=0 && x<=mpi && y>=0 && y<=mpi) found=1; else indx++; } if (found) return (dem[indx].signal[x][y]); else return 0; } double GetElevation(struct site location) { /* This function returns the elevation (in feet) of any location represented by the digital elevation model data in memory. Function returns -5000.0 for locations not found in memory. */ char found; int x, y, indx; double elevation; for (indx=0, found=0; indx=0 && x<=mpi && y>=0 && y<=mpi) found=1; else indx++; } if (found) elevation=3.28084*dem[indx].data[x][y]; else elevation=-5000.0; return elevation; } int AddElevation(double lat, double lon, double height) { /* This function adds a user-defined terrain feature (in meters AGL) to the digital elevation model data in memory. Does nothing and returns 0 for locations not found in memory. */ char found; int x, y, indx; for (indx=0, found=0; indx=0 && x<=mpi && y>=0 && y<=mpi) found=1; else indx++; } if (found) dem[indx].data[x][y]+=(short)rint(height); return found; } double Distance(struct site site1, struct site site2) { /* This function returns the great circle distance in miles between any two site locations. */ double lat1, lon1, lat2, lon2, distance; lat1=site1.lat*DEG2RAD; lon1=site1.lon*DEG2RAD; lat2=site2.lat*DEG2RAD; lon2=site2.lon*DEG2RAD; distance=3959.0*acos(sin(lat1)*sin(lat2)+cos(lat1)*cos(lat2)*cos((lon1)-(lon2))); return distance; } double Azimuth(struct site source, struct site destination) { /* This function returns the azimuth (in degrees) to the destination as seen from the location of the source. */ double dest_lat, dest_lon, src_lat, src_lon, beta, azimuth, diff, num, den, fraction; dest_lat=destination.lat*DEG2RAD; dest_lon=destination.lon*DEG2RAD; src_lat=source.lat*DEG2RAD; src_lon=source.lon*DEG2RAD; /* Calculate Surface Distance */ beta=acos(sin(src_lat)*sin(dest_lat)+cos(src_lat)*cos(dest_lat)*cos(src_lon-dest_lon)); /* Calculate Azimuth */ num=sin(dest_lat)-(sin(src_lat)*cos(beta)); den=cos(src_lat)*sin(beta); fraction=num/den; /* Trap potential problems in acos() due to rounding */ if (fraction>=1.0) fraction=1.0; if (fraction<=-1.0) fraction=-1.0; /* Calculate azimuth */ azimuth=acos(fraction); /* Reference it to True North */ diff=dest_lon-src_lon; if (diff<=-PI) diff+=TWOPI; if (diff>=PI) diff-=TWOPI; if (diff>0.0) azimuth=TWOPI-azimuth; return (azimuth/DEG2RAD); } double ElevationAngle(struct site source, struct site destination) { /* This function returns the angle of elevation (in degrees) of the destination as seen from the source location. A positive result represents an angle of elevation (uptilt), while a negative result represents an angle of depression (downtilt), as referenced to a normal to the center of the earth. */ register double a, b, dx; a=GetElevation(destination)+destination.alt+earthradius; b=GetElevation(source)+source.alt+earthradius; dx=5280.0*Distance(source,destination); /* Apply the Law of Cosines */ return ((180.0*(acos(((b*b)+(dx*dx)-(a*a))/(2.0*b*dx)))/PI)-90.0); } void ReadPath(struct site source, struct site destination) { /* This function generates a sequence of latitude and longitude positions between source and destination locations along a great circle path, and stores elevation and distance information for points along that path in the "path" structure. */ int c; double azimuth, distance, lat1, lon1, beta, den, num, lat2, lon2, total_distance, dx, dy, path_length, miles_per_sample, samples_per_radian=68755.0; struct site tempsite; lat1=source.lat*DEG2RAD; lon1=source.lon*DEG2RAD; lat2=destination.lat*DEG2RAD; lon2=destination.lon*DEG2RAD; samples_per_radian=ppd*57.295833; azimuth=Azimuth(source,destination)*DEG2RAD; total_distance=Distance(source,destination); if (total_distance>(30.0/ppd)) { dx=samples_per_radian*acos(cos(lon1-lon2)); dy=samples_per_radian*acos(cos(lat1-lat2)); path_length=sqrt((dx*dx)+(dy*dy)); miles_per_sample=total_distance/path_length; } else { c=0; dx=0.0; dy=0.0; path_length=0.0; miles_per_sample=0.0; total_distance=0.0; lat1=lat1/DEG2RAD; lon1=lon1/DEG2RAD; path.lat[c]=lat1; path.lon[c]=lon1; path.elevation[c]=GetElevation(source); path.distance[c]=0.0; } for (distance=0.0, c=0; (total_distance!=0.0 && distance<=total_distance && cHALFPI-lat1)) lon2=lon1+PI; else if (azimuth==HALFPI && (beta>HALFPI+lat1)) lon2=lon1+PI; else if (fabs(num/den)>1.0) lon2=lon1; else { if ((PI-azimuth)>=0.0) lon2=lon1-arccos(num,den); else lon2=lon1+arccos(num,den); } while (lon2<0.0) lon2+=TWOPI; while (lon2>TWOPI) lon2-=TWOPI; lat2=lat2/DEG2RAD; lon2=lon2/DEG2RAD; path.lat[c]=lat2; path.lon[c]=lon2; tempsite.lat=lat2; tempsite.lon=lon2; path.elevation[c]=GetElevation(tempsite); path.distance[c]=distance; } /* Make sure exact destination point is recorded at path.length-1 */ if (c=cos_test_angle) { block=1; first_obstruction_angle=((acos(cos_test_angle))/DEG2RAD)-90.0; } } if (block) elevation=first_obstruction_angle; else elevation=((acos(cos_xmtr_angle))/DEG2RAD)-90.0; path=temp; return elevation; } double AverageTerrain(struct site source, double azimuthx, double start_distance, double end_distance) { /* This function returns the average terrain calculated in the direction of "azimuth" (degrees) between "start_distance" and "end_distance" (miles) from the source location. If the terrain is all water (non-critical error), -5000.0 is returned. If not enough SDF data has been loaded into memory to complete the survey (critical error), then -9999.0 is returned. */ int c, samples, endpoint; double beta, lat1, lon1, lat2, lon2, num, den, azimuth, terrain=0.0; struct site destination; lat1=source.lat*DEG2RAD; lon1=source.lon*DEG2RAD; /* Generate a path of elevations between the source location and the remote location provided. */ beta=end_distance/3959.0; azimuth=DEG2RAD*azimuthx; lat2=asin(sin(lat1)*cos(beta)+cos(azimuth)*sin(beta)*cos(lat1)); num=cos(beta)-(sin(lat1)*sin(lat2)); den=cos(lat1)*cos(lat2); if (azimuth==0.0 && (beta>HALFPI-lat1)) lon2=lon1+PI; else if (azimuth==HALFPI && (beta>HALFPI+lat1)) lon2=lon1+PI; else if (fabs(num/den)>1.0) lon2=lon1; else { if ((PI-azimuth)>=0.0) lon2=lon1-arccos(num,den); else lon2=lon1+arccos(num,den); } while (lon2<0.0) lon2+=TWOPI; while (lon2>TWOPI) lon2-=TWOPI; lat2=lat2/DEG2RAD; lon2=lon2/DEG2RAD; destination.lat=lat2; destination.lon=lon2; /* If SDF data is missing for the endpoint of the radial, then the average terrain cannot be accurately calculated. Return -9999.0 */ if (GetElevation(destination)<-4999.0) return (-9999.0); else { ReadPath(source,destination); endpoint=path.length; /* Shrink the length of the radial if the outermost portion is not over U.S. land. */ for (c=endpoint-1; c>=0 && path.elevation[c]==0.0; c--); endpoint=c+1; for (c=0, samples=0; c=start_distance) { terrain+=(path.elevation[c]==0.0?path.elevation[c]:path.elevation[c]+clutter); samples++; } } if (samples==0) terrain=-5000.0; /* No land */ else terrain=(terrain/(double)samples); return terrain; } } double haat(struct site antenna) { /* This function returns the antenna's Height Above Average Terrain (HAAT) based on FCC Part 73.313(d). If a critical error occurs, such as a lack of SDF data to complete the survey, -5000.0 is returned. */ int azi, c; char error=0; double terrain, avg_terrain, haat, sum=0.0; /* Calculate the average terrain between 2 and 10 miles from the antenna site at azimuths of 0, 45, 90, 135, 180, 225, 270, and 315 degrees. */ for (c=0, azi=0; azi<=315 && error==0; azi+=45) { terrain=AverageTerrain(antenna, (double)azi, 2.0, 10.0); if (terrain<-9998.0) /* SDF data is missing */ error=1; if (terrain>-4999.0) /* It's land, not water */ { sum+=terrain; /* Sum of averages */ c++; } } if (error) return -5000.0; else { avg_terrain=(sum/(double)c); haat=(antenna.alt+GetElevation(antenna))-avg_terrain; return haat; } } double ReadBearing(char *input) { /* This function takes numeric input in the form of a character string, and returns an equivalent bearing in degrees as a decimal number (double). The input may either be expressed in decimal format (40.139722) or degree, minute, second format (40 08 23). This function also safely handles extra spaces found either leading, trailing, or embedded within the numbers expressed in the input string. Decimal seconds are permitted. */ double seconds, bearing=0.0; char string[20]; int a, b, length, degrees, minutes; /* Copy "input" to "string", and ignore any extra spaces that might be present in the process. */ string[0]=0; length=strlen(input); for (a=0, b=0; a360.0 || bearing<-360.0) bearing=0.0; return bearing; } void LoadPAT(char *filename) { /* This function reads and processes antenna pattern (.az and .el) files that correspond in name to previously loaded ss .lrp files. */ int a, b, w, x, y, z, last_index, next_index, span; char string[255], azfile[255], elfile[255], *pointer=NULL, *s=NULL; float az, xx, elevation, amplitude, rotation, valid1, valid2, delta, azimuth[361], azimuth_pattern[361], el_pattern[10001], elevation_pattern[361][1001], slant_angle[361], tilt, mechanical_tilt=0.0, tilt_azimuth, tilt_increment, sum; FILE *fd=NULL; unsigned char read_count[10001]; for (x=0; filename[x]!='.' && filename[x]!=0 && x<250; x++) { azfile[x]=filename[x]; elfile[x]=filename[x]; } azfile[x]='.'; azfile[x+1]='a'; azfile[x+2]='z'; azfile[x+3]=0; elfile[x]='.'; elfile[x+1]='e'; elfile[x+2]='l'; elfile[x+3]=0; rotation=0.0; got_azimuth_pattern=0; got_elevation_pattern=0; /* Load .az antenna pattern file */ fd=fopen(azfile,"r"); if (fd!=NULL) { /* Clear azimuth pattern array */ for (x=0; x<=360; x++) { azimuth[x]=0.0; read_count[x]=0; } /* Read azimuth pattern rotation in degrees measured clockwise from true North. */ s=fgets(string,254,fd); pointer=strchr(string,';'); if (pointer!=NULL) *pointer=0; sscanf(string,"%f",&rotation); /* Read azimuth (degrees) and corresponding normalized field radiation pattern amplitude (0.0 to 1.0) until EOF is reached. */ s=fgets(string,254,fd); pointer=strchr(string,';'); if (pointer!=NULL) *pointer=0; sscanf(string,"%f %f",&az, &litude); do { x=(int)rintf(az); if (x>=0 && x<=360 && fd!=NULL) { azimuth[x]+=amplitude; read_count[x]++; } s=fgets(string,254,fd); pointer=strchr(string,';'); if (pointer!=NULL) *pointer=0; sscanf(string,"%f %f",&az, &litude); } while (feof(fd)==0); fclose(fd); /* Handle 0=360 degree ambiguity */ if ((read_count[0]==0) && (read_count[360]!=0)) { read_count[0]=read_count[360]; azimuth[0]=azimuth[360]; } if ((read_count[0]!=0) && (read_count[360]==0)) { read_count[360]=read_count[0]; azimuth[360]=azimuth[0]; } /* Average pattern values in case more than one was read for each degree of azimuth. */ for (x=0; x<=360; x++) { if (read_count[x]>1) azimuth[x]/=(float)read_count[x]; } /* Interpolate missing azimuths to completely fill the array */ last_index=-1; next_index=-1; for (x=0; x<=360; x++) { if (read_count[x]!=0) { if (last_index==-1) last_index=x; else next_index=x; } if (last_index!=-1 && next_index!=-1) { valid1=azimuth[last_index]; valid2=azimuth[next_index]; span=next_index-last_index; delta=(valid2-valid1)/(float)span; for (y=last_index+1; y=360) y-=360; azimuth_pattern[y]=azimuth[x]; } azimuth_pattern[360]=azimuth_pattern[0]; got_azimuth_pattern=255; } /* Read and process .el file */ fd=fopen(elfile,"r"); if (fd!=NULL) { for (x=0; x<=10000; x++) { el_pattern[x]=0.0; read_count[x]=0; } /* Read mechanical tilt (degrees) and tilt azimuth in degrees measured clockwise from true North. */ s=fgets(string,254,fd); pointer=strchr(string,';'); if (pointer!=NULL) *pointer=0; sscanf(string,"%f %f",&mechanical_tilt, &tilt_azimuth); /* Read elevation (degrees) and corresponding normalized field radiation pattern amplitude (0.0 to 1.0) until EOF is reached. */ s=fgets(string,254,fd); pointer=strchr(string,';'); if (pointer!=NULL) *pointer=0; sscanf(string,"%f %f", &elevation, &litude); while (feof(fd)==0) { /* Read in normalized radiated field values for every 0.01 degrees of elevation between -10.0 and +90.0 degrees */ x=(int)rintf(100.0*(elevation+10.0)); if (x>=0 && x<=10000) { el_pattern[x]+=amplitude; read_count[x]++; } s=fgets(string,254,fd); pointer=strchr(string,';'); if (pointer!=NULL) *pointer=0; sscanf(string,"%f %f", &elevation, &litude); } fclose(fd); /* Average the field values in case more than one was read for each 0.01 degrees of elevation. */ for (x=0; x<=10000; x++) { if (read_count[x]>1) el_pattern[x]/=(float)read_count[x]; } /* Interpolate between missing elevations (if any) to completely fill the array and provide radiated field values for every 0.01 degrees of elevation. */ last_index=-1; next_index=-1; for (x=0; x<=10000; x++) { if (read_count[x]!=0) { if (last_index==-1) last_index=x; else next_index=x; } if (last_index!=-1 && next_index!=-1) { valid1=el_pattern[last_index]; valid2=el_pattern[next_index]; span=next_index-last_index; delta=(valid2-valid1)/(float)span; for (y=last_index+1; y=360) y-=360; while (y<0) y+=360; if (x<=180) slant_angle[y]=-(tilt_increment*(90.0-xx)); if (x>180) slant_angle[y]=-(tilt_increment*(xx-270.0)); } } slant_angle[360]=slant_angle[0]; /* 360 degree wrap-around */ for (w=0; w<=360; w++) { tilt=slant_angle[w]; /** Convert tilt angle to an array index offset **/ y=(int)rintf(100.0*tilt); /* Copy shifted el_pattern[10001] field values into elevation_pattern[361][1001] at the corresponding azimuth, downsampling (averaging) along the way in chunks of 10. */ for (x=y, z=0; z<=1000; x+=10, z++) { for (sum=0.0, a=0; a<10; a++) { b=a+x; if (b>=0 && b<=10000) sum+=el_pattern[b]; if (b<0) sum+=el_pattern[0]; if (b>10000) sum+=el_pattern[10000]; } elevation_pattern[w][z]=sum/10.0; } } got_elevation_pattern=255; } for (x=0; x<=360; x++) { for (y=0; y<=1000; y++) { if (got_elevation_pattern) elevation=elevation_pattern[x][y]; else elevation=1.0; if (got_azimuth_pattern) az=azimuth_pattern[x]; else az=1.0; LR.antenna_pattern[x][y]=az*elevation; } } } int LoadSDF_SDF(char *name) { /* This function reads uncompressed ss Data Files (.sdf) containing digital elevation model data into memory. Elevation data, maximum and minimum elevations, and quadrangle limits are stored in the first available dem[] structure. */ int x, y, data, indx, minlat, minlon, maxlat, maxlon,j; char found, free_page=0, line[20], jline[20], sdf_file[255], path_plus_name[255], *s=NULL,*junk=NULL; FILE *fd; for (x=0; name[x]!='.' && name[x]!=0 && x<250; x++) sdf_file[x]=name[x]; sdf_file[x]=0; /* Parse filename for minimum latitude and longitude values */ sscanf(sdf_file,"%d:%d:%d:%d",&minlat,&maxlat,&minlon,&maxlon); sdf_file[x]='.'; sdf_file[x+1]='s'; sdf_file[x+2]='d'; sdf_file[x+3]='f'; sdf_file[x+4]=0; /* Is it already in memory? */ for (indx=0, found=0; indx=0 && indxdem[indx].max_el) dem[indx].max_el=data; if (datamax_elevation) max_elevation=dem[indx].max_el; if (max_north==-90) max_north=dem[indx].max_north; else if (dem[indx].max_north>max_north) max_north=dem[indx].max_north; if (min_north==90) min_north=dem[indx].min_north; else if (dem[indx].min_northmax_west) max_west=dem[indx].max_west; } else { if (dem[indx].max_westmin_west) min_west=dem[indx].min_west; } } return 1; } else return -1; } else return 0; } char LoadSDF(char *name) { /* This function loads the requested SDF file from the filesystem. It first tries to invoke the LoadSDF_SDF() function to load an uncompressed SDF file (since uncompressed files load slightly faster). If that attempt fails, then it tries to load a compressed SDF file by invoking the LoadSDF_BZ() function. If that fails, then we can assume that no elevation data exists for the region requested, and that the region requested must be entirely over water. */ int x, y, indx, minlat, minlon, maxlat, maxlon; char found, free_page=0; int return_value=-1; return_value=LoadSDF_SDF(name); /* If neither format can be found, then assume the area is water. */ if (return_value==0 || return_value==-1) { /* Parse SDF name for minimum latitude and longitude values */ sscanf(name,"%d:%d:%d:%d",&minlat,&maxlat,&minlon,&maxlon); /* Is it already in memory? */ for (indx=0, found=0; indx=0 && indx0) dem[indx].min_el=0; } if (dem[indx].min_elmax_elevation) max_elevation=dem[indx].max_el; if (max_north==-90) max_north=dem[indx].max_north; else if (dem[indx].max_north>max_north) max_north=dem[indx].max_north; if (min_north==90) min_north=dem[indx].min_north; else if (dem[indx].min_northmax_west) max_west=dem[indx].max_west; } else { if (dem[indx].max_westmin_west) min_west=dem[indx].min_west; } } return_value=1; } } return return_value; } void PlotPath(struct site source, struct site destination, char mask_value) { /* This function analyzes the path between the source and destination locations. It determines which points along the path have line-of-sight visibility to the source. Points along with path having line-of-sight visibility to the source at an AGL altitude equal to that of the destination location are stored by setting bit 1 in the mask[][] array, which are displayed in green when PPM maps are later generated by ss. */ char block; int x, y; register double cos_xmtr_angle, cos_test_angle, test_alt; double distance, rx_alt, tx_alt; ReadPath(source,destination); for (y=0; y=0 && block==0; x--) { distance=5280.0*(path.distance[y]-path.distance[x]); test_alt=earthradius+(path.elevation[x]==0.0?path.elevation[x]:path.elevation[x]+clutter); cos_test_angle=((rx_alt*rx_alt)+(distance*distance)-(test_alt*test_alt))/(2.0*rx_alt*distance); /* Compare these two angles to determine if an obstruction exists. Since we're comparing the cosines of these angles rather than the angles themselves, the following "if" statement is reversed from what it would be if the actual angles were compared. */ if (cos_xmtr_angle>=cos_test_angle) block=1; } if (block==0) OrMask(path.lat[y],path.lon[y],mask_value); } } } void PlotLRPath(struct site source, struct site destination, unsigned char mask_value, FILE *fd) { /* This function plots the RF path loss between source and destination points based on the Longley-Rice propagation model, taking into account antenna pattern data, if available. */ int x, y, ifs, ofs, errnum; char block=0, strmode[100]; double loss, azimuth, pattern=0.0, xmtr_alt, dest_alt, xmtr_alt2, dest_alt2, cos_rcvr_angle, cos_test_angle=0.0, test_alt, elevation=0.0, distance=0.0, four_thirds_earth, field_strength=0.0, rxp, dBm; struct site temp; ReadPath(source,destination); four_thirds_earth=FOUR_THIRDS*EARTHRADIUS; /* Copy elevations plus clutter along path into the elev[] array. */ for (x=1; x1.0) cos_rcvr_angle=1.0; if (cos_rcvr_angle<-1.0) cos_rcvr_angle=-1.0; if (got_elevation_pattern || fd!=NULL) { /* Determine the elevation angle to the first obstruction along the path IF elevation pattern data is available or an output (.ano) file has been designated. */ for (x=2, block=0; (x1.0) cos_test_angle=1.0; if (cos_test_angle<-1.0) cos_test_angle=-1.0; /* Compare these two angles to determine if an obstruction exists. Since we're comparing the cosines of these angles rather than the angles themselves, the sense of the following "if" statement is reversed from what it would be if the angles themselves were compared. */ if (cos_rcvr_angle>=cos_test_angle) block=1; } if (block) elevation=((acos(cos_test_angle))/DEG2RAD)-90.0; else elevation=((acos(cos_rcvr_angle))/DEG2RAD)-90.0; } /* Determine attenuation for each point along the path using Longley-Rice's point_to_point mode starting at y=2 (number_of_points = 1), the shortest distance terrain can play a role in path loss. */ elev[0]=y-1; /* (number of points - 1) */ /* Distance between elevation samples */ elev[1]=METERS_PER_MILE*(path.distance[y]-path.distance[y-1]); point_to_point(elev,source.alt*METERS_PER_FOOT, destination.alt*METERS_PER_FOOT, LR.eps_dielect, LR.sgm_conductivity, LR.eno_ns_surfref, LR.frq_mhz, LR.radio_climate, LR.pol, LR.conf, LR.rel, loss, strmode, errnum); temp.lat=path.lat[y]; temp.lon=path.lon[y]; azimuth=(Azimuth(source,temp)); if (fd!=NULL) fprintf(fd,"%.7f, %.7f, %.3f, %.3f, ",path.lat[y], path.lon[y], azimuth, elevation); /* If ERP==0, write path loss to alphanumeric output file. Otherwise, write field strength or received power level (below), as appropriate. */ if (fd!=NULL && LR.erp==0.0) fprintf(fd,"%.2f",loss); /* Integrate the antenna's radiation pattern into the overall path loss. */ x=(int)rint(10.0*(10.0-elevation)); if (x>=0 && x<=1000) { azimuth=rint(azimuth); pattern=(double)LR.antenna_pattern[(int)azimuth][x]; if (pattern!=0.0) { pattern=20.0*log10(pattern); loss-=pattern; } } if (LR.erp!=0.0) { if (dbm) { /* dBm is based on EIRP (ERP + 2.14) */ rxp=LR.erp/(pow(10.0,(loss-2.14)/10.0)); dBm=10.0*(log10(rxp*1000.0)); if (fd!=NULL) fprintf(fd,"%.3f",dBm); /* Scale roughly between 0 and 255 */ ifs=200+(int)rint(dBm); if (ifs<0) ifs=0; if (ifs>255) ifs=255; ofs=GetSignal(path.lat[y],path.lon[y]); if (ofs>ifs) ifs=ofs; PutSignal(path.lat[y],path.lon[y],(unsigned char)ifs); } else { field_strength=(139.4+(20.0*log10(LR.frq_mhz))-loss)+(10.0*log10(LR.erp/1000.0)); ifs=100+(int)rint(field_strength); if (ifs<0) ifs=0; if (ifs>255) ifs=255; ofs=GetSignal(path.lat[y],path.lon[y]); if (ofs>ifs) ifs=ofs; PutSignal(path.lat[y],path.lon[y],(unsigned char)ifs); if (fd!=NULL) fprintf(fd,"%.3f",field_strength); } } else { if (loss>255) ifs=255; else ifs=(int)rint(loss); ofs=GetSignal(path.lat[y],path.lon[y]); if (ofs0.0 && debug) fprintf(stdout," and %.2f %s of ground clutter",metric?clutter*METERS_PER_FOOT:clutter,metric?"meters":"feet"); fprintf(stdout,"...\n\n 0%c to 25%c ",37,37); fflush(stdout); /* th=pixels/degree divided by 64 loops per progress indicator symbol (.oOo) printed. */ th=ppd/loops; z=(int)(th*ReduceAngle(max_west-min_west)); minwest=dpp+(double)min_west; maxnorth=(double)max_north-dpp; for (lon=minwest, x=0, y=0; (LonDiff(lon,(double)max_west)<=0.0); y++, lon=minwest+(dpp*(double)y)) { if (lon>=360.0) lon-=360.0; edge.lat=max_north; edge.lon=lon; edge.alt=altitude; PlotPath(source,edge,mask_value); count++; if (count==z) { fprintf(stdout,"%c",symbol[x]); fflush(stdout); count=0; if (x==3) x=0; else x++; } } count=0; fprintf(stdout,"\n25%c to 50%c ",37,37); fflush(stdout); z=(int)(th*(double)(max_north-min_north)); for (lat=maxnorth, x=0, y=0; lat>=(double)min_north; y++, lat=maxnorth-(dpp*(double)y)) { edge.lat=lat; edge.lon=min_west; edge.alt=altitude; PlotPath(source,edge,mask_value); count++; if (count==z) { //fprintf(stdout,"%c",symbol[x]); //fflush(stdout); count=0; if (x==3) x=0; else x++; } } count=0; fprintf(stdout,"\n50%c to 75%c ",37,37); fflush(stdout); z=(int)(th*ReduceAngle(max_west-min_west)); for (lon=minwest, x=0, y=0; (LonDiff(lon,(double)max_west)<=0.0); y++, lon=minwest+(dpp*(double)y)) { if (lon>=360.0) lon-=360.0; edge.lat=min_north; edge.lon=lon; edge.alt=altitude; PlotPath(source,edge,mask_value); count++; if (count==z) { //fprintf(stdout,"%c",symbol[x]); //fflush(stdout); count=0; if (x==3) x=0; else x++; } } count=0; fprintf(stdout,"\n75%c to 100%c ",37,37); fflush(stdout); z=(int)(th*(double)(max_north-min_north)); for (lat=(double)min_north, x=0, y=0; lat<(double)max_north; y++, lat=(double)min_north+(dpp*(double)y)) { edge.lat=lat; edge.lon=max_west; edge.alt=altitude; PlotPath(source,edge,mask_value); count++; if (count==z) { //fprintf(stdout,"%c",symbol[x]); //fflush(stdout); count=0; if (x==3) x=0; else x++; } } fprintf(stdout,"\nDone!\n"); fflush(stdout); /* Assign next mask value */ switch (mask_value) { case 1: mask_value=8; break; case 8: mask_value=16; break; case 16: mask_value=32; } } void PlotLRMap(struct site source, double altitude, char *plo_filename) { /* This function performs a 360 degree sweep around the transmitter site (source location), and plots the Longley-Rice attenuation on the ss generated topographic map based on a receiver located at the specified altitude (in feet AGL). Results are stored in memory, and written out in the form of a topographic map when the DoPathLoss() or DoSigStr() functions are later invoked. */ int y, z, count; struct site edge; double lat, lon, minwest, maxnorth, th; unsigned char x, symbol[4]; static unsigned char mask_value=1; FILE *fd=NULL; minwest=dpp+(double)min_west; maxnorth=(double)max_north-dpp; count=0; if (debug){ fprintf(stdout,"\nComputing Longley-Rice "); } if (LR.erp==0.0 && debug) fprintf(stdout,"path loss"); else { if(debug){ if (dbm) fprintf(stdout,"signal power level"); else fprintf(stdout,"field strength"); } } if (debug){ fprintf(stdout," contours of \"%s\"\nout to a radius of %.2f %s with Rx antenna(s) at %.2f %s AGL\n",source.name,metric?max_range*KM_PER_MILE:max_range,metric?"kilometers":"miles",metric?altitude*METERS_PER_FOOT:altitude,metric?"meters":"feet"); } if (clutter>0.0 && debug) fprintf(stdout,"\nand %.2f %s of ground clutter",metric?clutter*METERS_PER_FOOT:clutter,metric?"meters":"feet"); if(debug){ fprintf(stdout,"...\n\n 0%c to 25%c ",37,37); fflush(stdout); } if (plo_filename[0]!=0) fd=fopen(plo_filename,"wb"); if (fd!=NULL) { /* Write header information to output file */ fprintf(fd,"%d, %d\t; max_west, min_west\n%d, %d\t; max_north, min_north\n",max_west, min_west, max_north, min_north); } /* th=pixels/degree divided by 64 loops per progress indicator symbol (.oOo) printed. */ th=ppd/loops; z=(int)(th*ReduceAngle(max_west-min_west)); for (lon=minwest, x=0, y=0; (LonDiff(lon,(double)max_west)<=0.0); y++, lon=minwest+(dpp*(double)y)) { if (lon>=360.0) lon-=360.0; edge.lat=max_north; edge.lon=lon; edge.alt=altitude; PlotLRPath(source,edge,mask_value,fd); count++; if (count==z) { //fprintf(stdout,"%c",symbol[x]); //fflush(stdout); count=0; if (x==3) x=0; else x++; } } count=0; if(debug){ fprintf(stdout,"\n25%c to 50%c ",37,37); fflush(stdout); } z=(int)(th*(double)(max_north-min_north)); for (lat=maxnorth, x=0, y=0; lat>=(double)min_north; y++, lat=maxnorth-(dpp*(double)y)) { edge.lat=lat; edge.lon=min_west; edge.alt=altitude; PlotLRPath(source,edge,mask_value,fd); count++; if (count==z) { //fprintf(stdout,"%c",symbol[x]); //fflush(stdout); count=0; if (x==3) x=0; else x++; } } count=0; if(debug){ fprintf(stdout,"\n50%c to 75%c ",37,37); fflush(stdout); } z=(int)(th*ReduceAngle(max_west-min_west)); for (lon=minwest, x=0, y=0; (LonDiff(lon,(double)max_west)<=0.0); y++, lon=minwest+(dpp*(double)y)) { if (lon>=360.0) lon-=360.0; edge.lat=min_north; edge.lon=lon; edge.alt=altitude; PlotLRPath(source,edge,mask_value,fd); count++; if (count==z) { //fprintf(stdout,"%c",symbol[x]); //fflush(stdout); count=0; if (x==3) x=0; else x++; } } count=0; if(debug){ fprintf(stdout,"\n75%c to 100%c ",37,37); fflush(stdout); } z=(int)(th*(double)(max_north-min_north)); for (lat=(double)min_north, x=0, y=0; lat<(double)max_north; y++, lat=(double)min_north+(dpp*(double)y)) { edge.lat=lat; edge.lon=max_west; edge.alt=altitude; PlotLRPath(source,edge,mask_value,fd); count++; if (count==z) { //fprintf(stdout,"%c",symbol[x]); //fflush(stdout); count=0; if (x==3) x=0; else x++; } } if (fd!=NULL) fclose(fd); if (mask_value<30) mask_value++; } void LoadSignalColors(struct site xmtr) { int x, y, ok, val[4]; char filename[255], string[80], *pointer=NULL, *s=NULL; FILE *fd=NULL; for (x=0; xmtr.filename[x]!='.' && xmtr.filename[x]!=0 && x<250; x++) filename[x]=xmtr.filename[x]; filename[x]='.'; filename[x+1]='s'; filename[x+2]='c'; filename[x+3]='f'; filename[x+4]=0; /* Default values */ region.level[0]=128; region.color[0][0]=255; region.color[0][1]=0; region.color[0][2]=0; region.level[1]=118; region.color[1][0]=255; region.color[1][1]=165; region.color[1][2]=0; region.level[2]=108; region.color[2][0]=255; region.color[2][1]=206; region.color[2][2]=0; region.level[3]=98; region.color[3][0]=255; region.color[3][1]=255; region.color[3][2]=0; region.level[4]=88; region.color[4][0]=184; region.color[4][1]=255; region.color[4][2]=0; region.level[5]=78; region.color[5][0]=0; region.color[5][1]=255; region.color[5][2]=0; region.level[6]=68; region.color[6][0]=0; region.color[6][1]=208; region.color[6][2]=0; region.level[7]=58; region.color[7][0]=0; region.color[7][1]=196; region.color[7][2]=196; region.level[8]=48; region.color[8][0]=0; region.color[8][1]=148; region.color[8][2]=255; region.level[9]=38; region.color[9][0]=80; region.color[9][1]=80; region.color[9][2]=255; region.level[10]=28; region.color[10][0]=0; region.color[10][1]=38; region.color[10][2]=255; region.level[11]=18; region.color[11][0]=142; region.color[11][1]=63; region.color[11][2]=255; region.level[12]=8; region.color[12][0]=140; region.color[12][1]=0; region.color[12][2]=128; region.levels=13; fd=fopen(filename,"r"); if (fd==NULL) fd=fopen(filename,"r"); if (fd==NULL) { fd=fopen(filename,"w"); for (x=0; x255) val[y]=255; if (val[y]<0) val[y]=0; } region.level[x]=val[0]; region.color[x][0]=val[1]; region.color[x][1]=val[2]; region.color[x][2]=val[3]; x++; } s=fgets(string,80,fd); } fclose(fd); region.levels=x; } } void LoadLossColors(struct site xmtr) { int x, y, ok, val[4]; char filename[255], string[80], *pointer=NULL, *s=NULL; FILE *fd=NULL; for (x=0; xmtr.filename[x]!='.' && xmtr.filename[x]!=0 && x<250; x++) filename[x]=xmtr.filename[x]; filename[x]='.'; filename[x+1]='l'; filename[x+2]='c'; filename[x+3]='f'; filename[x+4]=0; /* Default values */ region.level[0]=80; region.color[0][0]=255; region.color[0][1]=0; region.color[0][2]=0; region.level[1]=90; region.color[1][0]=255; region.color[1][1]=128; region.color[1][2]=0; region.level[2]=100; region.color[2][0]=255; region.color[2][1]=165; region.color[2][2]=0; region.level[3]=110; region.color[3][0]=255; region.color[3][1]=206; region.color[3][2]=0; region.level[4]=120; region.color[4][0]=255; region.color[4][1]=255; region.color[4][2]=0; region.level[5]=130; region.color[5][0]=184; region.color[5][1]=255; region.color[5][2]=0; region.level[6]=140; region.color[6][0]=0; region.color[6][1]=255; region.color[6][2]=0; region.level[7]=150; region.color[7][0]=0; region.color[7][1]=208; region.color[7][2]=0; region.level[8]=160; region.color[8][0]=0; region.color[8][1]=196; region.color[8][2]=196; region.level[9]=170; region.color[9][0]=0; region.color[9][1]=148; region.color[9][2]=255; region.level[10]=180; region.color[10][0]=80; region.color[10][1]=80; region.color[10][2]=255; region.level[11]=190; region.color[11][0]=0; region.color[11][1]=38; region.color[11][2]=255; region.level[12]=200; region.color[12][0]=142; region.color[12][1]=63; region.color[12][2]=255; region.level[13]=210; region.color[13][0]=196; region.color[13][1]=54; region.color[13][2]=255; region.level[14]=220; region.color[14][0]=255; region.color[14][1]=0; region.color[14][2]=255; region.level[15]=230; region.color[15][0]=255; region.color[15][1]=194; region.color[15][2]=204; region.levels=16; fd=fopen(filename,"r"); if (fd==NULL) fd=fopen(filename,"r"); if (fd==NULL) { fd=fopen(filename,"w"); for (x=0; x255) val[y]=255; if (val[y]<0) val[y]=0; } region.level[x]=val[0]; region.color[x][0]=val[1]; region.color[x][1]=val[2]; region.color[x][2]=val[3]; x++; } s=fgets(string,80,fd); } fclose(fd); region.levels=x; } } void LoadDBMColors(struct site xmtr) { int x, y, ok, val[4]; char filename[255], string[80], *pointer=NULL, *s=NULL; FILE *fd=NULL; for (x=0; xmtr.filename[x]!='.' && xmtr.filename[x]!=0 && x<250; x++) filename[x]=xmtr.filename[x]; filename[x]='.'; filename[x+1]='d'; filename[x+2]='c'; filename[x+3]='f'; filename[x+4]=0; /* Default values */ region.level[0]=0; region.color[0][0]=255; region.color[0][1]=0; region.color[0][2]=0; region.level[1]=-10; region.color[1][0]=255; region.color[1][1]=128; region.color[1][2]=0; region.level[2]=-20; region.color[2][0]=255; region.color[2][1]=165; region.color[2][2]=0; region.level[3]=-30; region.color[3][0]=255; region.color[3][1]=206; region.color[3][2]=0; region.level[4]=-40; region.color[4][0]=255; region.color[4][1]=255; region.color[4][2]=0; region.level[5]=-50; region.color[5][0]=184; region.color[5][1]=255; region.color[5][2]=0; region.level[6]=-60; region.color[6][0]=0; region.color[6][1]=255; region.color[6][2]=0; region.level[7]=-70; region.color[7][0]=0; region.color[7][1]=208; region.color[7][2]=0; region.level[8]=-80; region.color[8][0]=0; region.color[8][1]=196; region.color[8][2]=196; region.level[9]=-90; region.color[9][0]=0; region.color[9][1]=148; region.color[9][2]=255; region.level[10]=-100; region.color[10][0]=80; region.color[10][1]=80; region.color[10][2]=255; region.level[11]=-110; region.color[11][0]=0; region.color[11][1]=38; region.color[11][2]=255; region.level[12]=-120; region.color[12][0]=142; region.color[12][1]=63; region.color[12][2]=255; region.level[13]=-130; region.color[13][0]=196; region.color[13][1]=54; region.color[13][2]=255; region.level[14]=-140; region.color[14][0]=255; region.color[14][1]=0; region.color[14][2]=255; region.level[15]=-150; region.color[15][0]=255; region.color[15][1]=194; region.color[15][2]=204; region.levels=16; fd=fopen(filename,"r"); if (fd==NULL) fd=fopen(filename,"r"); if (fd==NULL) { fd=fopen(filename,"w"); for (x=0; x+40) val[0]=+40; region.level[x]=val[0]; for (y=1; y<4; y++) { if (val[y]>255) val[y]=255; if (val[y]<0) val[y]=0; } region.color[x][0]=val[1]; region.color[x][1]=val[2]; region.color[x][2]=val[3]; x++; } s=fgets(string,80,fd); } fclose(fd); region.levels=x; } } void DoPathLoss(char *filename, unsigned char geo, unsigned char kml, unsigned char ngs, struct site *xmtr, unsigned char txsites) { /* This function generates a topographic map in Portable Pix Map (PPM) format based on the content of flags held in the mask[][] array (only). The image created is rotated counter-clockwise 90 degrees from its representation in dem[][] so that north points up and east points right in the image generated. */ char mapfile[255], geofile[255], kmlfile[255]; unsigned width, height, red, green, blue, terrain=0; unsigned char found, mask, cityorcounty; int indx, x, y, z, x0, y0, loss, match; double lat, lon, conversion, one_over_gamma,minwest; FILE *fd; one_over_gamma=1.0/GAMMA; conversion=255.0/pow((double)(max_elevation-min_elevation),one_over_gamma); width=(unsigned)(ippd*ReduceAngle(max_west-min_west)); height=(unsigned)(ippd*ReduceAngle(max_north-min_north)); LoadLossColors(xmtr[0]); if (filename[0]==0) { strncpy(filename, xmtr[0].filename,254); filename[strlen(filename)-4]=0; /* Remove .qth */ } y=strlen(filename); if (y>4) { if (filename[y-1]=='m' && filename[y-2]=='p' && filename[y-3]=='p' && filename[y-4]=='.') y-=4; } for (x=0; x360.0) minwest-=360.0; north=(double)max_north-dpp; if (kml || geo) south=(double)min_north; /* No bottom legend */ else south=(double)min_north-(30.0/ppd); /* 30 pixels for bottom legend */ east=(minwest<180.0?-minwest:360.0-min_west); west=(double)(max_west<180?-max_west:360-max_west); // WriteKML() //writeKML(xmtr,filename); fd=fopen(mapfile,"wb"); fprintf(fd,"P6\n%u %u\n255\n",width,(kml?height:height+30)); if(debug){ fprintf(stdout,"\nWriting \"%s\" (%ux%u pixmap image)... ",mapfile,width,(kml?height:height+30)); fflush(stdout); } for (y=0, lat=north; y<(int)height; y++, lat=north-(dpp*(double)y)) { for (x=0, lon=max_west; x<(int)width; x++, lon=max_west-(dpp*(double)x)) { if (lon<0.0) lon+=360.0; for (indx=0, found=0; indx=0 && x0<=mpi && y0>=0 && y0<=mpi) found=1; else indx++; } if (found) { mask=dem[indx].mask[x0][y0]; loss=(dem[indx].signal[x0][y0]); cityorcounty=0; match=255; red=0; green=0; blue=0; if (loss<=region.level[0]) match=0; else { for (z=1; (z=region.level[z-1] && loss=180 && green<=75 && blue<=75 && loss==0) fprintf(fd,"%c%c%c",255^red,255^green,255^blue); else fprintf(fd,"%c%c%c",255,0,0); cityorcounty=1; } else if (mask&4) { /* County Boundaries: Black */ fprintf(fd,"%c%c%c",0,0,0); cityorcounty=1; } if (cityorcounty==0) { if (loss==0 || (contour_threshold!=0 && loss>abs(contour_threshold))) { if (ngs) /* No terrain */ fprintf(fd,"%c%c%c",255,255,255); else { /* Display land or sea elevation */ if (dem[indx].data[x0][y0]==0) fprintf(fd,"%c%c%c",0,0,170); else { terrain=(unsigned)(0.5+pow((double)(dem[indx].data[x0][y0]-min_elevation),one_over_gamma)*conversion); fprintf(fd,"%c%c%c",terrain,terrain,terrain); } } } else { /* Plot path loss in color */ if (red!=0 || green!=0 || blue!=0) fprintf(fd,"%c%c%c",red,green,blue); else /* terrain / sea-level */ { if (dem[indx].data[x0][y0]==0) fprintf(fd,"%c%c%c",0,0,170); else { /* Elevation: Greyscale */ terrain=(unsigned)(0.5+pow((double)(dem[indx].data[x0][y0]-min_elevation),one_over_gamma)*conversion); fprintf(fd,"%c%c%c",terrain,terrain,terrain); } } } } } else { /* We should never get here, but if */ /* we do, display the region as black */ fprintf(fd,"%c%c%c",0,0,0); } } } fclose(fd); if(debug){ fprintf(stdout,"Done!\n"); fflush(stdout); } } void DoSigStr(char *filename, unsigned char geo, unsigned char kml, unsigned char ngs, struct site *xmtr, unsigned char txsites) { /* This function generates a topographic map in Portable Pix Map (PPM) format based on the signal strength values held in the signal[][] array. The image created is rotated counter-clockwise 90 degrees from its representation in dem[][] so that north points up and east points right in the image generated. */ char mapfile[255], geofile[255], kmlfile[255]; unsigned width, height, terrain, red, green, blue; unsigned char found, mask, cityorcounty; int indx, x, y, z=1, x0, y0, signal,match; double conversion, one_over_gamma, lat, lon, minwest; FILE *fd; one_over_gamma=1.0/GAMMA; conversion=255.0/pow((double)(max_elevation-min_elevation),one_over_gamma); width=(unsigned)(ippd*ReduceAngle(max_west-min_west)); height=(unsigned)(ippd*ReduceAngle(max_north-min_north)); LoadSignalColors(xmtr[0]); if (filename[0]==0) { strncpy(filename, xmtr[0].filename,254); filename[strlen(filename)-4]=0; /* Remove .qth */ } y=strlen(filename); if (y>4) { if (filename[y-1]=='m' && filename[y-2]=='p' && filename[y-3]=='p' && filename[y-4]=='.') y-=4; } for (x=0; x360.0) minwest-=360.0; north=(double)max_north-dpp; south=(double)min_north; /* No bottom legend */ east=(minwest<180.0?-minwest:360.0-min_west); west=(double)(max_west<180?-max_west:360-max_west); // WriteKML() //writeKML(xmtr,filename); fd=fopen(mapfile,"wb"); fprintf(fd,"P6\n%u %u\n255\n",width,(kml?height:height+30)); if(debug){ fprintf(stdout,"\nWriting \"%s\" (%ux%u pixmap image)... ",mapfile,width,(kml?height:height+30)); fflush(stdout); } for (y=0, lat=north; y<(int)height; y++, lat=north-(dpp*(double)y)) { for (x=0, lon=max_west; x<(int)width; x++, lon=max_west-(dpp*(double)x)) { if (lon<0.0) lon+=360.0; for (indx=0, found=0; indx=0 && x0<=mpi && y0>=0 && y0<=mpi) found=1; else indx++; } if (found) { mask=dem[indx].mask[x0][y0]; signal=(dem[indx].signal[x0][y0])-100; cityorcounty=0; match=255; red=0; green=0; blue=0; if (signal>=region.level[0]) match=0; else { for (z=1; (z=region.level[z]) match=z; } } if (match=180 && green<=75 && blue<=75) fprintf(fd,"%c%c%c",255^red,255^green,255^blue); else fprintf(fd,"%c%c%c",255,0,0); cityorcounty=1; } else if (mask&4) { /* County Boundaries: Black */ fprintf(fd,"%c%c%c",0,0,0); cityorcounty=1; } if (cityorcounty==0) { if (contour_threshold!=0 && signal4) { if (filename[y-1]=='m' && filename[y-2]=='p' && filename[y-3]=='p' && filename[y-4]=='.') y-=4; } for (x=0; x360.0) minwest-=360.0; north=(double)max_north-dpp; south=(double)min_north; /* No bottom legend */ east=(minwest<180.0?-minwest:360.0-min_west); west=(double)(max_west<180?-max_west:360-max_west); fd=fopen(mapfile,"wb"); fprintf(fd,"P6\n%u %u\n255\n",width,(kml?height:height+30)); if(debug){ fprintf(stdout,"\nWriting \"%s\" (%ux%u pixmap image)... ",mapfile,width,(kml?height:height+30)); fflush(stdout); } // WriteKML() //writeKML(xmtr,filename); for (y=0, lat=north; y<(int)height; y++, lat=north-(dpp*(double)y)) { for (x=0, lon=max_west; x<(int)width; x++, lon=max_west-(dpp*(double)x)) { if (lon<0.0) lon+=360.0; for (indx=0, found=0; indx=0 && x0<=mpi && y0>=0 && y0<=mpi) found=1; else indx++; } if (found) { mask=dem[indx].mask[x0][y0]; dBm=(dem[indx].signal[x0][y0])-200; cityorcounty=0; match=255; red=0; green=0; blue=0; if (dBm>=region.level[0]) match=0; else { for (z=1; (z=region.level[z]) match=z; } } if (match=180 && green<=75 && blue<=75 && dBm!=0) fprintf(fd,"%c%c%c",255^red,255^green,255^blue); else fprintf(fd,"%c%c%c",255,0,0); cityorcounty=1; } else if (mask&4) { /* County Boundaries: Black */ fprintf(fd,"%c%c%c",0,0,0); cityorcounty=1; } if (cityorcounty==0) { if (contour_threshold!=0 && dBm=360) ymin-=360; ymax=ymin+1; while (ymax<0) ymax+=360; while (ymax>=360) ymax-=360; if (ippd==3600) snprintf(string,19,"%d:%d:%d:%d-hd",x, x+1, ymin, ymax); else snprintf(string,16,"%d:%d:%d:%d",x, x+1, ymin, ymax); LoadSDF(string); } } else { for (y=0; y<=width; y++) for (x=min_lat; x<=max_lat; x++) { ymin=max_lon+y; while (ymin<0) ymin+=360; while (ymin>=360) ymin-=360; ymax=ymin+1; while (ymax<0) ymax+=360; while (ymax>=360) ymax-=360; if (ippd==3600) snprintf(string,19,"%d:%d:%d:%d-hd",x, x+1, ymin, ymax); else snprintf(string,16,"%d:%d:%d:%d",x, x+1, ymin, ymax); LoadSDF(string); } } } void LoadUDT(char *filename) { /* This function reads a file containing User-Defined Terrain features for their addition to the digital elevation model data used by SPLAT!. Elevations in the UDT file are evaluated and then copied into a temporary file under /tmp. Then the contents of the temp file are scanned, and if found to be unique, are added to the ground elevations described by the digital elevation data already loaded into memory. */ int i, x, y, z, ypix, xpix, tempxpix, tempypix, fd=0, n=0, pixelfound=0; char input[80], str[3][80], tempname[15], *pointer=NULL, *s=NULL; double latitude, longitude, height, tempheight; FILE *fd1=NULL, *fd2=NULL; strcpy(tempname,"/tmp/XXXXXX\0"); fd1=fopen(filename,"r"); if (fd1!=NULL) { fd=mkstemp(tempname); fd2=fopen(tempname,"w"); s=fgets(input,78,fd1); pointer=strchr(input,';'); if (pointer!=NULL) *pointer=0; while (feof(fd1)==0) { /* Parse line for latitude, longitude, height */ for (x=0, y=0, z=0; x<78 && input[x]!=0 && z<3; x++) { if (input[x]!=',' && y<78) { str[z][y]=input[x]; y++; } else { str[z][y]=0; z++; y=0; } } latitude=ReadBearing(str[0]); longitude=ReadBearing(str[1]); if (longitude<0.0) longitude+=360; /* Remove and/or from antenna height string */ for (i=0; str[2][i]!=13 && str[2][i]!=10 && str[2][i]!=0; i++); str[2][i]=0; /* The terrain feature may be expressed in either feet or meters. If the letter 'M' or 'm' is discovered in the string, then this is an indication that the value given is expressed in meters. Otherwise the height is interpreted as being expressed in feet. */ for (i=0; str[2][i]!='M' && str[2][i]!='m' && str[2][i]!=0 && i<48; i++); if (str[2][i]=='M' || str[2][i]=='m') { str[2][i]=0; height=rint(atof(str[2])); } else { str[2][i]=0; height=rint(METERS_PER_FOOT*atof(str[2])); } if (height>0.0) fprintf(fd2,"%d, %d, %f\n",(int)rint(latitude/dpp), (int)rint(longitude/dpp), height); s=fgets(input,78,fd1); pointer=strchr(input,';'); if (pointer!=NULL) *pointer=0; } fclose(fd1); fclose(fd2); close(fd); fd1=fopen(tempname,"r"); fd2=fopen(tempname,"r"); y=0; n=fscanf(fd1,"%d, %d, %lf", &xpix, &ypix, &height); do { x=0; z=0; n=fscanf(fd2,"%d, %d, %lf", &tempxpix, &tempypix, &tempheight); do { if (x>y && xpix==tempxpix && ypix==tempypix) { z=1; /* Dupe! */ if (tempheight>height) height=tempheight; } else { n=fscanf(fd2,"%d, %d, %lf", &tempxpix, &tempypix, &tempheight); x++; } } while (feof(fd2)==0 && z==0); if (z==0) /* No duplicate found */ //fprintf(stdout,"%lf, %lf \n",xpix*dpp, ypix*dpp); fflush(stdout); pixelfound = AddElevation(xpix*dpp, ypix*dpp, height); //fprintf(stdout,"%d \n",pixelfound); fflush(stdout); n=fscanf(fd1,"%d, %d, %lf", &xpix, &ypix, &height); y++; rewind(fd2); } while (feof(fd1)==0); fclose(fd1); fclose(fd2); unlink(tempname); } //else //fprintf(stderr,"\n*** ERROR: \"%s\": not found!",filename); //fprintf(stdout,"\n"); } int main(int argc, char *argv[]) { int x, y, z=0, min_lat, min_lon, max_lat, max_lon, rxlat, rxlon, txlat, txlon, west_min, west_max, north_min, north_max; unsigned char LRmap=0, map=0,txsites=0, topomap=0, geo=0, kml=0, area_mode=0, max_txsites, ngs=0; char mapfile[255], elevation_file[255], longley_file[255], terrain_file[255], string[255], rxfile[255],txfile[255], udt_file[255], rxsite=0, ani_filename[255], ano_filename[255]; double altitude=0.0, altitudeLR=0.0, tx_range=0.0, rx_range=0.0, deg_range=0.0, deg_limit=0.0, deg_range_lon; struct site tx_site[32], rx_site; strncpy(ss_version,"1.3.5\0",6); strncpy(ss_name,"Signal Server\0",14); if (argc==1) { fprintf(stdout,"\n\t\t -- %s %s options --\n\n",ss_name, ss_version); fprintf(stdout," -d Directory containing .sdf tiles\n"); fprintf(stdout," -lat Tx Latitude (decimal degrees)\n"); fprintf(stdout," -lon Tx Longitude (decimal degrees) Positive 0-360 \n"); fprintf(stdout," -txh Tx Height (above ground)\n"); fprintf(stdout," -f Tx Frequency (MHz)\n"); fprintf(stdout," -erp Tx Effective Radiated Power (Watts)\n"); fprintf(stdout," -rxh Rx Height(s) (optional. Default=0.1)\n"); fprintf(stdout," -rt Rx Threshold (dB / dBm / dBuV/m)\n"); fprintf(stdout," -hp Horizontal Polarisation (default=vertical)\n"); fprintf(stdout," -gc Ground clutter (feet/meters)\n"); fprintf(stdout," -udt User defined terrain filename\n"); fprintf(stdout," -dbm Plot Rxd signal power instead of field strength\n"); fprintf(stdout," -m Metric units of measurement\n"); fprintf(stdout," -te Terrain code 1-6 (optional)\n"); fprintf(stdout," -terdic Terrain dielectric value 2-80 (optional)\n"); fprintf(stdout," -tercon Terrain conductivity 0.01-0.0001 (optional)\n"); fprintf(stdout," -cl Climate code 1-6 (optional)\n"); fprintf(stdout," -o Filename. Required. \n"); fprintf(stdout," -R Radius (miles/kilometers)\n"); fprintf(stdout," -res Pixels per degree. 300/600/1200(default)/3600 (optional)\n"); fprintf(stdout," -t Terrain background\n"); fprintf(stdout," -dbg Debug\n\n"); fflush(stdout); return 1; } y=argc-1; kml=0; geo=0; dbm=0; gpsav=0; metric=0; rxfile[0]=0; txfile[0]=0; string[0]=0; mapfile[0]=0; clutter=0.0; forced_erp=-1.0; forced_freq=0.0; elevation_file[0]=0; terrain_file[0]=0; sdf_path[0]=0; udt_file[0]=0; path.length=0; max_txsites=30; fzone_clearance=0.6; contour_threshold=0; rx_site.lat=91.0; rx_site.lon=361.0; longley_file[0]=0; ano_filename[0]=0; ani_filename[0]=0; earthradius=EARTHRADIUS; max_range=1.0; lat=0; lon=0; txh=0; ngs=1; // no terrain background kml=1; map=1; LRmap=1; area_mode=1; ippd=IPPD; // default resolution sscanf("0.1","%lf",&altitudeLR); // Defaults LR.eps_dielect=15.0; // Farmland LR.sgm_conductivity=0.005; // Farmland LR.eno_ns_surfref=301.0; LR.frq_mhz=19.0; // Deliberately too low LR.radio_climate=5; // continental LR.pol=1; // vert LR.conf=0.50; LR.rel=0.50; LR.erp=0.0; // will default to Path Loss tx_site[0].lat=91.0; tx_site[0].lon=361.0; //flush dem //memset(dem, 0, ARRAYSIZE * sizeof(struct dem)); memset(dem, 0, (size_t)MAXPAGES * sizeof(struct dem)); for (x=0; x 90 || tx_site[0].lat < -90) { fprintf(stdout,"ERROR: Either the lat was missing or out of range!"); exit(0); } if (tx_site[0].lon > 360 || tx_site[0].lon < 0) { fprintf(stdout,"ERROR: Either the lon was missing or out of range!"); exit(0); } if (LR.frq_mhz < 20 || LR.frq_mhz > 20000) { fprintf(stdout,"ERROR: Either the Frequency was missing or out of range!"); exit(0); } if (LR.erp>2000000) { fprintf(stdout,"ERROR: Power was out of range!"); exit(0); } if (LR.eps_dielect > 80 || LR.eps_dielect < 0.1) { fprintf(stdout,"ERROR: Ground Dielectric value out of range!"); exit(0); } if (LR.sgm_conductivity > 0.01 || LR.sgm_conductivity < 0.000001) { fprintf(stdout,"ERROR: Ground conductivity out of range!"); exit(0); } if (tx_site[0].alt < 0 || tx_site[0].alt > 60000) { fprintf(stdout,"ERROR: Tx altitude above ground was too high!"); exit(0); } if (altitudeLR < 0 || altitudeLR > 60000) { fprintf(stdout,"ERROR: Rx altitude above ground was too high!"); exit(0); } if (ippd < 300 || ippd > 3600){ fprintf(stdout,"ERROR: resolution out of range!"); exit(0); } if(contour_threshold < -200 || contour_threshold > 200) { fprintf(stdout,"ERROR: Receiver threshold out of range (-200 / +200)"); exit(0); } /* ERROR DETECTION COMPLETE */ if (metric) { altitudeLR/=METERS_PER_FOOT; /* RXH meters --> feet */ max_range/=KM_PER_MILE; /* RAD kilometers --> miles */ //altitude/=METERS_PER_FOOT; tx_site[0].alt/=METERS_PER_FOOT; /* TXH meters --> feet */ clutter/=METERS_PER_FOOT; /* CLH meters --> feet */ } /* Ensure a trailing '/' is present in sdf_path */ if (sdf_path[0]) { x=strlen(sdf_path); if (sdf_path[x-1]!='/' && x!=0) { sdf_path[x]='/'; sdf_path[x+1]=0; } } x=0; y=0; min_lat=70; max_lat=-70; min_lon=(int)floor(tx_site[0].lon); max_lon=(int)floor(tx_site[0].lon); txlat=(int)floor(tx_site[0].lat); txlon=(int)floor(tx_site[0].lon); if (txlatmax_lat) max_lat=txlat; if (LonDiff(txlon,min_lon)<0.0) min_lon=txlon; if (LonDiff(txlon,max_lon)>=0.0) max_lon=txlon; if (rxsite) { rxlat=(int)floor(rx_site.lat); rxlon=(int)floor(rx_site.lon); if (rxlatmax_lat) max_lat=rxlat; if (LonDiff(rxlon,min_lon)<0.0) min_lon=rxlon; if (LonDiff(rxlon,max_lon)>=0.0) max_lon=rxlon; } /* Load the required SDF files */ LoadTopoData(max_lon, min_lon, max_lat, min_lat); if (area_mode || topomap) { for (z=0; zdeg_limit) deg_range=deg_limit; if (deg_range_lon>deg_limit) deg_range_lon=deg_limit; north_min=(int)floor(tx_site[z].lat-deg_range); north_max=(int)floor(tx_site[z].lat+deg_range); west_min=(int)floor(tx_site[z].lon-deg_range_lon); while (west_min<0) west_min+=360; while (west_min>=360) west_min-=360; west_max=(int)floor(tx_site[z].lon+deg_range_lon); while (west_max<0) west_max+=360; while (west_max>=360) west_max-=360; if (north_minmax_lat) max_lat=north_max; if (LonDiff(west_min,min_lon)<0.0) min_lon=west_min; if (LonDiff(west_max,max_lon)>=0.0) max_lon=west_max; } /* Load any additional SDF files, if required */ LoadTopoData(max_lon, min_lon, max_lat, min_lat); } // UDT clutter LoadUDT (udt_file); if (area_mode && topomap==0) { PlotLRMap(tx_site[0],altitudeLR,ano_filename); } if (map || topomap) { if (LR.erp==0.0) DoPathLoss(mapfile,geo,kml,ngs,tx_site,txsites); else if (dbm) DoRxdPwr(mapfile,geo,kml,ngs,tx_site,txsites); else DoSigStr(mapfile,geo,kml,ngs,tx_site,txsites); } fprintf(stdout,"|%.5f",north); fprintf(stdout,"|%.5f",east); fprintf(stdout,"|%.5f",south); fprintf(stdout,"|%.5f|",west); fflush(stdout); printf("\n"); return 0; }