#include #include #include #include #include #include #include #include "common.h" #include "main.hh" #include "tiles.hh" int loadClutter(char *filename, double radius, struct site tx) { /* This function reads a MODIS 17-class clutter file in ASCII Grid format. The nominal heights it applies to each value, eg. 5 (Mixed forest) = 15m are taken from ITU-R P.452-11. It doesn't have it's own matrix, instead it boosts the DEM matrix like point clutter AddElevation(lat, lon, height); If tiles are standard 2880 x 3840 then cellsize is constant at 0.004166 */ int x, y, z, result, h, w; double clh, xll, yll, xur, yur, cellsize, cellsize2, xOffset, yOffset, lat, lon, i, j; char line[50000]; char * pch; FILE *fd; if( (fd = fopen(filename, "rb")) == NULL) return errno; if (fgets(line, 19, fd) != NULL) { pch = strtok (line," "); pch = strtok (NULL, " "); w = atoi(pch); } if (fgets(line, 19, fd) != NULL) { //pch = strtok (line," "); //pch = strtok (NULL, " "); h = atoi(pch); } if(w==2880 && h==3840){ cellsize=0.004167; cellsize2 = cellsize * 3; }else{ return 0; // can't work with this yet } if (debug) { fprintf(stderr, "\nLoading clutter file \"%s\" %d x %d...\n", filename, w,h); fflush(stderr); } if (fgets(line, 25, fd) != NULL) { sscanf(pch, "%lf", &xll); } fgets(line, 25, fd); if (fgets(line, 25, fd) != NULL) { sscanf(pch, "%lf", &yll); } if (debug) { fprintf(stderr, "\nxll %.2f yll %.2f\n", xll, yll); fflush(stderr); } fgets(line, 25, fd); // cellsize //loop over matrix for (y = h; y > 0; y--) { x = 0; if (fgets(line, 100000, fd) != NULL) { pch = strtok(line, " "); while (pch != NULL && x < w) { z = atoi(pch); // Apply ITU-R P.452-11 // Treat classes 0, 9, 10, 11, 15, 16 as water, (Water, savanna, grassland, wetland, snow, barren) clh = 0.0; // evergreen, evergreen, urban if(z == 1 || z == 2 || z == 13) clh = 20.0; // deciduous, deciduous, mixed if(z==3 || z==4 || z==5) clh = 15.0; // woody shrublands & savannas if(z==6 || z==8) clh = 4.0; // shurblands, savannas, croplands... if(z==7 || z==9 || z==10 || z==12 || z==14) clh = 2.0; if(clh>1){ xOffset=x*cellsize; // 12 deg wide yOffset=y*cellsize; // 16 deg high // make all longitudes positive if(xll+xOffset>0){ lon=360-(xll+xOffset); }else{ lon=(xll+xOffset)*-1; } lat = yll+yOffset; // bounding box if(lat > tx.lat - radius && lat < tx.lat + radius && lon > tx.lon - radius && lon < tx.lon + radius){ // not in near field if((lat > tx.lat+cellsize2 || lat < tx.lat-cellsize2) || (lon > tx.lon + cellsize2 || lon < tx.lon - cellsize2)){ AddElevation(lat,lon,clh,2); } } } x++; pch = strtok(NULL, " "); }//while } else { fprintf(stderr, "Clutter error @ x %d y %d\n", x, y); }//if }//for fclose(fd); return 0; } int loadLIDAR(char *filenames, int resample) { char *filename; char *files[900]; // 20x20=400, 16x16=256 tiles int indx = 0, fc = 0, hoffset = 0, voffset = 0, pos, success; double xll, yll, xur, yur, cellsize, avgCellsize = 0, smCellsize = 0; char found, free_page = 0, jline[20], lid_file[255], path_plus_name[255], *junk = NULL; char line[25000]; char * pch; double TO_DEG = (180 / PI); FILE *fd; tile_t *tiles; // test for multiple files filename = strtok(filenames, " ,"); while (filename != NULL) { files[fc] = filename; filename = strtok(NULL, " ,"); fc++; } /* Allocate the tile array */ if( (tiles = (tile_t*) calloc(fc+1, sizeof(tile_t))) == NULL ) return ENOMEM; /* Load each tile in turn */ for (indx = 0; indx < fc; indx++) { /* Grab the tile metadata */ if( (success = tile_load_lidar(&tiles[indx], files[indx])) != 0 ){ fprintf(stderr,"Failed to load LIDAR tile %s\n",files[indx]); fflush(stderr); free(tiles); return success; } if (debug) { fprintf(stderr, "Loading \"%s\" into page %d with width %d...\n", files[indx], indx, tiles[indx].width); fflush(stderr); } // Increase the "average" cell size avgCellsize += tiles[indx].cellsize; // Update the smallest cell size if (smCellsize == 0 || tiles[indx].cellsize < smCellsize) { smCellsize = tiles[indx].cellsize; } // Update a bunch of globals if (tiles[indx].max_el > max_elevation) max_elevation = tiles[indx].max_el; if (tiles[indx].min_el < min_elevation) min_elevation = tiles[indx].min_el; if (max_north == -90 || tiles[indx].max_north > max_north) max_north = tiles[indx].max_north; if (min_north == 90 || tiles[indx].min_north < min_north) min_north = tiles[indx].min_north; if (tiles[indx].max_west > max_west) max_west = tiles[indx].max_west; if (tiles[indx].min_west < min_west) min_west = tiles[indx].min_west; if (max_west == -1) { max_west = tiles[indx].max_west; } else { if (abs(tiles[indx].max_west - max_west) < 180) { if (tiles[indx].max_west > max_west) max_west = tiles[indx].max_west; } else { if (tiles[indx].max_west < max_west) max_west = tiles[indx].max_west; } } if (min_west == 360) { min_west = tiles[indx].min_west; } else { if (fabs(tiles[indx].min_west - min_west) < 180.0) { if (tiles[indx].min_west < min_west) min_west = tiles[indx].min_west; } else { if (tiles[indx].min_west > min_west) min_west = tiles[indx].min_west; } } } /* Iterate through all of the tiles to find the smallest resolution. We will * need to rescale every tile from here on out to this value */ float smallest_res = 0; for (size_t i = 0; i < fc; i++) { if ( smallest_res == 0 || tiles[i].resolution < smallest_res ){ smallest_res = tiles[i].resolution; } } /* Now we need to rescale all tiles the the lowest resolution or the requested resolution. ie if we have * one 1m lidar and one 2m lidar, resize the 2m to fake 1m */ float desired_resolution = resample != 0 && smallest_res < resample ? resample : smallest_res; if (desired_resolution > resample && resample != 0 && debug ) fprintf(stderr, "Warning: Unable to rescale to requested resolution\n"); for (size_t i = 0; i< fc; i++) { float rescale = tiles[i].resolution / (float)desired_resolution; if(debug) fprintf(stderr,"res %.2f desired_res %.2f\n",tiles[i].resolution,(float)desired_resolution); if (rescale != 1){ if( (success = tile_rescale(&tiles[i], rescale) != 0 ) ){ fprintf(stderr, "Error resampling tiles\n"); return success; } } } /* Now we work out the size of the giant lidar tile. */ double total_width = max_west - min_west >= 0 ? max_west - min_west : max_west + (360 - min_west); double total_height = max_north - min_north; if (debug) { fprintf(stderr,"totalh: %.7f - %.7f = %.7f totalw: %.7f - %.7f = %.7f\n", max_north, min_north, total_height, max_west, min_west, total_width); fprintf(stderr,"mw:%lf Mnw:%lf\n", max_west, min_west); } //detect problematic layouts eg. vertical rectangles //create a synthetic empty tile on the fly with dimensions to make a square /*if(total_height > total_width*1.5){ tiles[fc].max_north=max_north; tiles[fc].min_north=min_north; westoffset=westoffset-total_width; // WGS84 for stdout only max_west=max_west+total_width; // Positive westing tiles[fc].max_west=max_west; // Positive westing tiles[fc].min_west=max_west; tiles[fc].ppdy=tiles[fc-1].ppdy; tiles[fc].ppdy=tiles[fc-1].ppdx; tiles[fc].width=tiles[fc-1].width; tiles[fc].height=total_height; tiles[fc].data=tiles[fc-1].data; fc++; }*/ /* This is how we should _theoretically_ work this out, but due to * the nature of floating point arithmetic and rounding errors, 499 usd to gbpwe need to * crunch the numbers the hard way */ // size_t new_width = total_width * pix_per_deg; // size_t new_height = total_height * pix_per_deg; size_t new_height = 0; size_t new_width = 0; for ( size_t i = 0; i < fc; i++ ) { double north_offset = max_north - tiles[i].max_north; double west_offset = max_west - tiles[i].max_west >= 0 ? max_west - tiles[i].max_west : max_west + (360 - tiles[i].max_west); size_t north_pixel_offset = north_offset * tiles[i].ppdy; size_t west_pixel_offset = west_offset * tiles[i].ppdx; if ( west_pixel_offset + tiles[i].width > new_width ) new_width = west_pixel_offset + tiles[i].width; if ( north_pixel_offset + tiles[i].height > new_height ) new_height = north_pixel_offset + tiles[i].height; if (debug) fprintf(stderr,"north_pixel_offset %d west_pixel_offset %d\n", north_pixel_offset, west_pixel_offset); } size_t new_tile_alloc = new_width * new_height; short * new_tile = (short*) calloc( new_tile_alloc, sizeof(short) ); if ( new_tile == NULL ){ free(tiles); return ENOMEM; } if (debug) fprintf(stderr,"Lidar tile dimensions w:%lf(%zu) h:%lf(%zu)\n", total_width, new_width, total_height, new_height); /* ...If we wanted a value other than sea level here, we would need to initialize the array... */ size_t prevPixelOffsetW=0; size_t prevPixelOffsetN=0; /* Fill out the array one tile at a time */ for (size_t i = 0; i< fc; i++) { double north_offset = max_north - tiles[i].max_north; double west_offset = max_west - tiles[i].max_west >= 0 ? max_west - tiles[i].max_west : max_west + (360 - tiles[i].max_west); size_t north_pixel_offset = north_offset * tiles[i].ppdy; size_t west_pixel_offset = west_offset * tiles[i].ppdx; /*if(i>0){ if(tiles[i].ppdx>tiles[i-1].ppdx+10 || tiles[i].ppdxtiles[i-1].ppdy+10 || tiles[i].ppdy new_tile + new_tile_alloc || dest_addr < new_tile ){ if (debug) fprintf(stderr, "Overflow %zu\n",i); continue; } memcpy( dest_addr, src_addr, tiles[i].width * sizeof(short) ); } } // SUPER tile MAXPAGES = 1; IPPD = MAX(new_width,new_height); if(debug){ fprintf(stderr,"Setting IPPD to %d\n",IPPD); fflush(stderr); } ARRAYSIZE = (MAXPAGES * IPPD) + 50; do_allocs(); /* Load the data into the global dem array */ dem[0].max_north = max_north; dem[0].min_west = min_west; dem[0].min_north = min_north; dem[0].max_west = max_west; dem[0].max_el = max_elevation; dem[0].min_el = min_elevation; /* * Copy the lidar tile data into the dem array. The dem array is rotated * 90 degrees (christ knows why...) */ int y = new_height-1; for (size_t h = 0; h < new_height; h++, y--) { int x = new_width-1; for (size_t w = 0; w < new_width; w++, x--) { dem[0].data[y][x] = new_tile[h*new_width + w]; dem[0].signal[y][x] = 0; dem[0].mask[y][x] = 0; } } ippd=IPPD; height = new_height; width = new_width; if (debug) fprintf(stderr, "LIDAR LOADED %d x %d\n", width, height); if (debug) fprintf(stderr, "fc %d WIDTH %d HEIGHT %d ippd %d minN %.5f maxN %.5f minW %.5f maxW %.5f avgCellsize %.5f\n", fc, width, height, ippd,min_north,max_north,min_west,max_west,avgCellsize); cleanup: if ( tiles != NULL ) { for (size_t i = 0; i < fc-1; i++) { tile_destroy(&tiles[i]); } } free(tiles); return 0; } int LoadSDF_SDF(char *name) { /* This function reads uncompressed ss Data Files (.sdf) containing digital elevation model data into memory. Elevation data, maximum and minimum elevations, and quadrangle limits are stored in the first available dem[] structure. NOTE: On error, this function returns a negative errno */ int x, y, data = 0, indx, minlat, minlon, maxlat, maxlon, j; char found, free_page = 0, line[20], jline[20], sdf_file[255], path_plus_name[PATH_MAX]; FILE *fd; for (x = 0; name[x] != '.' && name[x] != 0 && x < 250; x++) sdf_file[x] = name[x]; sdf_file[x] = 0; /* Parse filename for minimum latitude and longitude values */ if( sscanf(sdf_file, "%d:%d:%d:%d", &minlat, &maxlat, &minlon, &maxlon) != 4 ) return -EINVAL; sdf_file[x] = '.'; sdf_file[x + 1] = 's'; sdf_file[x + 2] = 'd'; sdf_file[x + 3] = 'f'; sdf_file[x + 4] = 0; /* Is it already in memory? */ for (indx = 0, found = 0; indx < MAXPAGES && found == 0; indx++) { if (minlat == dem[indx].min_north && minlon == dem[indx].min_west && maxlat == dem[indx].max_north && maxlon == dem[indx].max_west) found = 1; } /* Is room available to load it? */ if (found == 0) { for (indx = 0, free_page = 0; indx < MAXPAGES && free_page == 0; indx++) if (dem[indx].max_north == -90) free_page = 1; } indx--; if (free_page && found == 0 && indx >= 0 && indx < MAXPAGES) { /* Search for SDF file in current working directory first */ strncpy(path_plus_name, sdf_file, sizeof(path_plus_name)-1); if( (fd = fopen(path_plus_name, "rb")) == NULL ){ /* Next, try loading SDF file from path specified in $HOME/.ss_path file or by -d argument */ strncpy(path_plus_name, sdf_path, sizeof(path_plus_name)-1); strncat(path_plus_name, sdf_file, sizeof(path_plus_name)-1); if( (fd = fopen(path_plus_name, "rb")) == NULL ){ return -errno; } } if (debug == 1) { fprintf(stderr, "Loading \"%s\" into page %d...\n", path_plus_name, indx + 1); fflush(stderr); } if (fgets(line, 19, fd) != NULL) { if( sscanf(line, "%f", &dem[indx].max_west) == EOF ) return -errno; } if (fgets(line, 19, fd) != NULL) { if( sscanf(line, "%f", &dem[indx].min_north) == EOF ) return -errno; } if (fgets(line, 19, fd) != NULL) { if( sscanf(line, "%f", &dem[indx].min_west) == EOF ) return -errno; } if (fgets(line, 19, fd) != NULL) { if( sscanf(line, "%f", &dem[indx].max_north) == EOF ) return -errno; } /* Here X lines of DEM will be read until IPPD is reached. Each .sdf tile contains 1200x1200 = 1.44M 'points' Each point is sampled for 1200 resolution! */ for (x = 0; x < ippd; x++) { for (y = 0; y < ippd; y++) { for (j = 0; j < jgets; j++) { if( fgets(jline, sizeof(jline), fd) == NULL ) return -EIO; } if (fgets(line, sizeof(line), fd) != NULL) { data = atoi(line); } dem[indx].data[x][y] = data; dem[indx].signal[x][y] = 0; dem[indx].mask[x][y] = 0; if (data > dem[indx].max_el) dem[indx].max_el = data; if (data < dem[indx].min_el) dem[indx].min_el = data; } if (ippd == 600) { for (j = 0; j < IPPD; j++) { if( fgets(jline, sizeof(jline), fd) == NULL ) return -EIO; } } if (ippd == 300) { for (j = 0; j < IPPD; j++) { if( fgets(jline, sizeof(jline), fd) == NULL ) return -EIO; if( fgets(jline, sizeof(jline), fd) == NULL ) return -EIO; if( fgets(jline, sizeof(jline), fd) == NULL ) return -EIO; } } } fclose(fd); if (dem[indx].min_el < min_elevation) min_elevation = dem[indx].min_el; if (dem[indx].max_el > max_elevation) max_elevation = dem[indx].max_el; if (max_north == -90) max_north = dem[indx].max_north; else if (dem[indx].max_north > max_north) max_north = dem[indx].max_north; if (min_north == 90) min_north = dem[indx].min_north; else if (dem[indx].min_north < min_north) min_north = dem[indx].min_north; if (max_west == -1) max_west = dem[indx].max_west; else { if (abs(dem[indx].max_west - max_west) < 180) { if (dem[indx].max_west > max_west) max_west = dem[indx].max_west; } else { if (dem[indx].max_west < max_west) max_west = dem[indx].max_west; } } if (min_west == 360) min_west = dem[indx].min_west; else { if (fabs(dem[indx].min_west - min_west) < 180.0) { if (dem[indx].min_west < min_west) min_west = dem[indx].min_west; } else { if (dem[indx].min_west > min_west) min_west = dem[indx].min_west; } } return 1; } else return 0; } int LoadSDF(char *name) { /* This function loads the requested SDF file from the filesystem. It first tries to invoke the LoadSDF_SDF() function to load an uncompressed SDF file (since uncompressed files load slightly faster). If that attempt fails, then it tries to load a compressed SDF file by invoking the LoadSDF_BZ() function. If that fails, then we can assume that no elevation data exists for the region requested, and that the region requested must be entirely over water. */ int x, y, indx, minlat, minlon, maxlat, maxlon; char found, free_page = 0; int return_value = -1; return_value = LoadSDF_SDF(name); /* If neither format can be found, then assume the area is water. */ if ( return_value == 0 || return_value < 0 ) { sscanf(name, "%d:%d:%d:%d", &minlat, &maxlat, &minlon, &maxlon); /* Is it already in memory? */ for (indx = 0, found = 0; indx < MAXPAGES && found == 0; indx++) { if (minlat == dem[indx].min_north && minlon == dem[indx].min_west && maxlat == dem[indx].max_north && maxlon == dem[indx].max_west) found = 1; } /* Is room available to load it? */ if (found == 0) { for (indx = 0, free_page = 0; indx < MAXPAGES && free_page == 0; indx++) if (dem[indx].max_north == -90) free_page = 1; } indx--; if (free_page && found == 0 && indx >= 0 && indx < MAXPAGES) { if (debug == 1) { fprintf(stderr, "Region \"%s\" assumed as sea-level into page %d...\n", name, indx + 1); fflush(stderr); } dem[indx].max_west = maxlon; dem[indx].min_north = minlat; dem[indx].min_west = minlon; dem[indx].max_north = maxlat; /* Fill DEM with sea-level topography */ for (x = 0; x < ippd; x++) for (y = 0; y < ippd; y++) { dem[indx].data[x][y] = 0; dem[indx].signal[x][y] = 0; dem[indx].mask[x][y] = 0; if (dem[indx].min_el > 0) dem[indx].min_el = 0; } if (dem[indx].min_el < min_elevation) min_elevation = dem[indx].min_el; if (dem[indx].max_el > max_elevation) max_elevation = dem[indx].max_el; if (max_north == -90) max_north = dem[indx].max_north; else if (dem[indx].max_north > max_north) max_north = dem[indx].max_north; if (min_north == 90) min_north = dem[indx].min_north; else if (dem[indx].min_north < min_north) min_north = dem[indx].min_north; if (max_west == -1) max_west = dem[indx].max_west; else { if (abs(dem[indx].max_west - max_west) < 180) { if (dem[indx].max_west > max_west) max_west = dem[indx].max_west; } else { if (dem[indx].max_west < max_west) max_west = dem[indx].max_west; } } if (min_west == 360) min_west = dem[indx].min_west; else { if (abs(dem[indx].min_west - min_west) < 180) { if (dem[indx].min_west < min_west) min_west = dem[indx].min_west; } else { if (dem[indx].min_west > min_west) min_west = dem[indx].min_west; } } return_value = 1; } } return return_value; } int LoadPAT(char *az_filename, char *el_filename) { /* This function reads and processes antenna pattern (.az and .el) files that correspond in name to previously loaded ss .lrp files. */ int a, b, w, x, y, z, last_index, next_index, span; char string[255], *pointer = NULL; float az, xx, elevation, amplitude, rotation, valid1, valid2, delta, azimuth[361], azimuth_pattern[361], el_pattern[10001], elevation_pattern[361][1001], slant_angle[361], tilt, mechanical_tilt = 0.0, tilt_azimuth, tilt_increment, sum; FILE *fd = NULL; unsigned char read_count[10001]; rotation = 0.0; got_azimuth_pattern = 0; got_elevation_pattern = 0; /* Load .az antenna pattern file */ if( az_filename != NULL && (fd = fopen(az_filename, "r")) == NULL && errno != ENOENT ) /* Any error other than file not existing is an error */ return errno; if( fd != NULL ){ /* Clear azimuth pattern array */ for (x = 0; x <= 360; x++) { azimuth[x] = 0.0; read_count[x] = 0; } /* Read azimuth pattern rotation in degrees measured clockwise from true North. */ if (fgets(string, 254, fd) == NULL) { //fprintf(stderr,"Azimuth read error\n"); //exit(0); } pointer = strchr(string, ';'); if (pointer != NULL) *pointer = 0; sscanf(string, "%f", &rotation); /* Read azimuth (degrees) and corresponding normalized field radiation pattern amplitude (0.0 to 1.0) until EOF is reached. */ if (fgets(string, 254, fd) == NULL) { //fprintf(stderr,"Azimuth read error\n"); //exit(0); } pointer = strchr(string, ';'); if (pointer != NULL) *pointer = 0; sscanf(string, "%f %f", &az, &litude); do { x = (int)rintf(az); if (x >= 0 && x <= 360 && fd != NULL) { azimuth[x] += amplitude; read_count[x]++; } if (fgets(string, 254, fd) == NULL) { //fprintf(stderr,"Azimuth read error\n"); // exit(0); } pointer = strchr(string, ';'); if (pointer != NULL) *pointer = 0; sscanf(string, "%f %f", &az, &litude); } while (feof(fd) == 0); fclose(fd); fd = NULL; /* Handle 0=360 degree ambiguity */ if ((read_count[0] == 0) && (read_count[360] != 0)) { read_count[0] = read_count[360]; azimuth[0] = azimuth[360]; } if ((read_count[0] != 0) && (read_count[360] == 0)) { read_count[360] = read_count[0]; azimuth[360] = azimuth[0]; } /* Average pattern values in case more than one was read for each degree of azimuth. */ for (x = 0; x <= 360; x++) { if (read_count[x] > 1) azimuth[x] /= (float)read_count[x]; } /* Interpolate missing azimuths to completely fill the array */ last_index = -1; next_index = -1; for (x = 0; x <= 360; x++) { if (read_count[x] != 0) { if (last_index == -1) last_index = x; else next_index = x; } if (last_index != -1 && next_index != -1) { valid1 = azimuth[last_index]; valid2 = azimuth[next_index]; span = next_index - last_index; delta = (valid2 - valid1) / (float)span; for (y = last_index + 1; y < next_index; y++) azimuth[y] = azimuth[y - 1] + delta; last_index = y; next_index = -1; } } /* Perform azimuth pattern rotation and load azimuth_pattern[361] with azimuth pattern data in its final form. */ for (x = 0; x < 360; x++) { y = x + (int)rintf(rotation); if (y >= 360) y -= 360; azimuth_pattern[y] = azimuth[x]; } azimuth_pattern[360] = azimuth_pattern[0]; got_azimuth_pattern = 255; } /* Read and process .el file */ if( el_filename != NULL && (fd = fopen(el_filename, "r")) == NULL && errno != ENOENT ) /* Any error other than file not existing is an error */ return errno; if( fd != NULL ){ for (x = 0; x <= 10000; x++) { el_pattern[x] = 0.0; read_count[x] = 0; } /* Read mechanical tilt (degrees) and tilt azimuth in degrees measured clockwise from true North. */ if (fgets(string, 254, fd) == NULL) { //fprintf(stderr,"Tilt read error\n"); //exit(0); } pointer = strchr(string, ';'); if (pointer != NULL) *pointer = 0; sscanf(string, "%f %f", &mechanical_tilt, &tilt_azimuth); /* Read elevation (degrees) and corresponding normalized field radiation pattern amplitude (0.0 to 1.0) until EOF is reached. */ if (fgets(string, 254, fd) == NULL) { //fprintf(stderr,"Ant elevation read error\n"); //exit(0); } pointer = strchr(string, ';'); if (pointer != NULL) *pointer = 0; sscanf(string, "%f %f", &elevation, &litude); while (feof(fd) == 0) { /* Read in normalized radiated field values for every 0.01 degrees of elevation between -10.0 and +90.0 degrees */ x = (int)rintf(100.0 * (elevation + 10.0)); if (x >= 0 && x <= 10000) { el_pattern[x] += amplitude; read_count[x]++; } if (fgets(string, 254, fd) != NULL) { pointer = strchr(string, ';'); } if (pointer != NULL) *pointer = 0; sscanf(string, "%f %f", &elevation, &litude); } fclose(fd); /* Average the field values in case more than one was read for each 0.01 degrees of elevation. */ for (x = 0; x <= 10000; x++) { if (read_count[x] > 1) el_pattern[x] /= (float)read_count[x]; } /* Interpolate between missing elevations (if any) to completely fill the array and provide radiated field values for every 0.01 degrees of elevation. */ last_index = -1; next_index = -1; for (x = 0; x <= 10000; x++) { if (read_count[x] != 0) { if (last_index == -1) last_index = x; else next_index = x; } if (last_index != -1 && next_index != -1) { valid1 = el_pattern[last_index]; valid2 = el_pattern[next_index]; span = next_index - last_index; delta = (valid2 - valid1) / (float)span; for (y = last_index + 1; y < next_index; y++) el_pattern[y] = el_pattern[y - 1] + delta; last_index = y; next_index = -1; } } /* Fill slant_angle[] array with offset angles based on the antenna's mechanical beam tilt (if any) and tilt direction (azimuth). */ if (mechanical_tilt == 0.0) { for (x = 0; x <= 360; x++) slant_angle[x] = 0.0; } else { tilt_increment = mechanical_tilt / 90.0; for (x = 0; x <= 360; x++) { xx = (float)x; y = (int)rintf(tilt_azimuth + xx); while (y >= 360) y -= 360; while (y < 0) y += 360; if (x <= 180) slant_angle[y] = -(tilt_increment * (90.0 - xx)); if (x > 180) slant_angle[y] = -(tilt_increment * (xx - 270.0)); } } slant_angle[360] = slant_angle[0]; /* 360 degree wrap-around */ for (w = 0; w <= 360; w++) { tilt = slant_angle[w]; /** Convert tilt angle to an array index offset **/ y = (int)rintf(100.0 * tilt); /* Copy shifted el_pattern[10001] field values into elevation_pattern[361][1001] at the corresponding azimuth, downsampling (averaging) along the way in chunks of 10. */ for (x = y, z = 0; z <= 1000; x += 10, z++) { for (sum = 0.0, a = 0; a < 10; a++) { b = a + x; if (b >= 0 && b <= 10000) sum += el_pattern[b]; if (b < 0) sum += el_pattern[0]; if (b > 10000) sum += el_pattern[10000]; } elevation_pattern[w][z] = sum / 10.0; } } got_elevation_pattern = 255; for (x = 0; x <= 360; x++) { for (y = 0; y <= 1000; y++) { if (got_elevation_pattern) elevation = elevation_pattern[x][y]; else elevation = 1.0; if (got_azimuth_pattern) az = azimuth_pattern[x]; else az = 1.0; LR.antenna_pattern[x][y] = az * elevation; } } } return 0; } int LoadSignalColors(struct site xmtr) { int x, y, ok, val[4]; char filename[255], string[80], *pointer = NULL, *s = NULL; FILE *fd = NULL; for (x = 0; xmtr.filename[x] != '.' && xmtr.filename[x] != 0 && x < 250; x++) filename[x] = xmtr.filename[x]; filename[x] = '.'; filename[x + 1] = 's'; filename[x + 2] = 'c'; filename[x + 3] = 'f'; filename[x + 4] = 0; /* Default values */ region.level[0] = 128; region.color[0][0] = 255; region.color[0][1] = 0; region.color[0][2] = 0; region.level[1] = 118; region.color[1][0] = 255; region.color[1][1] = 165; region.color[1][2] = 0; region.level[2] = 108; region.color[2][0] = 255; region.color[2][1] = 206; region.color[2][2] = 0; region.level[3] = 98; region.color[3][0] = 255; region.color[3][1] = 255; region.color[3][2] = 0; region.level[4] = 88; region.color[4][0] = 184; region.color[4][1] = 255; region.color[4][2] = 0; region.level[5] = 78; region.color[5][0] = 0; region.color[5][1] = 255; region.color[5][2] = 0; region.level[6] = 68; region.color[6][0] = 0; region.color[6][1] = 208; region.color[6][2] = 0; region.level[7] = 58; region.color[7][0] = 0; region.color[7][1] = 196; region.color[7][2] = 196; region.level[8] = 48; region.color[8][0] = 0; region.color[8][1] = 148; region.color[8][2] = 255; region.level[9] = 38; region.color[9][0] = 80; region.color[9][1] = 80; region.color[9][2] = 255; region.level[10] = 28; region.color[10][0] = 0; region.color[10][1] = 38; region.color[10][2] = 255; region.level[11] = 18; region.color[11][0] = 142; region.color[11][1] = 63; region.color[11][2] = 255; region.level[12] = 8; region.color[12][0] = 140; region.color[12][1] = 0; region.color[12][2] = 128; region.levels = 13; /* Don't save if we don't have an output file */ if ( (fd = fopen(filename, "r")) == NULL && xmtr.filename[0] == '\0' ) //if ( xmtr.filename[0] == '\0' && (fd = fopen(filename, "r")) == NULL ) return 0; if (fd == NULL) { if( (fd = fopen(filename, "w")) == NULL ) return errno; for (x = 0; x < region.levels; x++) fprintf(fd, "%3d: %3d, %3d, %3d\n", region.level[x], region.color[x][0], region.color[x][1], region.color[x][2]); fclose(fd); } else { x = 0; s = fgets(string, 80, fd); while (x < 128 && feof(fd) == 0) { pointer = strchr(string, ';'); if (pointer != NULL) *pointer = 0; ok = sscanf(string, "%d: %d, %d, %d", &val[0], &val[1], &val[2], &val[3]); if (ok == 4) { if (debug) { fprintf(stderr, "\nLoadSignalColors() %d: %d, %d, %d\n", val[0],val[1],val[2],val[3]); fflush(stderr); } for (y = 0; y < 4; y++) { if (val[y] > 255) val[y] = 255; if (val[y] < 0) val[y] = 0; } region.level[x] = val[0]; region.color[x][0] = val[1]; region.color[x][1] = val[2]; region.color[x][2] = val[3]; x++; } s = fgets(string, 80, fd); } fclose(fd); region.levels = x; } return 0; } int LoadLossColors(struct site xmtr) { int x, y, ok, val[4]; char filename[255], string[80], *pointer = NULL, *s = NULL; FILE *fd = NULL; for (x = 0; xmtr.filename[x] != '.' && xmtr.filename[x] != 0 && x < 250; x++) filename[x] = xmtr.filename[x]; filename[x] = '.'; filename[x + 1] = 'l'; filename[x + 2] = 'c'; filename[x + 3] = 'f'; filename[x + 4] = 0; /* Default values */ region.level[0] = 80; region.color[0][0] = 255; region.color[0][1] = 0; region.color[0][2] = 0; region.level[1] = 90; region.color[1][0] = 255; region.color[1][1] = 128; region.color[1][2] = 0; region.level[2] = 100; region.color[2][0] = 255; region.color[2][1] = 165; region.color[2][2] = 0; region.level[3] = 110; region.color[3][0] = 255; region.color[3][1] = 206; region.color[3][2] = 0; region.level[4] = 120; region.color[4][0] = 255; region.color[4][1] = 255; region.color[4][2] = 0; region.level[5] = 130; region.color[5][0] = 184; region.color[5][1] = 255; region.color[5][2] = 0; region.level[6] = 140; region.color[6][0] = 0; region.color[6][1] = 255; region.color[6][2] = 0; region.level[7] = 150; region.color[7][0] = 0; region.color[7][1] = 208; region.color[7][2] = 0; region.level[8] = 160; region.color[8][0] = 0; region.color[8][1] = 196; region.color[8][2] = 196; region.level[9] = 170; region.color[9][0] = 0; region.color[9][1] = 148; region.color[9][2] = 255; region.level[10] = 180; region.color[10][0] = 80; region.color[10][1] = 80; region.color[10][2] = 255; region.level[11] = 190; region.color[11][0] = 0; region.color[11][1] = 38; region.color[11][2] = 255; region.level[12] = 200; region.color[12][0] = 142; region.color[12][1] = 63; region.color[12][2] = 255; region.level[13] = 210; region.color[13][0] = 196; region.color[13][1] = 54; region.color[13][2] = 255; region.level[14] = 220; region.color[14][0] = 255; region.color[14][1] = 0; region.color[14][2] = 255; region.level[15] = 230; region.color[15][0] = 255; region.color[15][1] = 194; region.color[15][2] = 204; region.levels = 16; if ( (fd = fopen(filename, "r")) == NULL && xmtr.filename[0] == '\0' ) //if ( xmtr.filename[0] == '\0' && (fd = fopen(filename, "r")) == NULL ) /* Don't save if we don't have an output file */ return 0; if (fd == NULL) { if( (fd = fopen(filename, "w")) == NULL ) return errno; for (x = 0; x < region.levels; x++) fprintf(fd, "%3d: %3d, %3d, %3d\n", region.level[x], region.color[x][0], region.color[x][1], region.color[x][2]); fclose(fd); if (debug) { fprintf(stderr, "loadLossColors: fopen fail: %s\n", filename); fflush(stderr); } } else { x = 0; s = fgets(string, 80, fd); while (x < 128 && feof(fd) == 0) { pointer = strchr(string, ';'); if (pointer != NULL) *pointer = 0; ok = sscanf(string, "%d: %d, %d, %d", &val[0], &val[1], &val[2], &val[3]); if (ok == 4) { if (debug) { fprintf(stderr, "\nLoadLossColors() %d: %d, %d, %d\n", val[0],val[1],val[2],val[3]); fflush(stderr); } for (y = 0; y < 4; y++) { if (val[y] > 255) val[y] = 255; if (val[y] < 0) val[y] = 0; } region.level[x] = val[0]; region.color[x][0] = val[1]; region.color[x][1] = val[2]; region.color[x][2] = val[3]; x++; } s = fgets(string, 80, fd); } fclose(fd); region.levels = x; } return 0; } int LoadDBMColors(struct site xmtr) { int x, y, ok, val[4]; char filename[255], string[80], *pointer = NULL, *s = NULL; FILE *fd = NULL; for (x = 0; xmtr.filename[x] != '.' && xmtr.filename[x] != 0 && x < 250; x++) filename[x] = xmtr.filename[x]; filename[x] = '.'; filename[x + 1] = 'd'; filename[x + 2] = 'c'; filename[x + 3] = 'f'; filename[x + 4] = 0; /* Default values */ region.level[0] = 0; region.color[0][0] = 255; region.color[0][1] = 0; region.color[0][2] = 0; region.level[1] = -10; region.color[1][0] = 255; region.color[1][1] = 128; region.color[1][2] = 0; region.level[2] = -20; region.color[2][0] = 255; region.color[2][1] = 165; region.color[2][2] = 0; region.level[3] = -30; region.color[3][0] = 255; region.color[3][1] = 206; region.color[3][2] = 0; region.level[4] = -40; region.color[4][0] = 255; region.color[4][1] = 255; region.color[4][2] = 0; region.level[5] = -50; region.color[5][0] = 184; region.color[5][1] = 255; region.color[5][2] = 0; region.level[6] = -60; region.color[6][0] = 0; region.color[6][1] = 255; region.color[6][2] = 0; region.level[7] = -70; region.color[7][0] = 0; region.color[7][1] = 208; region.color[7][2] = 0; region.level[8] = -80; region.color[8][0] = 0; region.color[8][1] = 196; region.color[8][2] = 196; region.level[9] = -90; region.color[9][0] = 0; region.color[9][1] = 148; region.color[9][2] = 255; region.level[10] = -100; region.color[10][0] = 80; region.color[10][1] = 80; region.color[10][2] = 255; region.level[11] = -110; region.color[11][0] = 0; region.color[11][1] = 38; region.color[11][2] = 255; region.level[12] = -120; region.color[12][0] = 142; region.color[12][1] = 63; region.color[12][2] = 255; region.level[13] = -130; region.color[13][0] = 196; region.color[13][1] = 54; region.color[13][2] = 255; region.level[14] = -140; region.color[14][0] = 255; region.color[14][1] = 0; region.color[14][2] = 255; region.level[15] = -150; region.color[15][0] = 255; region.color[15][1] = 194; region.color[15][2] = 204; region.levels = 16; if ( (fd = fopen(filename, "r")) == NULL && xmtr.filename[0] == '\0' ) /* Don't save if we don't have an output file */ return 0; if (fd == NULL) { if( (fd = fopen(filename, "w")) == NULL ) return errno; for (x = 0; x < region.levels; x++) fprintf(fd, "%+4d: %3d, %3d, %3d\n", region.level[x], region.color[x][0], region.color[x][1], region.color[x][2]); fclose(fd); } else { x = 0; s = fgets(string, 80, fd); while (x < 128 && feof(fd) == 0) { pointer = strchr(string, ';'); if (pointer != NULL) *pointer = 0; ok = sscanf(string, "%d: %d, %d, %d", &val[0], &val[1], &val[2], &val[3]); if (ok == 4) { if (debug) { fprintf(stderr, "\nLoadDBMColors() %d: %d, %d, %d\n", val[0],val[1],val[2],val[3]); fflush(stderr); } if (val[0] < -200) val[0] = -200; if (val[0] > +40) val[0] = +40; region.level[x] = val[0]; for (y = 1; y < 4; y++) { if (val[y] > 255) val[y] = 255; if (val[y] < 0) val[y] = 0; } region.color[x][0] = val[1]; region.color[x][1] = val[2]; region.color[x][2] = val[3]; x++; } s = fgets(string, 80, fd); } fclose(fd); region.levels = x; } return 0; } int LoadTopoData(int max_lon, int min_lon, int max_lat, int min_lat) { /* This function loads the SDF files required to cover the limits of the region specified. */ int x, y, width, ymin, ymax; int success; width = ReduceAngle(max_lon - min_lon); if ((max_lon - min_lon) <= 180.0) { for (y = 0; y <= width; y++) for (x = min_lat; x <= max_lat; x++) { ymin = (int)(min_lon + (double)y); while (ymin < 0) ymin += 360; while (ymin >= 360) ymin -= 360; ymax = ymin + 1; while (ymax < 0) ymax += 360; while (ymax >= 360) ymax -= 360; if (ippd == 3600) snprintf(string, 19, "%d:%d:%d:%d-hd", x, x + 1, ymin, ymax); else snprintf(string, 16, "%d:%d:%d:%d", x, x + 1, ymin, ymax); if( (success = LoadSDF(string)) < 0 ){ return -success; } } } else { for (y = 0; y <= width; y++) for (x = min_lat; x <= max_lat; x++) { ymin = max_lon + y; while (ymin < 0) ymin += 360; while (ymin >= 360) ymin -= 360; ymax = ymin + 1; while (ymax < 0) ymax += 360; while (ymax >= 360) ymax -= 360; if (ippd == 3600) snprintf(string, 19, "%d:%d:%d:%d-hd", x, x + 1, ymin, ymax); else snprintf(string, 16, "%d:%d:%d:%d", x, x + 1, ymin, ymax); if( (success = LoadSDF(string)) < 0 ){ return -success; } } } return 0; } int LoadUDT(char *filename) { /* This function reads a file containing User-Defined Terrain features for their addition to the digital elevation model data used by SPLAT!. Elevations in the UDT file are evaluated and then copied into a temporary file under /tmp. Then the contents of the temp file are scanned, and if found to be unique, are added to the ground elevations described by the digital elevation data already loaded into memory. */ int i, x, y, z, ypix, xpix, tempxpix, tempypix, fd = 0, n = 0; char input[80], str[3][80], tempname[15], *pointer = NULL, *s = NULL; double latitude, longitude, height, tempheight; FILE *fd1 = NULL, *fd2 = NULL; strcpy(tempname, "/tmp/XXXXXX"); if( (fd1 = fopen(filename, "r")) == NULL ) return errno; if( (fd = mkstemp(tempname)) == -1 ) return errno; if( (fd2 = fdopen(fd,"w")) == NULL ){ fclose(fd1); close(fd); return errno; } s = fgets(input, 78, fd1); pointer = strchr(input, ';'); if (pointer != NULL) *pointer = 0; while (feof(fd1) == 0) { /* Parse line for latitude, longitude, height */ for (x = 0, y = 0, z = 0; x < 78 && input[x] != 0 && z < 3; x++) { if (input[x] != ',' && y < 78) { str[z][y] = input[x]; y++; } else { str[z][y] = 0; z++; y = 0; } } latitude = ReadBearing(str[0]); longitude = ReadBearing(str[1]); if (longitude < 0.0) longitude += 360; /* Remove and/or from antenna height string */ for (i = 0; str[2][i] != 13 && str[2][i] != 10 && str[2][i] != 0; i++) ; str[2][i] = 0; /* The terrain feature may be expressed in either feet or meters. If the letter 'M' or 'm' is discovered in the string, then this is an indication that the value given is expressed in meters. Otherwise the height is interpreted as being expressed in feet. */ for (i = 0; str[2][i] != 'M' && str[2][i] != 'm' && str[2][i] != 0 && i < 48; i++) ; if (str[2][i] == 'M' || str[2][i] == 'm') { str[2][i] = 0; height = rint(atof(str[2])); } else { str[2][i] = 0; height = rint(METERS_PER_FOOT * atof(str[2])); } if (height > 0.0) fprintf(fd2, "%d, %d, %f\n", (int)rint(latitude / dpp), (int)rint(longitude / dpp), height); s = fgets(input, 78, fd1); pointer = strchr(input, ';'); if (pointer != NULL) *pointer = 0; } fclose(fd1); fclose(fd2); if( (fd1 = fopen(tempname, "r")) == NULL ) return errno; if( (fd2 = fopen(tempname, "r")) == NULL ){ fclose(fd1); return errno; } y = 0; n = fscanf(fd1, "%d, %d, %lf", &xpix, &ypix, &height); do { x = 0; z = 0; n = fscanf(fd2, "%d, %d, %lf", &tempxpix, &tempypix, &tempheight); do { if (x > y && xpix == tempxpix && ypix == tempypix) { z = 1; /* Dupe! */ if (tempheight > height) height = tempheight; } else { n = fscanf(fd2, "%d, %d, %lf", &tempxpix, &tempypix, &tempheight); x++; } } while (feof(fd2) == 0 && z == 0); if (z == 0) /* No duplicate found */ //fprintf(stderr,"%lf, %lf \n",xpix*dpp, ypix*dpp); fflush(stderr); AddElevation(xpix * dpp, ypix * dpp, height, 1); fflush(stderr); n = fscanf(fd1, "%d, %d, %lf", &xpix, &ypix, &height); y++; rewind(fd2); } while (feof(fd1) == 0); fclose(fd1); fclose(fd2); unlink(tempname); return 0; }