From df7a5ac0d372f2385986ff97931ea2528e91df74 Mon Sep 17 00:00:00 2001 From: Cloud-RF Date: Tue, 30 Sep 2014 21:46:54 +0100 Subject: [PATCH] v2.3 Added ITWOM model now that it's under the GPL licence :) --- CHANGELOG | 3 + README.md | 2 +- itwom3.0.cpp | 2863 +++++++++++++++++++++++++ main.cpp | 53 +- mainHD.cpp | 5719 ++++++++++++++++++++++++++++++++++++++++++++++++++ 5 files changed, 8614 insertions(+), 26 deletions(-) create mode 100644 itwom3.0.cpp create mode 100644 mainHD.cpp diff --git a/CHANGELOG b/CHANGELOG index 3a93caf..eddd30e 100644 --- a/CHANGELOG +++ b/CHANGELOG @@ -1,5 +1,8 @@ Signal Server changelog +v2.3 - 29 September 2014 +Replaced itm.cpp with itwom3.0.cpp and added ITWOM model as result + v2.23 - 14 August 2014 Improved diffraction model to work only for dips deeper than 20m and not to exaggerate result by an arbitrary figure (3) Fixed false 'frequency too low' error message for FSPL model which was intended for Hata models only. diff --git a/README.md b/README.md index 9bebd3a..7a29761 100644 --- a/README.md +++ b/README.md @@ -2,7 +2,7 @@ Signal-Server RF coverage calculator ==================================== /****************************************************************************\ -* Signal Server 1.3.8: Server optimised SPLAT! by Alex Farrant * +* Signal Server: Server optimised SPLAT! by Alex Farrant * ****************************************************************************** * SPLAT! Project started in 1997 by John A. Magliacane, KD2BD * * * diff --git a/itwom3.0.cpp b/itwom3.0.cpp new file mode 100644 index 0000000..36c1021 --- /dev/null +++ b/itwom3.0.cpp @@ -0,0 +1,2863 @@ +/******************************************************************************** +* ITWOM version 3.0a, January 20, 2011 File: itwom3.0a.cpp * +* Provenance: Further test version of itwom2.0m re adj to Hrzn range factors * +* 1. This file is based on a thorough debugging, completion, and update of the * +* ITM, based on an original, public domain version of this file obtained from: * +* ftp://flattop.its.bldrdoc.gov/itm/ITMDLL.cpp prior to May, 2007. C++ routines * +* for this program are taken from a translation of the FORTRAN code written by * +* U.S. Department of Commerce NTIA/ITS Institute for Telecommunication Sciences * +* Irregular Terrain Model (ITM) (Longley-Rice). * +* 2. The Linux version of this file incorporates improvements suggested by a * +* study of changes made to file itm.cpp by J. D. McDonald to remove Microsoft * +* Windows dll-isms and to debug an ambguity in overloaded calls. * +* 3. The Linux version of this file also incorporates improvements suggested by * +* a study of further modifications made to itm.cpp by John A. Magliacane to * +* remove unused variables, unneeded #includes, and to replace pow() statements * +* with explicit multiplications to improve execution speed and accuracy. * +* 4. On August 19, 2007 this file was modified by Sid Shumate to include * +* changes and updates included in version 7.0 of ITMDLL.cpp, which was released * +* by the NTIA/ITS on June 26, 2007. With correction set SS1 and SS2: itm71.cpp. * +* 5. On Feb. 5, 2008 this file became v.1.0 of the ITWOM with the addition, by * +* Sid Shumate, of multiple corrections, the replacement of subroutines lrprop * +* and alos with lrprop2 and alos2, and the addition of subroutine saalos to * +* incorporate Radiative Transfer Engine (RTE) computations in the line of sight * +* range. * +* Update 8 Jun 2010 to modify alos to match 2010 series of IEEE-BTS * +* newsletter articles * +* Update June 12, 2010 to z version to change test outputs * +* Offshoot start date June 23, 2010 to start itwom2.0 dual version for FCC. * +* Update to 2.0b July 25 to correct if statement errors in adiff2 re two peak * +* calculations starting at line 525 * +* Development to 2.0c 8 Aug 2010 after modifying saalos and adiff for full * +* addition of saalos treatment to post obstruction calculations and debugging. * +* Modified to make 1st obs loss=5.8 only, no clutter loss considered * +* * +* Commented out unused variables and calculations to eliminate gcc warnings * +* (-Wunused-but-set-variable) -- John A. Magliacane -- July 25, 2013 * +********************************************************************************/ + +#include +#include +#include +#include + +#define THIRD (1.0/3.0) + +using namespace std; + +struct tcomplex +{ double tcreal; + double tcimag; +}; + +struct prop_type +{ double aref; + double dist; + double hg[2]; + double rch[2]; + double wn; + double dh; + double dhd; + double ens; + double encc; + double cch; + double cd; + double gme; + double zgndreal; + double zgndimag; + double he[2]; + double dl[2]; + double the[2]; + double tiw; + double ght; + double ghr; + double rph; + double hht; + double hhr; + double tgh; + double tsgh; + double thera; + double thenr; + int rpl; + int kwx; + int mdp; + int ptx; + int los; +}; + +struct propv_type +{ double sgc; + int lvar; + int mdvar; + int klim; +}; + +struct propa_type +{ double dlsa; + double dx; + double ael; + double ak1; + double ak2; + double aed; + double emd; + double aes; + double ems; + double dls[2]; + double dla; + double tha; +}; + +int mymin(const int &i, const int &j) +{ + if (ij) + return i; + else + return j; +} + +double mymin(const double &a, const double &b) +{ + if (ab) + return a; + else + return b; +} + +double FORTRAN_DIM(const double &x, const double &y) +{ + /* This performs the FORTRAN DIM function. Result is x-y + if x is greater than y; otherwise result is 0.0 */ + + if (x>y) + return x-y; + else + return 0.0; +} + +double aknfe(const double &v2) +{ + double a; + + if (v2<5.76) + a=6.02+9.11*sqrt(v2)-1.27*v2; + else + a=12.953+10*log10(v2); + return a; +} + +double fht(const double& x, const double& pk) +{ + double w, fhtv; + + if (x<200.0) + { + w=-log(pk); + + if (pk<1.0e-5 || x*w*w*w > 5495.0) + { + fhtv=-117.0; + + if (x>1.0) + fhtv=40.0*log10(x)+fhtv; + } + else + fhtv=2.5e-5*x*x/pk-8.686*w-15.0; + } + + else + { + fhtv=0.05751*x-10.0*log10(x); + + if (x<2000.0) + { + w=0.0134*x*exp(-0.005*x); + fhtv=(1.0-w)*fhtv+w*(40.0*log10(x)-117.0); + } + } + return fhtv; +} + +double h0f(double r, double et) +{ + double a[5]={25.0, 80.0, 177.0, 395.0, 705.0}; + double b[5]={24.0, 45.0, 68.0, 80.0, 105.0}; + double q, x; + double h0fv, temp; + int it; + + it=(int)et; + + if (it<=0) + { + it=1; + q=0.0; + } + + else if (it>=5) + { + it=5; + q=0.0; + } + + else + q=et-it; + + /* x=pow(1.0/r,2.0); */ + + temp=1.0/r; + x=temp*temp; + + h0fv=4.343*log((a[it-1]*x+b[it-1])*x+1.0); + + if (q!=0.0) + h0fv=(1.0-q)*h0fv+q*4.343*log((a[it]*x+b[it])*x+1.0); + + return h0fv; +} + +double ahd(double td) +{ + int i; + double a[3]={ 133.4, 104.6, 71.8}; + double b[3]={0.332e-3, 0.212e-3, 0.157e-3}; + double c[3]={ -4.343, -1.086, 2.171}; + + if (td<=10e3) + i=0; + + else if (td<=70e3) + i=1; + + else + i=2; + + return a[i]+b[i]*td+c[i]*log(td); +} + +double abq_alos(complex r) +{ + return r.real()*r.real()+r.imag()*r.imag(); +} + +double saalos(double d, prop_type &prop, propa_type &propa) +{ + double ensa, encca, q, dp, dx, tde, hc, ucrpc, ctip, tip, tic, stic, ctic, sta; + double ttc, cttc, crpc, ssnps, d1a, rsp, tsp, arte, zi, pd, pdk, hone, tvsr; + double saalosv=0.0; + + q=0.0; + + if (d==0.0) + { + tsp=1.0; + rsp=0.0; + d1a=50.0; + saalosv=0.0; + } + else if(prop.hg[1] > prop.cch) + { + saalosv=0.0; + } + else + { + pd=d; + pdk=pd/1000.0; + tsp=1.0; + rsp=0.0; + d1a=pd; + /* at first, hone is transmitter antenna height + relative to receive site ground level. */ + hone=prop.tgh+prop.tsgh-(prop.rch[1]-prop.hg[1]); + + if(prop.tgh>prop.cch) /* for TX ant above all clutter height*/ + { + ensa=1+prop.ens*0.000001; + encca=1+prop.encc*0.000001; + dp=pd; + + for (int j=0; j<5; ++j) + { + tde=dp/6378137.0; + hc=(prop.cch+6378137.0)*(1-cos(tde)); + dx=(prop.cch+6378137.0)*sin(tde); + ucrpc=sqrt((hone-prop.cch+hc)*(hone-prop.cch+hc)+(dx*dx)); + ctip=(hone-prop.cch+hc)/ucrpc; + tip=acos(ctip); + tic=tip+tde; + tic=mymax(0.0,tic); + stic=sin(tic); + sta=(ensa/encca)*stic; + ttc=asin(sta); + cttc=sqrt(1-(sin(ttc))*(sin(ttc))); + crpc=(prop.cch-prop.hg[1])/cttc; + if(crpc>=dp) + { + crpc=dp-1/dp; + } + + ssnps=(3.1415926535897/2)-tic; + d1a=(crpc*sin(ttc))/(1-1/6378137.0); + dp=pd-d1a; + + } + + ctic=cos(tic); + + /* if the ucrpc path touches the canopy before reaching the + end of the ucrpc, the entry point moves toward the + transmitter, extending the crpc and d1a. Estimating the d1a: */ + + if(ssnps<=0.0) + { + d1a=mymin(0.1*pd,600.0); + crpc=d1a; + /* hone must be redefined as being barely above + the canopy height with respect to the receiver + canopy height, which despite the earth curvature + is at or above the transmitter antenna height. */ + hone=prop.cch+1; + rsp=.997; + tsp=1-rsp; + } + else + { + + if (prop.ptx>=1) /* polarity ptx is vertical or circular */ + { + q=((ensa*cttc-encca*ctic)/(ensa*cttc+encca*ctic)); + rsp=q*q; + tsp=1-rsp; + + if (prop.ptx==2) /* polarity is circular - new */ + { + q=((ensa*ctic-encca*cttc)/(ensa*ctic+encca*cttc)); + rsp=((ensa*cttc-encca*ctic)/(ensa*cttc+encca*ctic)); + rsp=(q*q+rsp*rsp)/2; + tsp=1-rsp; + } + } + else /* ptx is 0, horizontal, or undefined */ + { + q=((ensa*ctic-encca*cttc)/(ensa*ctic+encca*cttc)); + rsp=q*q; + tsp=1-rsp; + } + } + /* tvsr is defined as tx ant height above receiver ant height */ + tvsr= mymax(0.0,prop.tgh+prop.tsgh-prop.rch[1]); + + if (d1a<50.0) + { + arte=0.0195*crpc-20*log10(tsp); + } + + else + { + if (d1a<225.0) + { + + if (tvsr>1000.0) + { + q=d1a*(0.03*exp(-0.14*pdk)); + } + else + { + q=d1a*(0.07*exp(-0.17*pdk)); + } + + arte=q+(0.7*pdk-mymax(0.01,log10(prop.wn*47.7)-2))*(prop.hg[1]/hone); + } + + else + { + q=0.00055*(pdk)+log10(pdk)*(0.041-0.0017*sqrt(hone)+0.019); + + arte=d1a*q-(18*log10(rsp))/(exp(hone/37.5)); + + zi=1.5*sqrt(hone-prop.cch); + + if(pdk>zi) + { + q=(pdk-zi)*10.2*((sqrt(mymax(0.01,log10(prop.wn*47.7)-2.0)))/(100-zi)); + } + else + { + q=((zi-pdk)/zi)*(-20.0*mymax(0.01,log10(prop.wn*47.7)-2.0))/sqrt(hone); + } + arte=arte+q; + + } + } + } + else /* for TX at or below clutter height */ + { + q=(prop.cch-prop.tgh)*(2.06943-1.56184*exp(1/prop.cch-prop.tgh)); + q=q+(17.98-0.84224*(prop.cch-prop.tgh))*exp(-0.00000061*pd); + arte=q+1.34795*20*log10(pd+1.0); + arte=arte-(mymax(0.01,log10(prop.wn*47.7)-2))*(prop.hg[1]/prop.tgh); + } + saalosv=arte; + } + return saalosv; +} + + +double adiff(double d, prop_type &prop, propa_type &propa) +{ + complex prop_zgnd(prop.zgndreal,prop.zgndimag); + static double wd1, xd1, afo, qk, aht, xht; + double a, q, pk, ds, th, wa, ar, wd, adiffv; + + if (d==0) + { + q=prop.hg[0]*prop.hg[1]; + qk=prop.he[0]*prop.he[1]-q; + + if (prop.mdp<0.0) + q+=10.0; + + wd1=sqrt(1.0+qk/q); + xd1=propa.dla+propa.tha/prop.gme; + q=(1.0-0.8*exp(-propa.dlsa/50e3))*prop.dh; + q*=0.78*exp(-pow(q/16.0,0.25)); + afo=mymin(15.0,2.171*log(1.0+4.77e-4*prop.hg[0]*prop.hg[1]*prop.wn*q)); + qk=1.0/abs(prop_zgnd); + aht=20.0; + xht=0.0; + + for (int j=0; j<2; ++j) + { + /* a=0.5*pow(prop.dl[j],2.0)/prop.he[j]; */ + a=0.5*(prop.dl[j]*prop.dl[j])/prop.he[j]; + wa=pow(a*prop.wn,THIRD); + pk=qk/wa; + q=(1.607-pk)*151.0*wa*prop.dl[j]/a; + xht+=q; + aht+=fht(q,pk); + } + + adiffv=0.0; + } + + else + { + th=propa.tha+d*prop.gme; + ds=d-propa.dla; + /* q=0.0795775*prop.wn*ds*pow(th,2.0); */ + q=0.0795775*prop.wn*ds*th*th; + adiffv=aknfe(q*prop.dl[0]/(ds+prop.dl[0]))+aknfe(q*prop.dl[1]/(ds+prop.dl[1])); + a=ds/th; + wa=pow(a*prop.wn,THIRD); + pk=qk/wa; + q=(1.607-pk)*151.0*wa*th+xht; + ar=0.05751*q-4.343*log(q)-aht; + q=(wd1+xd1/d)*mymin(((1.0-0.8*exp(-d/50e3))*prop.dh*prop.wn),6283.2); + wd=25.1/(25.1+sqrt(q)); + adiffv=ar*wd+(1.0-wd)*adiffv+afo; + } + + return adiffv; +} + +double adiff2(double d, prop_type &prop, propa_type &propa) +{ + complex prop_zgnd(prop.zgndreal,prop.zgndimag); + static double wd1, xd1, qk, aht, xht, toh, toho, roh, roho, dto, dto1, dtro, dro, + dro2, drto, dtr, dhh1, dhh2, /* dhec, */ dtof, dto1f, drof, dro2f; + double a, q, pk, rd, ds, dsl, /* dfdh, */ th, wa, /* ar, wd, sf1, */ sf2, /* ec, */ vv, kedr=0.0, arp=0.0, + sdr=0.0, pd=0.0, srp=0.0, kem=0.0, csd=0.0, sdl=0.0, adiffv2=0.0, closs=0.0; + + /* sf1=1.0; */ /* average empirical hilltop foliage scatter factor for 1 obstruction */ + sf2=1.0; /* average empirical hilltop foliage scatter factor for 2 obstructions */ + + /* dfdh=prop.dh; */ + /* ec=0.5*prop.gme; */ + + /* adiff2 must first be run with d==0.0 to set up coefficients */ + if (d==0) + { + q=prop.hg[0]*prop.hg[1]; + qk=prop.he[0]*prop.he[1]-q; + /* dhec=2.73; */ + + if (prop.mdp<0.0) + q+=10.0; + + /* coefficients for a standard four radii, rounded earth computation are prepared */ + wd1=sqrt(1.0+qk/q); + xd1=propa.dla+propa.tha/prop.gme; + q=(1.0-0.8*exp(-propa.dlsa/50e3))*prop.dh; + q*=0.78*exp(-pow(q/16.0,0.25)); + qk=1.0/abs(prop_zgnd); + aht=20.0; + xht=0.0; + a=0.5*(prop.dl[0]*prop.dl[0])/prop.he[0]; + wa=pow(a*prop.wn,THIRD); + pk=qk/wa; + q=(1.607-pk)*151.0*wa*prop.dl[0]/a; + xht=q; + aht+=fht(q,pk); + + + if ((int(prop.dl[1])==0.0) || (prop.the[1]>0.2)) + { + xht+=xht; + aht+=(aht-20.0); + } + + else + { + a=0.5*(prop.dl[1]*prop.dl[1])/prop.he[1]; + wa=pow(a*prop.wn,THIRD); + pk=qk/wa; + q=(1.607-pk)*151.0*wa*prop.dl[1]/a; + xht+=q; + aht+=fht(q,pk); + } + adiffv2=0.0; + } + + else + { + th=propa.tha+d*prop.gme; + + dsl=mymax(d-propa.dla,0.0); + ds=d-propa.dla; + a=ds/th; + wa=pow(a*prop.wn,THIRD); + pk=qk/wa; + toh=prop.hht-(prop.rch[0]-prop.dl[0]*((prop.rch[1]-prop.rch[0])/prop.dist)); + roh=prop.hhr-(prop.rch[0]-(prop.dist-prop.dl[1])*((prop.rch[1]-prop.rch[0])/prop.dist)); + toho=prop.hht-(prop.rch[0]-(prop.dl[0]+dsl)*((prop.hhr-prop.rch[0])/(prop.dist-prop.dl[1]))); + roho=prop.hhr-(prop.hht-dsl*((prop.rch[1]-prop.hht)/dsl)); + dto=sqrt(prop.dl[0]*prop.dl[0]+toh*toh); + dto+=prop.gme*prop.dl[0]; + dto1=sqrt(prop.dl[0]*prop.dl[0]+toho*toho); + dto1+=prop.gme*prop.dl[0]; + dtro=sqrt((prop.dl[0]+dsl)*(prop.dl[0]+dsl)+prop.hhr*prop.hhr); + dtro+=prop.gme*(prop.dl[0]+dsl); + drto=sqrt((prop.dl[1]+dsl)*(prop.dl[1]+dsl)+prop.hht*prop.hht); + drto+=prop.gme*(prop.dl[1]+dsl); + dro=sqrt(prop.dl[1]*prop.dl[1]+roh*roh); + dro+=prop.gme*(prop.dl[1]); + dro2=sqrt(prop.dl[1]*prop.dl[1]+roho*roho); + dro2+=prop.gme*(prop.dl[1]); + dtr=sqrt(prop.dist*prop.dist+(prop.rch[0]-prop.rch[1])*(prop.rch[0]-prop.rch[1])); + dtr+=prop.gme*prop.dist; + dhh1=sqrt((prop.dist-propa.dla)*(prop.dist-propa.dla)+toho*toho); + dhh1+=prop.gme*(prop.dist-propa.dla); + dhh2=sqrt((prop.dist-propa.dla)*(prop.dist-propa.dla)+roho*roho); + dhh2+=prop.gme*(prop.dist-propa.dla); + + /* for 1 obst tree base path */ + dtof=sqrt(prop.dl[0]*prop.dl[0]+(toh-prop.cch)*(toh-prop.cch)); + dtof+=prop.gme*prop.dl[0]; + dto1f=sqrt(prop.dl[0]*prop.dl[0]+(toho-prop.cch)*(toho-prop.cch)); + dto1f+=prop.gme*prop.dl[0]; + drof=sqrt(prop.dl[1]*prop.dl[1]+(roh-prop.cch)*(roh-prop.cch)); + drof+=prop.gme*(prop.dl[1]); + dro2f=sqrt(prop.dl[1]*prop.dl[1]+(roho-prop.cch)*(roho-prop.cch)); + dro2f+=prop.gme*(prop.dl[1]); + + /* saalos coefficients preset for post-obstacle receive path */ + prop.tgh=prop.cch+1.0; + prop.tsgh=prop.hhr; + rd=prop.dl[1]; + + /* two obstacle diffraction calculation */ + if (int(ds)>0) /* there are 2 obstacles */ + { + if(int(prop.dl[1])>0.0) /* receive site past 2nd peak */ + { + /* rounding attenuation */ + q=(1.607-pk)*151.0*wa*th+xht; + /* ar=0.05751*q-10*log10(q)-aht; */ + + /* knife edge vs round weighting */ + q=(1.0-0.8*exp(-d/50e3))*prop.dh; + q=(wd1+xd1/d)*mymin((q*prop.wn),6283.2); + /* wd=25.1/(25.1+sqrt(q)); */ + + q=0.6365*prop.wn; + + if(prop.the[1]<0.2) /* receive grazing angle below 0.2 rad */ + { + /* knife edge attenuation for two obstructions */ + + if(prop.hht < 3400) /* if below tree line, foliage top loss */ + { + vv=q*abs(dto1+dhh1-dtro); + adiffv2=-18.0+sf2*aknfe(vv); + } + else + { + vv=q*abs(dto1+dhh1-dtro); + adiffv2=aknfe(vv); + } + + if(prop.hhr < 3400) + { + vv=q*abs(dro2+dhh2-drto); + adiffv2+=(-18.0+sf2*aknfe(vv)); + } + else + { + vv=q*abs(dro2+dhh2-drto); + adiffv2+=aknfe(vv); + } + /* finally, add clutter loss */ + closs=saalos(rd, prop, propa); + adiffv2+=mymin(22.0,closs); + + } + else /* rcvr site too close to 2nd obs */ + { + /* knife edge attenuation for 1st obs */ + + if(prop.hht < 3400) + { + vv=q*abs(dto1+dhh1-dtro); + adiffv2=-18.0+sf2*aknfe(vv); + } + else + { + vv=q*abs(dto1+dhh1-dtro); + adiffv2=aknfe(vv); + } + + /* weighted calc. of knife vs rounded edge + adiffv2=ar*wd+(1.0-wd)*adiffv2; */ + + /* clutter path loss past 2nd peak */ + if(prop.the[1]<1.22) + { + rd=prop.dl[1]; + + if(prop.the[1]>0.6) /* through foliage downhill */ + { + prop.tgh=prop.cch; + } + else /* close to foliage, rcvr in foliage downslope */ + { + vv=0.6365*prop.wn*abs(dro2+dhh2-drto); + } + adiffv2+=aknfe(vv); + closs=saalos(rd, prop, propa); + adiffv2+=mymin(closs,22.0); + } + else /* rcvr very close to bare cliff or skyscraper */ + { + adiffv2=5.8+25.0; + } + } + } + else /* receive site is atop a 2nd peak */ + { + vv=0.6365*prop.wn*abs(dto+dro-dtr); + adiffv2=5.8 + aknfe(vv); + } + } + else /* for single obstacle */ + { + + if(int(prop.dl[1])>0.0) /* receive site past 1st peak */ + { + + if(prop.the[1]<0.2) /* receive grazing angle less than .2 radians */ + { + vv=0.6365*prop.wn*abs(dto+dro-dtr); + + if(prop.hht < 3400) + { + sdl=18.0; + sdl=pow(10,(-sdl/20)); + /* ke phase difference with respect to direct t-r line */ + kedr=0.159155*prop.wn*abs(dto+dro-dtr); + arp=abs(kedr-(int(kedr))); + kem=aknfe(vv); + kem= pow(10,(-kem/20)); + /* scatter path phase with respect to direct t-r line */ + sdr=0.5+0.159155*prop.wn*abs(dtof+drof-dtr); + srp=abs(sdr-(int(sdr))); + /* difference between scatter and ke phase in radians */ + pd=6.283185307*abs(srp-arp); + /* report pd prior to restriction + keep pd between 0 and pi radians and adjust for 3&4 quadrant */ + if(pd>=3.141592654) + { + pd=6.283185307-pd; + csd=abq_alos(complex(sdl,0)+complex(kem*-cos(pd), kem*-sin(pd))); + } + else + { + csd=abq_alos(complex(sdl,0)+complex(kem*cos(pd), kem*sin(pd))); + } + /*csd=mymax(csd,0.0009); limits maximum loss value to 30.45 db */ + adiffv2=-3.71-10*log10(csd); + } + else + { + adiffv2=aknfe(vv); + } + /* finally, add clutter loss */ + closs=saalos(rd, prop, propa); + adiffv2+=mymin(closs,22.0); + } + else /* receive grazing angle too high */ + { + if(prop.the[1]<1.22) + { + rd=prop.dl[1]; + + if(prop.the[1]>0.6) /* through foliage downhill */ + { + prop.tgh=prop.cch; + } + else /* downhill slope just above foliage */ + { + vv=0.6365*prop.wn*abs(dto+dro-dtr); + adiffv2=aknfe(vv); + } + closs=saalos(rd, prop, propa); + adiffv2+=mymin(22.0,closs); + } + else /* receiver very close to bare cliff or skyscraper */ + { + adiffv2=5.8+25.0; + } + } + } + else /* if occurs, receive site atop first peak */ + { + adiffv2=5.8; + } + } + } + return adiffv2; +} + +double ascat( double d, prop_type &prop, propa_type &propa) +{ + static double ad, rr, etq, h0s; + double h0, r1, r2, z0, ss, et, ett, th, q; + double ascatv, temp; + + if (d==0.0) + { + ad=prop.dl[0]-prop.dl[1]; + rr=prop.he[1]/prop.rch[0]; + + if (ad<0.0) + { + ad=-ad; + rr=1.0/rr; + } + + etq=(5.67e-6*prop.ens-2.32e-3)*prop.ens+0.031; + h0s=-15.0; + ascatv=0.0; + } + + else + { + if (h0s>15.0) + h0=h0s; + else + { + th=prop.the[0]+prop.the[1]+d*prop.gme; + r2=2.0*prop.wn*th; + r1=r2*prop.he[0]; + r2*=prop.he[1]; + + if (r1<0.2 && r2<0.2) + return 1001.0; // <==== early return + + ss=(d-ad)/(d+ad); + q=rr/ss; + ss=mymax(0.1,ss); + q=mymin(mymax(0.1,q),10.0); + z0=(d-ad)*(d+ad)*th*0.25/d; + /* et=(etq*exp(-pow(mymin(1.7,z0/8.0e3),6.0))+1.0)*z0/1.7556e3; */ + + temp=mymin(1.7,z0/8.0e3); + temp=temp*temp*temp*temp*temp*temp; + et=(etq*exp(-temp)+1.0)*z0/1.7556e3; + + ett=mymax(et,1.0); + h0=(h0f(r1,ett)+h0f(r2,ett))*0.5; + h0+=mymin(h0,(1.38-log(ett))*log(ss)*log(q)*0.49); + h0=FORTRAN_DIM(h0,0.0); + + if (et<1.0) + { + /* h0=et*h0+(1.0-et)*4.343*log(pow((1.0+1.4142/r1)*(1.0+1.4142/r2),2.0)*(r1+r2)/(r1+r2+2.8284)); */ + + temp=((1.0+1.4142/r1)*(1.0+1.4142/r2)); + h0=et*h0+(1.0-et)*4.343*log((temp*temp)*(r1+r2)/(r1+r2+2.8284)); + } + + if (h0>15.0 && h0s>=0.0) + h0=h0s; + } + + h0s=h0; + th=propa.tha+d*prop.gme; + /* ascatv=ahd(th*d)+4.343*log(47.7*prop.wn*pow(th,4.0))-0.1*(prop.ens-301.0)*exp(-th*d/40e3)+h0; */ + ascatv=ahd(th*d)+4.343*log(47.7*prop.wn*(th*th*th*th))-0.1*(prop.ens-301.0)*exp(-th*d/40e3)+h0; + } + + return ascatv; +} + +double qerfi(double q) +{ + double x, t, v; + double c0=2.515516698; + double c1=0.802853; + double c2=0.010328; + double d1=1.432788; + double d2=0.189269; + double d3=0.001308; + + x=0.5-q; + t=mymax(0.5-fabs(x),0.000001); + t=sqrt(-2.0*log(t)); + v=t-((c2*t+c1)*t+c0)/(((d3*t+d2)*t+d1)*t+1.0); + + if (x<0.0) + v=-v; + + return v; +} + +void qlrps(double fmhz, double zsys, double en0, int ipol, double eps, double sgm, prop_type &prop) +{ + double gma=157e-9; + + prop.wn=fmhz/47.7; + prop.ens=en0; + + if (zsys!=0.0) + prop.ens*=exp(-zsys/9460.0); + + prop.gme=gma*(1.0-0.04665*exp(prop.ens/179.3)); + complex zq, prop_zgnd(prop.zgndreal,prop.zgndimag); + zq=complex (eps,376.62*sgm/prop.wn); + prop_zgnd=sqrt(zq-1.0); + + if (ipol!=0.0) + prop_zgnd=prop_zgnd/zq; + + prop.zgndreal=prop_zgnd.real(); + prop.zgndimag=prop_zgnd.imag(); + +} + +double alos(double d, prop_type &prop, propa_type &propa) +{ + complex prop_zgnd(prop.zgndreal,prop.zgndimag); + static double wls; + complex r; + double s, sps, q; + double alosv; + + if (d==0.0) + { + wls=0.021/(0.021+prop.wn*prop.dh/mymax(10e3,propa.dlsa)); + alosv=0.0; + } + + else + { + q=(1.0-0.8*exp(-d/50e3))*prop.dh; + s=0.78*q*exp(-pow(q/16.0,0.25)); + q=prop.he[0]+prop.he[1]; + sps=q/sqrt(d*d+q*q); + r=(sps-prop_zgnd)/(sps+prop_zgnd)*exp(-mymin(10.0,prop.wn*s*sps)); + q=abq_alos(r); + + if (q<0.25 || q1.57) + q=3.14-2.4649/q; + + alosv=(-4.343*log(abq_alos(complex(cos(q),-sin(q))+r))-alosv)*wls+alosv; + + } + return alosv; +} + + +double alos2(double d, prop_type &prop, propa_type &propa) +{ + complex prop_zgnd(prop.zgndreal,prop.zgndimag); + complex r; + double cd, cr, dr, hr, hrg, ht, htg, hrp, re, s, sps, q, pd, drh; + /* int rp; */ + double alosv; + + cd=0.0; + cr=0.0; + htg=prop.hg[0]; + hrg=prop.hg[1]; + ht=prop.ght; + hr=prop.ghr; + /* rp=prop.rpl; */ + hrp=prop.rph; + pd=prop.dist; + + if (d==0.0) + { + alosv=0.0; + } + + else + { + q=prop.he[0]+prop.he[1]; + sps=q/sqrt(pd*pd+q*q); + q=(1.0-0.8*exp(-pd/50e3))*prop.dh; + + if (prop.mdp<0) + { + dr=pd/(1+hrg/htg); + + if (dr<(0.5*pd)) + { + drh=6378137.0-sqrt(-(0.5*pd)*(0.5*pd)+6378137.0*6378137.0+(0.5*pd-dr)*(0.5*pd-dr)); + } + else + { + drh=6378137.0-sqrt(-(0.5*pd)*(0.5*pd)+6378137.0*6378137.0+(dr-0.5*pd)*(dr-0.5*pd)); + } + + if ((sps<0.05) && (prop.cch>hrg) && (prop.dist< prop.dl[0])) /* if far from transmitter and receiver below canopy */ + { + cd=mymax(0.01,pd*(prop.cch-hrg)/(htg-hrg)); + cr=mymax(0.01,pd-dr+dr*(prop.cch-drh)/htg); + q=((1.0-0.8*exp(-pd/50e3))*prop.dh*(mymin(-20*log10(cd/cr),1.0))); + } + } + + s=0.78*q*exp(-pow(q/16.0,0.25)); + q=exp(-mymin(10.0,prop.wn*s*sps)); + r=q*(sps-prop_zgnd)/(sps+prop_zgnd); + q=abq_alos(r); + q=mymin(q,1.0); + + if (q<0.25 || q(cos(q),sin(q))+r); + alosv=-10*log10(re); + prop.tgh=prop.hg[0]; /*tx above gnd hgt set to antenna height AGL */ + prop.tsgh=prop.rch[0]-prop.hg[0]; /* tsgh set to tx site gl AMSL */ + + if ((prop.hg[1]=0) + { + propv.mdvar=mdvarx; + propv.lvar=mymax(propv.lvar,4); + } + + if (klimx>0) + { + propv.klim=klimx; + propv.lvar=5; + } +} + + +void lrprop (double d, prop_type &prop, propa_type &propa) +{ + /* PaulM_lrprop used for ITM */ + static bool wlos, wscat; + static double dmin, xae; + complex prop_zgnd(prop.zgndreal,prop.zgndimag); + double a0, a1, a2, a3, a4, a5, a6; + double d0, d1, d2, d3, d4, d5, d6; + bool wq; + double q; + int j; + + if (prop.mdp!=0) + { + for (j=0; j<2; j++) + propa.dls[j]=sqrt(2.0*prop.he[j]/prop.gme); + + propa.dlsa=propa.dls[0]+propa.dls[1]; + propa.dla=prop.dl[0]+prop.dl[1]; + propa.tha=mymax(prop.the[0]+prop.the[1],-propa.dla*prop.gme); + wlos=false; + wscat=false; + + if (prop.wn<0.838 || prop.wn>210.0) + prop.kwx=mymax(prop.kwx,1); + + for (j=0; j<2; j++) + if (prop.hg[j]<1.0 || prop.hg[j]>1000.0) + prop.kwx=mymax(prop.kwx,1); + + for (j=0; j<2; j++) + if (abs(prop.the[j]) >200e-3 || prop.dl[j]<0.1*propa.dls[j] || prop.dl[j]>3.0*propa.dls[j] ) + prop.kwx=mymax(prop.kwx,3); + + if (prop.ens < 250.0 || prop.ens > 400.0 || prop.gme < 75e-9 || prop.gme > 250e-9 || prop_zgnd.real() <= abs(prop_zgnd.imag()) || prop.wn < 0.419 || prop.wn > 420.0) + prop.kwx=4; + + for (j=0; j<2; j++) + if (prop.hg[j]<0.5 || prop.hg[j]>3000.0) + prop.kwx=4; + + dmin=abs(prop.he[0]-prop.he[1])/200e-3; + q=adiff(0.0,prop,propa); + /* xae=pow(prop.wn*pow(prop.gme,2.),-THIRD); -- JDM made argument 2 a double */ + xae=pow(prop.wn*(prop.gme*prop.gme),-THIRD); /* No 2nd pow() */ + d3=mymax(propa.dlsa,1.3787*xae+propa.dla); + d4=d3+2.7574*xae; + a3=adiff(d3,prop,propa); + a4=adiff(d4,prop,propa); + propa.emd=(a4-a3)/(d4-d3); + propa.aed=a3-propa.emd*d3; + } + + if (prop.mdp>=0) + { + prop.mdp=0; + prop.dist=d; + } + + if (prop.dist>0.0) + { + if (prop.dist>1000e3) + prop.kwx=mymax(prop.kwx,1); + + if (prop.dist2000e3) + prop.kwx=4; + } + + if (prop.dist=0.0) + { + d0=mymin(d0,0.5*propa.dla); + d1=d0+0.25*(propa.dla-d0); + } + + else + d1=mymax(-propa.aed/propa.emd,0.25*propa.dla); + + a1=alos(d1,prop,propa); + wq=false; + + if (d0=0.0 || propa.ak2>0.0; + + if (wq) + { + propa.ak1=(a2-a0-propa.ak2*q)/(d2-d0); + + if (propa.ak1<0.0) + { + propa.ak1=0.0; + propa.ak2=FORTRAN_DIM(a2,a0)/q; + + if (propa.ak2==0.0) + propa.ak1=propa.emd; + } + } + + else + { + propa.ak2=0.0; + propa.ak1=(a2-a1)/(d2-d1); + + if (propa.ak1<=0.0) + propa.ak1=propa.emd; + } + } + + else + { + propa.ak1=(a2-a1)/(d2-d1); + propa.ak2=0.0; + + if (propa.ak1<=0.0) + propa.ak1=propa.emd; + } + + propa.ael=a2-propa.ak1*d2-propa.ak2*log(d2); + wlos=true; + } + + if (prop.dist>0.0) + prop.aref=propa.ael+propa.ak1*prop.dist+propa.ak2*log(prop.dist); + + } + + if (prop.dist<=0.0 || prop.dist>=propa.dlsa) + { + if(!wscat) + { + q=ascat(0.0,prop,propa); + d5=propa.dla+200e3; + d6=d5+200e3; + a6=ascat(d6,prop,propa); + a5=ascat(d5,prop,propa); + + if (a5<1000.0) + { + propa.ems=(a6-a5)/200e3; + propa.dx=mymax(propa.dlsa,mymax(propa.dla+0.3*xae*log(47.7*prop.wn),(a5-propa.aed-propa.ems*d5)/(propa.emd-propa.ems))); + propa.aes=(propa.emd-propa.ems)*propa.dx+propa.aed; + } + + else + { + propa.ems=propa.emd; + propa.aes=propa.aed; + propa.dx=10.e6; + } + + wscat=true; + } + + if (prop.dist>propa.dx) + prop.aref=propa.aes+propa.ems*prop.dist; + else + prop.aref=propa.aed+propa.emd*prop.dist; + } + + prop.aref=mymax(prop.aref,0.0); +} + + + + +void lrprop2(double d, prop_type &prop, propa_type &propa) +{ + /* ITWOM_lrprop2 */ + static bool wlos, wscat; + static double dmin, xae; + complex prop_zgnd(prop.zgndreal,prop.zgndimag); + double pd1; + double a0, a1, a2, a3, a4, a5, a6, iw; + double d0, d1, d2, d3, d4, d5, d6; + bool wq; + double q; + int j; + + iw=prop.tiw; + pd1=prop.dist; + propa.dx=2000000.0; + + if (prop.mdp!=0) /* if oper. mode is not 0, i.e. not area mode ongoing */ + { + for (j=0; j<2; j++) + propa.dls[j]=sqrt(2.0*prop.he[j]/prop.gme); + + propa.dlsa=propa.dls[0]+propa.dls[1]; + propa.dlsa=mymin(propa.dlsa,1000000.0); + propa.dla=prop.dl[0]+prop.dl[1]; + propa.tha=mymax(prop.the[0]+prop.the[1],-propa.dla*prop.gme); + wlos=false; + wscat=false; + + /*checking for parameters-in-range, error codes set if not */ + + if (prop.wn<0.838 || prop.wn>210.0) + prop.kwx=mymax(prop.kwx,1); + + for (j=0; j<2; j++) + if (prop.hg[j]<1.0 || prop.hg[j]>1000.0) + prop.kwx=mymax(prop.kwx,1); + + if(abs(prop.the[0])>200e-3) + prop.kwx=mymax(prop.kwx,3); + + if(abs(prop.the[1])>1.220) + prop.kwx=mymax(prop.kwx,3); + + /*for (j=0; j<2; j++) + if (prop.dl[j]<0.1*propa.dls[j] || prop.dl[j]>3.0*propa.dls[j]) + prop.kwx=mymax(prop.kwx,3); */ + + if (prop.ens<250.0 || prop.ens>400.0 || prop.gme<75e-9 || prop.gme>250e-9 || prop_zgnd.real() <=abs(prop_zgnd.imag()) || prop.wn<0.419 || prop.wn>420.0) + prop.kwx=4; + + for (j=0; j<2; j++) + + if (prop.hg[j]<0.5 || prop.hg[j]>3000.0) + prop.kwx=4; + + dmin=abs(prop.he[0]-prop.he[1])/200e-3; + q=adiff2(0.0,prop,propa); + xae=pow(prop.wn*(prop.gme*prop.gme),-THIRD); + d3=mymax(propa.dlsa,1.3787*xae+propa.dla); + d4=d3+2.7574*xae; + a3=adiff2(d3,prop,propa); + a4=adiff2(d4,prop,propa); + propa.emd=(a4-a3)/(d4-d3); + propa.aed=a3-propa.emd*d3; + } + + if (prop.mdp>=0) /* if initializing the area mode */ + { + prop.mdp=0; /* area mode is initialized */ + prop.dist=d; + } + + if (prop.dist>0.0) + { + if (prop.dist>1000e3) /* prop.dist being in meters, if greater than 1000 km, kwx=1 */ + prop.kwx=mymax(prop.kwx,1); + + if (prop.dist2000e3) + prop.kwx=4; + } + + if (prop.dist0.0) + { + prop.aref=propa.aed+propa.emd*prop.dist; + } + else + { + if (propa.aed==0.0) + { + d0=mymin(d0,0.5*propa.dla); + d1=d0+0.25*(propa.dla-d0); + } + else /* aed less than zero */ + { + d1=mymax(-propa.aed/propa.emd,0.25*propa.dla); + } + a1=alos2(d1,prop,propa); + wq=false; + + if (d0=0.0 || propa.ak2>0.0; + + if (wq) + { + propa.ak1=(a2-a0-propa.ak2*q)/(d2-d0); + + if (propa.ak1<0.0) + { + propa.ak1=0.0; + propa.ak2=FORTRAN_DIM(a2,a0)/q; + + if (propa.ak2==0.0) + propa.ak1=propa.emd; + } + } + } + + if(!wq) + { + propa.ak1=FORTRAN_DIM(a2,a1)/(d2-d1); + propa.ak2=0.0; + + if (propa.ak1==0.0) + propa.ak1=propa.emd; + + } + propa.ael=a2-propa.ak1*d2-propa.ak2*log(d2); + wlos=true; + } + } + } + else /* for ITWOM point-to-point mode */ + { + + if (!wlos) + { + q=alos2(0.0,prop,propa); /* coefficient setup */ + wlos=true; + } + + if (prop.los==1) /* if line of sight */ + { + prop.aref=alos2(pd1,prop,propa); + } + else + { + if (int(prop.dist-prop.dl[0])==0) /* if at 1st horiz */ + { + prop.aref=5.8+alos2(pd1,prop,propa); + } + else if (int(prop.dist-prop.dl[0])>0.0) /* if past 1st horiz */ + { + q=adiff2(0.0,prop,propa); + prop.aref=adiff2(pd1,prop,propa); + } + else + { + prop.aref=1.0; + } + + } + } + } + + /* los and diff. range coefficents done. Starting troposcatter */ + if (prop.dist<=0.0 || prop.dist>=propa.dlsa) + { + if (iw==0.0) /* area mode */ + { + if(!wscat) + { + q=ascat(0.0,prop,propa); + d5=propa.dla+200e3; + d6=d5+200e3; + a6=ascat(d6,prop,propa); + a5=ascat(d5,prop,propa); + + if (a5<1000.0) + { + propa.ems=(a6-a5)/200e3; + propa.dx=mymax(propa.dlsa,mymax(propa.dla+0.3*xae*log(47.7*prop.wn),(a5-propa.aed-propa.ems*d5)/(propa.emd-propa.ems))); + + propa.aes=(propa.emd-propa.ems)*propa.dx+propa.aed; + } + + else + { + propa.ems=propa.emd; + propa.aes=propa.aed; + propa.dx=10000000; + } + wscat=true; + } + + if (prop.dist>propa.dx) + { + prop.aref=propa.aes+propa.ems*prop.dist; + } + else + { + prop.aref=propa.aed+propa.emd*prop.dist; + } + } + else /* ITWOM mode q used to preset coefficients with zero input */ + { + if(!wscat) + { + d5=0.0; + d6=0.0; + q=ascat(0.0,prop,propa); + a6=ascat(pd1,prop,propa); + q=adiff2(0.0,prop,propa); + a5=adiff2(pd1,prop,propa); + + if (a5<=a6) + { + propa.dx=10000000; + prop.aref=a5; + } + else + { + propa.dx=propa.dlsa; + prop.aref=a6; + } + wscat=true; + } + } + } + prop.aref=mymax(prop.aref,0.0); +} + + +double curve (double const &c1, double const &c2, double const &x1, + double const &x2, double const &x3, double const &de) +{ + /* return (c1+c2/(1.0+pow((de-x2)/x3,2.0)))*pow(de/x1,2.0)/(1.0+pow(de/x1,2.0)); */ + double temp1, temp2; + + temp1=(de-x2)/x3; + temp2=de/x1; + + temp1*=temp1; + temp2*=temp2; + + return (c1+c2/(1.0+temp1))*temp2/(1.0+temp2); +} + +double avar(double zzt, double zzl, double zzc, prop_type &prop, propv_type &propv) +{ + static int kdv; + static double dexa, de, vmd, vs0, sgl, sgtm, sgtp, sgtd, tgtd, + gm, gp, cv1, cv2, yv1, yv2, yv3, csm1, csm2, ysm1, ysm2, + ysm3, csp1, csp2, ysp1, ysp2, ysp3, csd1, zd, cfm1, cfm2, + cfm3, cfp1, cfp2, cfp3; + + double bv1[7]={-9.67,-0.62,1.26,-9.21,-0.62,-0.39,3.15}; + double bv2[7]={12.7,9.19,15.5,9.05,9.19,2.86,857.9}; + double xv1[7]={144.9e3,228.9e3,262.6e3,84.1e3,228.9e3,141.7e3,2222.e3}; + double xv2[7]={190.3e3,205.2e3,185.2e3,101.1e3,205.2e3,315.9e3,164.8e3}; + double xv3[7]={133.8e3,143.6e3,99.8e3,98.6e3,143.6e3,167.4e3,116.3e3}; + double bsm1[7]={2.13,2.66,6.11,1.98,2.68,6.86,8.51}; + double bsm2[7]={159.5,7.67,6.65,13.11,7.16,10.38,169.8}; + double xsm1[7]={762.2e3,100.4e3,138.2e3,139.1e3,93.7e3,187.8e3,609.8e3}; + double xsm2[7]={123.6e3,172.5e3,242.2e3,132.7e3,186.8e3,169.6e3,119.9e3}; + double xsm3[7]={94.5e3,136.4e3,178.6e3,193.5e3,133.5e3,108.9e3,106.6e3}; + double bsp1[7]={2.11,6.87,10.08,3.68,4.75,8.58,8.43}; + double bsp2[7]={102.3,15.53,9.60,159.3,8.12,13.97,8.19}; + double xsp1[7]={636.9e3,138.7e3,165.3e3,464.4e3,93.2e3,216.0e3,136.2e3}; + double xsp2[7]={134.8e3,143.7e3,225.7e3,93.1e3,135.9e3,152.0e3,188.5e3}; + double xsp3[7]={95.6e3,98.6e3,129.7e3,94.2e3,113.4e3,122.7e3,122.9e3}; + double bsd1[7]={1.224,0.801,1.380,1.000,1.224,1.518,1.518}; + double bzd1[7]={1.282,2.161,1.282,20.,1.282,1.282,1.282}; + double bfm1[7]={1.0,1.0,1.0,1.0,0.92,1.0,1.0}; + double bfm2[7]={0.0,0.0,0.0,0.0,0.25,0.0,0.0}; + double bfm3[7]={0.0,0.0,0.0,0.0,1.77,0.0,0.0}; + double bfp1[7]={1.0,0.93,1.0,0.93,0.93,1.0,1.0}; + double bfp2[7]={0.0,0.31,0.0,0.19,0.31,0.0,0.0}; + double bfp3[7]={0.0,2.00,0.0,1.79,2.00,0.0,0.0}; + static bool ws, w1; + double rt=7.8, rl=24.0, avarv, q, vs, zt, zl, zc; + double sgt, yr, temp1, temp2; + int temp_klim=propv.klim-1; + + if (propv.lvar>0) + { + switch (propv.lvar) + { + default: + if (propv.klim<=0 || propv.klim>7) + { + propv.klim=5; + temp_klim=4; + prop.kwx=mymax(prop.kwx,2); + } + + cv1=bv1[temp_klim]; + cv2=bv2[temp_klim]; + yv1=xv1[temp_klim]; + yv2=xv2[temp_klim]; + yv3=xv3[temp_klim]; + csm1=bsm1[temp_klim]; + csm2=bsm2[temp_klim]; + ysm1=xsm1[temp_klim]; + ysm2=xsm2[temp_klim]; + ysm3=xsm3[temp_klim]; + csp1=bsp1[temp_klim]; + csp2=bsp2[temp_klim]; + ysp1=xsp1[temp_klim]; + ysp2=xsp2[temp_klim]; + ysp3=xsp3[temp_klim]; + csd1=bsd1[temp_klim]; + zd=bzd1[temp_klim]; + cfm1=bfm1[temp_klim]; + cfm2=bfm2[temp_klim]; + cfm3=bfm3[temp_klim]; + cfp1=bfp1[temp_klim]; + cfp2=bfp2[temp_klim]; + cfp3=bfp3[temp_klim]; + + case 4: + kdv=propv.mdvar; + ws=kdv>=20; + + if (ws) + kdv-=20; + + w1=kdv>=10; + + if (w1) + kdv-=10; + + if (kdv<0 || kdv>3) + { + kdv=0; + prop.kwx=mymax(prop.kwx,2); + } + + case 3: + q=log(0.133*prop.wn); + + /* gm=cfm1+cfm2/(pow(cfm3*q,2.0)+1.0); */ + /* gp=cfp1+cfp2/(pow(cfp3*q,2.0)+1.0); */ + + gm=cfm1+cfm2/((cfm3*q*cfm3*q)+1.0); + gp=cfp1+cfp2/((cfp3*q*cfp3*q)+1.0); + + case 2: + dexa=sqrt(18e6*prop.he[0])+sqrt(18e6*prop.he[1])+pow((575.7e12/prop.wn),THIRD); + + case 1: + if (prop.dist3.1 || fabs(zl)>3.1 || fabs(zc)>3.1) + prop.kwx=mymax(prop.kwx,1); + + if (zt<0.0) + sgt=sgtm; + + else if (zt<=zd) + sgt=sgtp; + + else + sgt=sgtd+tgtd/zt; + + /* vs=vs0+pow(sgt*zt,2.0)/(rt+zc*zc)+pow(sgl*zl,2.0)/(rl+zc*zc); */ + + temp1=sgt*zt; + temp2=sgl*zl; + + vs=vs0+(temp1*temp1)/(rt+zc*zc)+(temp2*temp2)/(rl+zc*zc); + + if (kdv==0) + { + yr=0.0; + propv.sgc=sqrt(sgt*sgt+sgl*sgl+vs); + } + + else if (kdv==1) + { + yr=sgt*zt; + propv.sgc=sqrt(sgl*sgl+vs); + } + + else if (kdv==2) + { + yr=sqrt(sgt*sgt+sgl*sgl)*zt; + propv.sgc=sqrt(vs); + } + + else + { + yr=sgt*zt+sgl*zl; + propv.sgc=sqrt(vs); + } + + avarv=prop.aref-vmd-yr-propv.sgc*zc; + + if (avarv<0.0) + avarv=avarv*(29.0-avarv)/(29.0-10.0*avarv); + + return avarv; +} + + +void hzns(double pfl[], prop_type &prop) +{ + /* Used only with ITM 1.2.2 */ + bool wq; + int np; + double xi, za, zb, qc, q, sb, sa; + + np=(int)pfl[0]; + xi=pfl[1]; + za=pfl[2]+prop.hg[0]; + zb=pfl[np+2]+prop.hg[1]; + qc=0.5*prop.gme; + q=qc*prop.dist; + prop.the[1]=(zb-za)/prop.dist; + prop.the[0]=prop.the[1]-q; + prop.the[1]=-prop.the[1]-q; + prop.dl[0]=prop.dist; + prop.dl[1]=prop.dist; + + if (np>=2) + { + sa=0.0; + sb=prop.dist; + wq=true; + + for (int i=1; i0.0) + { + prop.the[0]+=q/sa; + prop.dl[0]=sa; + wq=false; + } + + if (!wq) + { + q=pfl[i+2]-(qc*sb+prop.the[1])*sb-zb; + + if (q>0.0) + { + prop.the[1]+=q/sb; + prop.dl[1]=sb; + } + } + } + } +} + + +void hzns2(double pfl[], prop_type &prop, propa_type &propa) +{ + bool wq; + int np, rp, i, j; + double xi, za, zb, qc, q, sb, sa, dr, dshh; + + np=(int)pfl[0]; + xi=pfl[1]; + za=pfl[2]+prop.hg[0]; + zb=pfl[np+2]+prop.hg[1]; + prop.tiw=xi; + prop.ght=za; + prop.ghr=zb; + qc=0.5*prop.gme; + q=qc*prop.dist; + prop.the[1]=atan((zb-za)/prop.dist); + prop.the[0]=(prop.the[1])-q; + prop.the[1]=-prop.the[1]-q; + prop.dl[0]=prop.dist; + prop.dl[1]=prop.dist; + prop.hht=0.0; + prop.hhr=0.0; + prop.los=1; + + if(np>=2) + { + sa=0.0; + sb=prop.dist; + wq=true; + + for(j=1; j0.0) + { + prop.los=0; + prop.the[0]+=q/sa; + prop.dl[0]=sa; + prop.the[0]=mymin(prop.the[0],1.569); + prop.hht=pfl[j+2]; + wq=false; + } + } + + if(!wq) + { + for(i=1; i0.0) + { + prop.the[1]+=q/(prop.dist-sb); + prop.the[1]=mymin(prop.the[1],1.57); + prop.the[1]=mymax(prop.the[1],-1.568); + prop.hhr=pfl[np+2-i]; + prop.dl[1]=mymax(0.0,prop.dist-sb); + } + } + prop.the[0]=atan((prop.hht-za)/prop.dl[0])-0.5*prop.gme*prop.dl[0]; + prop.the[1]=atan((prop.hhr-zb)/prop.dl[1])-0.5*prop.gme*prop.dl[1]; + } + } + + if((prop.dl[1])<(prop.dist)) + { + dshh=prop.dist-prop.dl[0]-prop.dl[1]; + + if(int(dshh)==0) /* one obstacle */ + { + dr=prop.dl[1]/(1+zb/prop.hht); + } + else /* two obstacles */ + { + dr=prop.dl[1]/(1+zb/prop.hhr); + } + } + else /* line of sight */ + { + dr=(prop.dist)/(1+zb/za); + } + rp=2+(int)(floor(0.5+dr/xi)); + prop.rpl=rp; + prop.rph=pfl[rp]; +} + + +void z1sq1 (double z[], const double &x1, const double &x2, double& z0, double& zn) +{ + /* Used only with ITM 1.2.2 */ + double xn, xa, xb, x, a, b; + int n, ja, jb; + + xn=z[0]; + xa=int(FORTRAN_DIM(x1/z[1],0.0)); + xb=xn-int(FORTRAN_DIM(xn,x2/z[1])); + + if (xb<=xa) + { + xa=FORTRAN_DIM(xa,1.0); + xb=xn-FORTRAN_DIM(xn,xb+1.0); + } + + ja=(int)xa; + jb=(int)xb; + n=jb-ja; + xa=xb-xa; + x=-0.5*xa; + xb+=x; + a=0.5*(z[ja+2]+z[jb+2]); + b=0.5*(z[ja+2]-z[jb+2])*x; + + for (int i=2; i<=n; ++i) + { + ++ja; + x+=1.0; + a+=z[ja+2]; + b+=z[ja+2]*x; + } + + a/=xa; + b=b*12.0/((xa*xa+2.0)*xa); + z0=a-b*xb; + zn=a+b*(xn-xb); +} + +void z1sq2(double z[], const double &x1, const double &x2, double& z0, double& zn) +{ + /* corrected for use with ITWOM */ + double xn, xa, xb, x, a, b, bn; + int n, ja, jb; + + xn=z[0]; + xa=int(FORTRAN_DIM(x1/z[1],0.0)); + xb=xn-int(FORTRAN_DIM(xn,x2/z[1])); + + if (xb<=xa) + { + xa=FORTRAN_DIM(xa,1.0); + xb=xn-FORTRAN_DIM(xn,xb+1.0); + } + + ja=(int)xa; + jb=(int)xb; + xa=(2*int((xb-xa)/2))-1; + x=-0.5*(xa+1); + xb+=x; + ja=jb-1-(int)xa; + n=jb-ja; + a=(z[ja+2]+z[jb+2]); + b=(z[ja+2]-z[jb+2])*x; + bn=2*(x*x); + + for (int i=2; i<=n; ++i) + { + ++ja; + x+=1.0; + bn+=(x*x); + a+=z[ja+2]; + b+=z[ja+2]*x; + } + + a/=(xa+2); + b=b/bn; + z0=a-(b*xb); + zn=a+(b*(xn-xb)); +} + +double qtile (const int &nn, double a[], const int &ir) +{ + double q=0.0, r; /* q initialization -- KD2BD */ + int m, n, i, j, j1=0, i0=0, k; /* more initializations -- KD2BD */ + bool done=false; + bool goto10=true; + + m=0; + n=nn; + k=mymin(mymax(0,ir),n); + + while (!done) + { + if (goto10) + { + q=a[k]; + i0=m; + j1=n; + } + + i=i0; + + while (i<=n && a[i]>=q) + i++; + + if (i>n) + i=n; + + j=j1; + + while (j>=m && a[j]<=q) + j--; + + if (jk) + { + a[k]=a[j]; + a[j]=q; + n=j-1; + goto10=true; + } + + else + done=true; + } + + return q; +} + +double qerf(const double &z) +{ + double b1=0.319381530, b2=-0.356563782, b3=1.781477937; + double b4=-1.821255987, b5=1.330274429; + double rp=4.317008, rrt2pi=0.398942280; + double t, x, qerfv; + + x=z; + t=fabs(x); + + if (t>=10.0) + qerfv=0.0; + else + { + t=rp/(t+rp); + qerfv=exp(-0.5*x*x)*rrt2pi*((((b5*t+b4)*t+b3)*t+b2)*t+b1)*t; + } + + if (x<0.0) + qerfv=1.0-qerfv; + + return qerfv; +} + + +double d1thx(double pfl[], const double &x1, const double &x2) +{ + int np, ka, kb, n, k, j; + double d1thxv, sn, xa, xb; + double *s; + + np=(int)pfl[0]; + xa=x1/pfl[1]; + xb=x2/pfl[1]; + d1thxv=0.0; + + if (xb-xa<2.0) // exit out + return d1thxv; + + ka=(int)(0.1*(xb-xa+8.0)); + ka=mymin(mymax(4,ka),25); + n=10*ka-5; + kb=n-ka+1; + sn=n-1; + assert((s=new double[n+2])!=0); + s[0]=sn; + s[1]=1.0; + xb=(xb-xa)/sn; + k=(int)(xa+1.0); + xa-=(double)k; + + for (j=0; j0.0 && k0.0 && k1.5*prop.dist) + { + z1sq1(pfl,xl[0],xl[1],za,zb); + prop.he[0]=prop.hg[0]+FORTRAN_DIM(pfl[2],za); + prop.he[1]=prop.hg[1]+FORTRAN_DIM(pfl[np+2],zb); + + for (j=0; j<2; j++) + prop.dl[j]=sqrt(2.0*prop.he[j]/prop.gme)*exp(-0.07*sqrt(prop.dh/mymax(prop.he[j],5.0))); + + q=prop.dl[0]+prop.dl[1]; + + if (q<=prop.dist) /* if there is a rounded horizon, or two obstructions, in the path */ + { + /* q=pow(prop.dist/q,2.0); */ + temp=prop.dist/q; + q=temp*temp; + + for (j=0; j<2; j++) + { + prop.he[j]*=q; /* tx effective height set to be path dist/distance between obstacles */ + prop.dl[j]=sqrt(2.0*prop.he[j]/prop.gme)*exp(-0.07*sqrt(prop.dh/mymax(prop.he[j],5.0))); + } + } + + for (j=0; j<2; j++) /* original empirical adjustment? uses delta-h to adjust grazing angles */ + { + q=sqrt(2.0*prop.he[j]/prop.gme); + prop.the[j]=(0.65*prop.dh*(q/prop.dl[j]-1.0)-2.0*prop.he[j])/q; + } + } + + else + { + z1sq1(pfl,xl[0],0.9*prop.dl[0],za,q); + z1sq1(pfl,prop.dist-0.9*prop.dl[1],xl[1],q,zb); + prop.he[0]=prop.hg[0]+FORTRAN_DIM(pfl[2],za); + prop.he[1]=prop.hg[1]+FORTRAN_DIM(pfl[np+2],zb); + } + + prop.mdp=-1; + propv.lvar=mymax(propv.lvar,3); + + if (mdvarx>=0) + { + propv.mdvar=mdvarx; + propv.lvar=mymax(propv.lvar,4); + } + + if (klimx>0) + { + propv.klim=klimx; + propv.lvar=5; + } + + lrprop(0.0,prop,propa); +} + +void qlrpfl2(double pfl[], int klimx, int mdvarx, prop_type &prop, propa_type &propa, propv_type &propv) +{ + int np, j; + double xl[2], dlb, q, za, zb, temp, rad, rae1, rae2; + + prop.dist=pfl[0]*pfl[1]; + np=(int)pfl[0]; + hzns2(pfl,prop, propa); + dlb=prop.dl[0]+prop.dl[1]; + prop.rch[0]=prop.hg[0]+pfl[2]; + prop.rch[1]=prop.hg[1]+pfl[np+2]; + + for (j=0; j<2; j++) + xl[j]=mymin(15.0*prop.hg[j],0.1*prop.dl[j]); + + xl[1]=prop.dist-xl[1]; + prop.dh=d1thx2(pfl,xl[0],xl[1],propa); + + if ((np<1) || (pfl[1]>150.0)) + { + /* for TRANSHORIZON; diffraction over a mutual horizon, or for one or more obstructions */ + if (dlb<1.5*prop.dist) + { + z1sq2(pfl,xl[0],0.9*prop.dl[0],za,q); + z1sq2(pfl,prop.dist-0.9*prop.dl[1],xl[1],q,zb); + prop.he[0]=prop.hg[0]+FORTRAN_DIM(pfl[2],za); + prop.he[1]=prop.hg[1]+FORTRAN_DIM(pfl[np+2],zb); + } + + /* for a Line-of-Sight path */ + else + { + z1sq2(pfl,xl[0],xl[1],za,zb); + prop.he[0]=prop.hg[0]+FORTRAN_DIM(pfl[2],za); + prop.he[1]=prop.hg[1]+FORTRAN_DIM(pfl[np+2],zb); + + for (j=0; j<2; j++) + prop.dl[j]=sqrt(2.0*prop.he[j]/prop.gme)*exp(-0.07*sqrt(prop.dh/mymax(prop.he[j],5.0))); + + /* for one or more obstructions only NOTE buried as in ITM FORTRAN and DLL, not functional */ + if ((prop.dl[0]+prop.dl[1])<=prop.dist) + { + /* q=pow(prop.dist/(dl[0]+dl[1])),2.0); */ + temp=prop.dist/(prop.dl[0]+prop.dl[1]); + q=temp*temp; + } + + for (j=0; j<2; j++) + { + prop.he[j]*=q; + prop.dl[j]=sqrt(2.0*prop.he[j]/prop.gme)*exp(-0.07*sqrt(prop.dh/mymax(prop.he[j],5.0))); + } + + /* this sets (or resets) prop.the, and is not in The Guide FORTRAN QLRPFL */ + for (j=0; j<2; j++) + { + q=sqrt(2.0*prop.he[j]/prop.gme); + prop.the[j]=(0.65*prop.dh*(q/prop.dl[j]-1.0)-2.0*prop.he[j])/q; + } + } + } + + else /* for ITWOM ,computes he for tx, rcvr, and the receiver approach angles for use in saalos */ + { + prop.he[0]=prop.hg[0]+(pfl[2]); + prop.he[1]=prop.hg[1]+(pfl[np+2]); + + rad=(prop.dist-500.0); + + if (prop.dist>550.0) + { + z1sq2(pfl,rad,prop.dist,rae1,rae2); + } + else + { + rae1=0.0; + rae2=0.0; + } + + prop.thera=atan(abs(rae2-rae1)/prop.dist); + + if (rae2=0) + { + propv.mdvar=mdvarx; + propv.lvar=mymax(propv.lvar,4); + } + + if (klimx>0) + { + propv.klim=klimx; + propv.lvar=5; + } + + lrprop2(0.0,prop,propa); +} + +double deg2rad(double d) +{ + return d*3.1415926535897/180.0; +} + +//*************************************************************************************** +//* Point-To-Point Mode Calculations +//*************************************************************************************** + + +void point_to_point_ITM(double elev[], double tht_m, double rht_m, double eps_dielect, double sgm_conductivity, double eno_ns_surfref, double frq_mhz, int radio_climate, int pol, double conf, double rel, double &dbloss, char *strmode, int &errnum) + +/****************************************************************************** + +Note that point_to_point has become point_to_point_ITM for use as the old ITM + + pol: + 0-Horizontal, 1-Vertical + + radio_climate: + 1-Equatorial, 2-Continental Subtropical, + 3-Maritime Tropical, 4-Desert, 5-Continental Temperate, + 6-Maritime Temperate, Over Land, 7-Maritime Temperate, + Over Sea + + conf, rel: .01 to .99 + + elev[]: [num points - 1], [delta dist(meters)], + [height(meters) point 1], ..., [height(meters) point n] + + errnum: 0- No Error. + 1- Warning: Some parameters are nearly out of range. + Results should be used with caution. + 2- Note: Default parameters have been substituted for + impossible ones. + 3- Warning: A combination of parameters is out of range. + Results are probably invalid. + Other- Warning: Some parameters are out of range. + Results are probably invalid. + +*****************************************************************************/ +{ + prop_type prop; + propv_type propv; + propa_type propa; + double zsys=0; + double zc, zr; + double eno, enso, q; + long ja, jb, i, np; + /* double dkm, xkm; */ + double fs; + + prop.hg[0]=tht_m; + prop.hg[1]=rht_m; + propv.klim=radio_climate; + prop.kwx=0; + propv.lvar=5; + prop.mdp=-1; + zc=qerfi(conf); + zr=qerfi(rel); + np=(long)elev[0]; + /* dkm=(elev[1]*elev[0])/1000.0; */ + /* xkm=elev[1]/1000.0; */ + eno=eno_ns_surfref; + enso=0.0; + q=enso; + + if (q<=0.0) + { + ja=(long)(3.0+0.1*elev[0]); /* added (long) to correct */ + jb=np-ja+6; + + for (i=ja-1; i0.0) + strcpy(strmode,"Double Horizon"); + + if (prop.dist<=propa.dlsa || prop.dist <= propa.dx) + strcat(strmode,", Diffraction Dominant"); + + else if (prop.dist>propa.dx) + strcat(strmode, ", Troposcatter Dominant"); + } + + dbloss=avar(zr,0.0,zc,prop,propv)+fs; + errnum=prop.kwx; +} + + + +void point_to_point(double elev[], double tht_m, double rht_m, double eps_dielect, double sgm_conductivity, double eno_ns_surfref, double frq_mhz, int radio_climate, int pol, double conf, double rel, double &dbloss, char *strmode, int &errnum) + +/****************************************************************************** + + Note that point_to_point_two has become point_to_point + for drop-in interface to splat.cpp. + The new variable inputs, + double enc_ncc_clcref, + double clutter_height, + double clutter_density, + double delta_h_diff, and + int mode_var) + have been given fixed values below. + + pol: + 0-Horizontal, 1-Vertical, 2-Circular + + radio_climate: + 1-Equatorial, 2-Continental Subtropical, + 3-Maritime Tropical, 4-Desert, 5-Continental Temperate, + 6-Maritime Temperate, Over Land, 7-Maritime Temperate, + Over Sea + + conf, rel: .01 to .99 + + elev[]: [num points - 1], [delta dist(meters)], + [height(meters) point 1], ..., [height(meters) point n] + + clutter_height 25.2 meters for compatibility with ITU-R P.1546-2. + + clutter_density 1.0 for compatibility with ITU-R P.1546-2. + + delta_h_diff optional delta h for beyond line of sight. 90 m. average. + setting to 0.0 will default to use of original internal + use of delta-h for beyond line-of-sight range. + + mode_var set to 12; or to 1 for FCC ILLR; see documentation + + enc_ncc_clcref clutter refractivity; 1000 N-units to match ITU-R P.1546-2 + + eno=eno_ns_surfref atmospheric refractivity at sea level; 301 N-units nominal + (ranges from 250 for dry, hot day to 450 on hot, humid day] + (stabilizes near 301 in cold, clear weather) + + errnum: 0- No Error. + 1- Warning: Some parameters are nearly out of range. + Results should be used with caution. + 2- Note: Default parameters have been substituted for + impossible ones. + 3- Warning: A combination of parameters is out of range. + Results are probably invalid. + Other- Warning: Some parameters are out of range. + Results are probably invalid. + +*****************************************************************************/ +{ + prop_type prop; + propv_type propv; + propa_type propa; + + double zsys=0; + double zc, zr; + double eno, enso, q; + long ja, jb, i, np; + /* double dkm, xkm; */ + double tpd, fs; + + prop.hg[0]=tht_m; + prop.hg[1]=rht_m; + propv.klim=radio_climate; + prop.kwx=0; + propv.lvar=5; + prop.mdp=-1; + prop.ptx=pol; + prop.thera=0.0; + prop.thenr=0.0; + zc=qerfi(conf); + zr=qerfi(rel); + np=(long)elev[0]; + /* dkm=(elev[1]*elev[0])/1000.0; */ + /* xkm=elev[1]/1000.0; */ + eno=eno_ns_surfref; + enso=0.0; + q=enso; + + /* PRESET VALUES for Basic Version w/o additional inputs active */ + + prop.encc = 1000.00; /* double enc_ncc_clcref preset */ + prop.cch = 22.5; /* double clutter_height preset to ILLR calibration.; + use 25.3 for ITU-P1546-2 calibration */ + prop.cd = 1.00; /* double clutter_density preset */ + int mode_var = 1; /* int mode_var set to 1 for FCC compatibility; + normally, SPLAT presets this to 12 */ + prop.dhd= 0.0; /* delta_h_diff preset */ + + if (q<=0.0) + { + ja=(long)(3.0+0.1*elev[0]); + jb=np-ja+6; + + for (i=ja-1; i0.0) + strcpy(strmode,"2_Hrzn"); + + if (prop.dist<=propa.dlsa || prop.dist<=propa.dx) + + if(int(prop.dl[1])==0.0) + strcat(strmode,"_Peak"); + + else + strcat(strmode,"_Diff"); + + else if (prop.dist>propa.dx) + strcat(strmode, "_Tropo"); + } + + dbloss=avar(zr,0.0,zc,prop,propv)+fs; + errnum=prop.kwx; +} + + +void point_to_pointMDH_two (double elev[], double tht_m, double rht_m, + double eps_dielect, double sgm_conductivity, double eno_ns_surfref, + double enc_ncc_clcref, double clutter_height, double clutter_density, + double delta_h_diff, double frq_mhz, int radio_climate, int pol, int mode_var, + double timepct, double locpct, double confpct, + double &dbloss, int &propmode, double &deltaH, int &errnum) + +/************************************************************************************************* + pol: 0-Horizontal, 1-Vertical + radio_climate: 1-Equatorial, 2-Continental Subtropical, 3-Maritime Tropical, + 4-Desert, 5-Continental Temperate, 6-Maritime Temperate, Over Land, + 7-Maritime Temperate, Over Sea + timepct, locpct, confpct: .01 to .99 + elev[]: [num points - 1], [delta dist(meters)], [height(meters) point 1], ..., [height(meters) point n] + propmode: Value Mode + -1 mode is undefined + 0 Line of Sight + 5 Single Horizon, Diffraction + 6 Single Horizon, Troposcatter + 9 Double Horizon, Diffraction + 10 Double Horizon, Troposcatter + errnum: 0- No Error. + 1- Warning: Some parameters are nearly out of range. + Results should be used with caution. + 2- Note: Default parameters have been substituted for impossible ones. + 3- Warning: A combination of parameters is out of range. + Results are probably invalid. + Other- Warning: Some parameters are out of range. + Results are probably invalid. +*************************************************************************************************/ +{ + + prop_type prop; + propv_type propv; + propa_type propa; + double zsys=0; + double ztime, zloc, zconf; + double eno, enso, q; + long ja, jb, i, np; + /* double dkm, xkm; */ + double fs; + + propmode = -1; // mode is undefined + prop.hg[0] = tht_m; + prop.hg[1] = rht_m; + propv.klim = radio_climate; + prop.encc=enc_ncc_clcref; + prop.cch=clutter_height; + prop.cd=clutter_density; + prop.dhd=delta_h_diff; + prop.kwx = 0; + propv.lvar = 5; + prop.mdp = -1; + prop.ptx=pol; + prop.thera=0.0; + prop.thenr=0.0; + ztime = qerfi(timepct); + zloc = qerfi(locpct); + zconf = qerfi(confpct); + np = (long)elev[0]; + /* dkm = (elev[1] * elev[0]) / 1000.0; */ + /* xkm = elev[1] / 1000.0; */ + eno = eno_ns_surfref; + enso = 0.0; + q = enso; + + /* PRESET VALUES for Basic Version w/o additional inputs active */ + + prop.encc = 1000.00; /* double enc_ncc_clcref */ + prop.cch = 22.5; /* double clutter_height */ + prop.cd = 1.00; /* double clutter_density */ + mode_var = 1; /* int mode_var set for FCC ILLR */ + + if(q<=0.0) + { + ja =(long) (3.0 + 0.1 * elev[0]); /* to match addition of (long) */ + jb = np - ja + 6; + for(i=ja-1;i0.0) + propmode = 8; // 2-Hrzn + if(prop.dist<=propa.dlsa || prop.dist<=propa.dx) + propmode += 1; // Diff + else if(prop.dist>propa.dx) + propmode += 2; // Tropo + } + dbloss = avar(ztime, zloc, zconf, prop, propv) + fs; //avar(time,location,confidence) + errnum = prop.kwx; +} + +void point_to_pointDH (double elev[], double tht_m, double rht_m, + double eps_dielect, double sgm_conductivity, double eno_ns_surfref, + double enc_ncc_clcref, double clutter_height, double clutter_density, + double delta_h_diff, double frq_mhz, int radio_climate, int pol, + double conf, double rel, double loc,double &dbloss, double &deltaH, + int &errnum) +/************************************************************************************************* + pol: 0-Horizontal, 1-Vertical + radio_climate: 1-Equatorial, 2-Continental Subtropical, 3-Maritime Tropical, + 4-Desert, 5-Continental Temperate, 6-Maritime Temperate, Over Land, + 7-Maritime Temperate, Over Sea + conf, rel: .01 to .99 + elev[]: [num points - 1], [delta dist(meters)], [height(meters) point 1], ..., [height(meters) point n] + errnum: 0- No Error. + 1- Warning: Some parameters are nearly out of range. + Results should be used with caution. + 2- Note: Default parameters have been substituted for impossible ones. + 3- Warning: A combination of parameters is out of range. + Results are probably invalid. + Other- Warning: Some parameters are out of range. + Results are probably invalid. +*************************************************************************************************/ +{ + + char strmode[100]; + prop_type prop; + propv_type propv; + propa_type propa; + double zsys=0; + double zc, zr; + double eno, enso, q; + long ja, jb, i, np; + /* double dkm, xkm; */ + double fs; + + prop.hg[0]=tht_m; + prop.hg[1]=rht_m; + propv.klim = radio_climate; + prop.encc=enc_ncc_clcref; + prop.cch=clutter_height; + prop.cd=clutter_density; + prop.dhd=delta_h_diff; + prop.kwx = 0; + propv.lvar = 5; + prop.mdp = -1; + prop.ptx=pol; + prop.thera=0.0; + prop.thenr=0.0; + zc = qerfi(conf); + zr = qerfi(rel); + np = (long)elev[0]; + /* dkm = (elev[1] * elev[0]) / 1000.0; */ + /* xkm = elev[1] / 1000.0; */ + eno = eno_ns_surfref; + enso = 0.0; + q = enso; + + /* PRESET VALUES for Basic Version w/o additional inputs active */ + + prop.encc = 1000.00; /* double enc_ncc_clcref */ + prop.cch = 22.5; /* double clutter_height */ + prop.cd = 1.00; /* double clutter_density */ + + if(q<=0.0) + { + ja = (long) (3.0 + 0.1 * elev[0]); /* to match KD2BD addition of (long) */ + jb = np - ja + 6; + for(i=ja-1; i0.0) + strcpy(strmode,"Double Horizon"); + if(prop.dist<=propa.dlsa || prop.dist<=propa.dx) + strcat(strmode,", Diffraction Dominant"); + else if(prop.dist>propa.dx) + strcat(strmode, ", Troposcatter Dominant"); + } + dbloss = avar(zr,0.0,zc,prop,propv)+fs; //avar(time,location,confidence) + errnum = prop.kwx; +} + + +//******************************************************** +//* Area Mode Calculations * +//******************************************************** + +void area(long ModVar, double deltaH, double tht_m, double rht_m, double dist_km, int TSiteCriteria, int RSiteCriteria, double eps_dielect, double sgm_conductivity, double eno_ns_surfref, double enc_ncc_clcref, double clutter_height, double clutter_density, double delta_h_diff, double frq_mhz, int radio_climate, int pol, int mode_var, +double pctTime, double pctLoc, double pctConf, double &dbloss, char *strmode, int &errnum) +{ + // pol: 0-Horizontal, 1-Vertical + // TSiteCriteria, RSiteCriteria: + // 0 - random, 1 - careful, 2 - very careful + + // radio_climate: 1-Equatorial, 2-Continental Subtropical, 3-Maritime Tropical, + // 4-Desert, 5-Continental Temperate, 6-Maritime Temperate, Over Land, + // 7-Maritime Temperate, Over Sea + // ModVar: 0 - Single: pctConf is "Time/Situation/Location", pctTime, pctLoc not used + // 1 - Individual: pctTime is "Situation/Location", pctConf is "Confidence", pctLoc not used + // 2 - Mobile: pctTime is "Time/Locations (Reliability)", pctConf is "Confidence", pctLoc not used + // 3 - Broadcast: pctTime is "Time", pctLoc is "Location", pctConf is "Confidence" + // pctTime, pctLoc, pctConf: .01 to .99 + // errnum: 0- No Error. + // 1- Warning: Some parameters are nearly out of range. + // Results should be used with caution. + // 2- Note: Default parameters have been substituted for impossible ones. + // 3- Warning: A combination of parameters is out of range. + // Results are probably invalid. + // Other- Warning: Some parameters are out of range. + // Results are probably invalid. + // NOTE: strmode is not used at this time. + + prop_type prop; + propv_type propv; + propa_type propa; + double zt, zl, zc, xlb; + double fs; + long ivar; + double eps, eno, sgm; + long ipol; + int kst[2]; + + kst[0]=(int)TSiteCriteria; + kst[1]=(int)RSiteCriteria; + zt=qerfi(pctTime/100.0); + zl=qerfi(pctLoc/100.0); + zc=qerfi(pctConf/100.0); + eps=eps_dielect; + sgm=sgm_conductivity; + eno=eno_ns_surfref; + prop.dh=deltaH; + prop.hg[0]=tht_m; + prop.hg[1]=rht_m; + propv.klim=(long)radio_climate; + prop.encc=enc_ncc_clcref; + prop.cch=clutter_height; + prop.cd=clutter_density; + prop.dhd=delta_h_diff; + prop.ens=eno; + prop.kwx=0; + ivar=(long)ModVar; + ipol=(long)pol; + qlrps(frq_mhz, 0.0, eno, ipol, eps, sgm, prop); + qlra(kst, propv.klim, ivar, prop, propv); + + if (propv.lvar<1) + propv.lvar=1; + + lrprop2(dist_km*1000.0, prop, propa); + fs=32.45+20.0*log10(frq_mhz)+20.0*log10(prop.dist/1000.0); + xlb=fs+avar(zt, zl, zc, prop, propv); + dbloss=xlb; + if (prop.kwx==0) + errnum=0; + else + errnum=prop.kwx; +} + + +double ITMAreadBLoss(long ModVar, double deltaH, double tht_m, double rht_m, + double dist_km, int TSiteCriteria, int RSiteCriteria, + double eps_dielect, double sgm_conductivity, double eno_ns_surfref, + double enc_ncc_clcref,double clutter_height,double clutter_density, + double delta_h_diff, double frq_mhz, int radio_climate, int pol, + int mode_var, double pctTime, double pctLoc, double pctConf) +{ + char strmode[200]; + int errnum; + double dbloss; + area(ModVar,deltaH,tht_m,rht_m,dist_km,TSiteCriteria,RSiteCriteria, + eps_dielect,sgm_conductivity,eno_ns_surfref, + enc_ncc_clcref,clutter_height,clutter_density, + delta_h_diff,frq_mhz,radio_climate,pol,mode_var,pctTime, + pctLoc,pctConf,dbloss,strmode,errnum); + return dbloss; +} + +double ITWOMVersion() +{ + return 3.0; +} diff --git a/main.cpp b/main.cpp index 19a3cbc..bbce011 100644 --- a/main.cpp +++ b/main.cpp @@ -1,4 +1,4 @@ -double version=2.23; +double version=2.3; /****************************************************************************\ * Signal Server: Server optimised SPLAT! by Alex Farrant * ****************************************************************************** @@ -22,7 +22,12 @@ double version=2.23; ****************************************************************************** * g++ -Wall -O3 -s -lm -fomit-frame-pointer itm.cpp hata.cpp cost.cpp fspl.cpp main.cpp -o ss * \****************************************************************************/ - +/* +2.3 - Added ITWOM3.0 +2.22 - Fixed LOS not outputting bounds +2.2 - Made .dot output opt in to save some disk space +2.1 - Added dual core support with -haf +*/ #include #include #include @@ -62,7 +67,7 @@ double earthradius, max_range=0.0, forced_erp, dpp, ppd, int min_north=90, max_north=-90, min_west=360, max_west=-1, ippd, mpi, max_elevation=-32768, min_elevation=32768, bzerror, contour_threshold, - pred,pblue,pgreen,ter,multiplier=256,debug=0,loops=64,jgets=0, MAXRAD, hottest=10,csv=0; + pred,pblue,pgreen,ter,multiplier=256,debug=0,loops=64,jgets=0, MAXRAD, hottest=10; unsigned char got_elevation_pattern, got_azimuth_pattern, metric=0, dbm=0; @@ -114,10 +119,16 @@ double elev[ARRAYSIZE+10]; struct site tx_site[2]; +//ITWOM void point_to_point(double elev[], double tht_m, double rht_m, double eps_dielect, double sgm_conductivity, double eno_ns_surfref, double frq_mhz, int radio_climate, int pol, double conf, double rel, double &dbloss, char *strmode, int &errnum); +//ITM +void point_to_point_ITM(double elev[], double tht_m, double rht_m, + double eps_dielect, double sgm_conductivity, double eno_ns_surfref, + double frq_mhz, int radio_climate, int pol, double conf, + double rel, double &dbloss, char *strmode, int &errnum); double HataLinkdB(float f,float h_B, float h_M, float d, int mode); @@ -294,10 +305,7 @@ int PutSignal(double lat, double lon, unsigned char signal) char dotfile[255]; FILE *fd=NULL; snprintf(dotfile,80,"%s.dot%c",tx_site[0].filename,0); - if(csv) - fd=fopen(dotfile,"a"); - - + int x, y, indx; char found; @@ -322,17 +330,10 @@ int PutSignal(double lat, double lon, unsigned char signal) // Write values to file dem[indx].signal[x][y]=signal; - if(signal>0 && csv){ - fprintf(fd,"%.6f,%.6f,%d\n",lat,lon,signal); - } - if(csv) - fclose(fd); return (dem[indx].signal[x][y]); } else - if(csv) - fclose(fd); return 0; } @@ -1787,7 +1788,7 @@ void PlotPropPath(struct site source, struct site destination, unsigned char mas { case 1: // Longley Rice - point_to_point(elev,source.alt*METERS_PER_FOOT, + point_to_point_ITM(elev,source.alt*METERS_PER_FOOT, destination.alt*METERS_PER_FOOT, LR.eps_dielect, LR.sgm_conductivity, LR.eno_ns_surfref, LR.frq_mhz, LR.radio_climate, LR.pol, LR.conf, LR.rel, loss, @@ -1814,9 +1815,17 @@ void PlotPropPath(struct site source, struct site destination, unsigned char mas loss=FsplLinkdB(LR.frq_mhz,dkm); //fprintf(stdout,"MHz: %1f KM: %1f = %1fdB",LR.frq_mhz,dkm,loss); break; + case 8: + // ITWOM 3.0 + point_to_point(elev,source.alt*METERS_PER_FOOT, + destination.alt*METERS_PER_FOOT, LR.eps_dielect, + LR.sgm_conductivity, LR.eno_ns_surfref, LR.frq_mhz, + LR.radio_climate, LR.pol, LR.conf, LR.rel, loss, + strmode, errnum); + break; default: - point_to_point(elev,source.alt*METERS_PER_FOOT, + point_to_point_ITM(elev,source.alt*METERS_PER_FOOT, destination.alt*METERS_PER_FOOT, LR.eps_dielect, LR.sgm_conductivity, LR.eno_ns_surfref, LR.frq_mhz, LR.radio_climate, LR.pol, LR.conf, LR.rel, loss, @@ -4982,11 +4991,10 @@ int main(int argc, char *argv[]) fprintf(stdout," -R Radius (miles/kilometers)\n"); fprintf(stdout," -res Pixels per degree. 300/600/1200(default)/3600 (optional)\n"); fprintf(stdout," -t Terrain background\n"); - fprintf(stdout," -pm Prop model. 1: ITM, 2: LOS, 3-5: Hata, 6: COST231, 7: ITU525\n"); + fprintf(stdout," -pm Prop model. 1: ITM, 2: LOS, 3-5: Hata, 6: COST231, 7: ITU525, 8: ITWOM3.0\n"); fprintf(stdout," -ked Knife edge diffraction (Default for ITM)\n"); fprintf(stdout," -ng Normalise Path Profile graph\n"); fprintf(stdout," -haf Halve 1 or 2 (optional)\n"); - fprintf(stdout," -csv Write CSV file with lat,lon,dbm\n"); fflush(stdout); @@ -5429,12 +5437,7 @@ int main(int argc, char *argv[]) } } - //CSV output - if (strcmp(argv[x],"-csv")==0) - { - z=x+1; - csv=1; - } + } @@ -5498,7 +5501,7 @@ int main(int argc, char *argv[]) fprintf(stdout,"ERROR: Receiver threshold out of range (-200 / +200)"); exit(0); } - if(propmodel>2 && propmodel<7 && LR.frq_mhz < 150){ + if(propmodel>2 && propmodel<8 && LR.frq_mhz < 150){ fprintf(stdout,"ERROR: Frequency too low for Propagation model"); exit(0); } diff --git a/mainHD.cpp b/mainHD.cpp new file mode 100644 index 0000000..5e950f9 --- /dev/null +++ b/mainHD.cpp @@ -0,0 +1,5719 @@ +double version=2.3; +/****************************************************************************\ +* Signal Server: Server optimised SPLAT! by Alex Farrant * +****************************************************************************** +* SPLAT! Project started in 1997 by John A. Magliacane, KD2BD * +* * +****************************************************************************** +* Please consult the SPLAT! documentation for a complete list of * +* individuals who have contributed to this project. * +****************************************************************************** +* * +* This program is free software; you can redistribute it and/or modify it * +* under the terms of the GNU General Public License as published by the * +* Free Software Foundation; either version 2 of the License or any later * +* version. * +* * +* This program is distributed in the hope that it will useful, but WITHOUT * +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * +* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * +* for more details. * +* * +****************************************************************************** +* g++ -Wall -O3 -s -lm -fomit-frame-pointer itm.cpp hata.cpp cost.cpp fspl.cpp main.cpp -o ss * +\****************************************************************************/ +/* +2.3 - Added ITWOM3.0 +2.22 - Fixed LOS not outputting bounds +2.2 - Made .dot output opt in to save some disk space +2.1 - Added dual core support with -haf +*/ +#include +#include +#include +#include +#include +#include + +#define MAXPAGES 9 +#define ARRAYSIZE 14844 +#define IPPD 3600 +#define GAMMA 2.5 + +#ifndef PI +#define PI 3.141592653589793 +#endif + +#ifndef TWOPI +#define TWOPI 6.283185307179586 +#endif + +#ifndef HALFPI +#define HALFPI 1.570796326794896 +#endif + +#define DEG2RAD 1.74532925199e-02 +#define EARTHRADIUS 20902230.97 +#define METERS_PER_MILE 1609.344 +#define METERS_PER_FOOT 0.3048 +#define KM_PER_MILE 1.609344 +#define FOUR_THIRDS 1.3333333333333 + +char string[255], sdf_path[255], udt_file[255], opened=0, gpsav=0, ss_name[16], dashes[80]; + +double earthradius, max_range=0.0, forced_erp, dpp, ppd, + fzone_clearance=0.6, forced_freq, clutter, lat,lon,txh,tercon,terdic, + north,east,south,west,dBm,loss,field_strength; + +int min_north=90, max_north=-90, min_west=360, max_west=-1, ippd, mpi, + max_elevation=-32768, min_elevation=32768, bzerror, contour_threshold, + pred,pblue,pgreen,ter,multiplier=256,debug=0,loops=64,jgets=0, MAXRAD, hottest=10; + +unsigned char got_elevation_pattern, got_azimuth_pattern, metric=0, dbm=0; + + + +struct site { double lat; + double lon; + float alt; + char name[50]; + char filename[255]; + } site; + +struct path { double lat[ARRAYSIZE]; + double lon[ARRAYSIZE]; + double elevation[ARRAYSIZE]; + double distance[ARRAYSIZE]; + int length; + } path; + +struct dem { int min_north; + int max_north; + int min_west; + int max_west; + int max_el; + int min_el; + short data[IPPD][IPPD]; + unsigned char mask[IPPD][IPPD]; + unsigned char signal[IPPD][IPPD]; + } dem[MAXPAGES]; + +struct LR { double eps_dielect; + double sgm_conductivity; + double eno_ns_surfref; + double frq_mhz; + double conf; + double rel; + double erp; + int radio_climate; + int pol; + float antenna_pattern[361][1001]; + } LR; + +struct region { unsigned char color[128][3]; + int level[128]; + int levels; + } region; + +double elev[ARRAYSIZE+10]; + +struct site tx_site[2]; + +//ITWOM +void point_to_point(double elev[], double tht_m, double rht_m, + double eps_dielect, double sgm_conductivity, double eno_ns_surfref, + double frq_mhz, int radio_climate, int pol, double conf, + double rel, double &dbloss, char *strmode, int &errnum); +//ITM +void point_to_point_ITM(double elev[], double tht_m, double rht_m, + double eps_dielect, double sgm_conductivity, double eno_ns_surfref, + double frq_mhz, int radio_climate, int pol, double conf, + double rel, double &dbloss, char *strmode, int &errnum); + +double HataLinkdB(float f,float h_B, float h_M, float d, int mode); + +double CostHataLinkdB(float f,float h_B, float h_M, float d); + +double FsplLinkdB(float f, float d); + +double ked(double freq, double elev[], double rxh, double dkm); + +double arccos(double x, double y) +{ + /* This function implements the arc cosine function, + returning a value between 0 and TWOPI. */ + + double result=0.0; + + if (y>0.0) + result=acos(x/y); + + if (y<0.0) + result=PI+acos(x/y); + + return result; +} + + +int ReduceAngle(double angle) +{ + /* This function normalizes the argument to + an integer angle between 0 and 180 degrees */ + + double temp; + + temp=acos(cos(angle*DEG2RAD)); + + return (int)rint(temp/DEG2RAD); +} + +double LonDiff(double lon1, double lon2) +{ + /* This function returns the short path longitudinal + difference between longitude1 and longitude2 + as an angle between -180.0 and +180.0 degrees. + If lon1 is west of lon2, the result is positive. + If lon1 is east of lon2, the result is negative. */ + + double diff; + + diff=lon1-lon2; + + if (diff<=-180.0) + diff+=360.0; + + if (diff>=180.0) + diff-=360.0; + + return diff; +} + +char *dec2dms(double decimal) +{ + /* Converts decimal degrees to degrees, minutes, seconds, + (DMS) and returns the result as a character string. */ + + char sign; + int degrees, minutes, seconds; + double a, b, c, d; + + if (decimal<0.0) + { + decimal=-decimal; + sign=-1; + } + + else + sign=1; + + a=floor(decimal); + b=60.0*(decimal-a); + c=floor(b); + d=60.0*(b-c); + + degrees=(int)a; + minutes=(int)c; + seconds=(int)d; + + if (seconds<0) + seconds=0; + + if (seconds>59) + seconds=59; + + string[0]=0; + snprintf(string,250,"%d%c %d\' %d\"", degrees*sign, 176, minutes, seconds); + return (string); +} + +int PutMask(double lat, double lon, int value) +{ + /* Lines, text, markings, and coverage areas are stored in a + mask that is combined with topology data when topographic + maps are generated by ss. This function sets and resets + bits in the mask based on the latitude and longitude of the + area pointed to. */ + + int x, y, indx; + char found; + + for (indx=0, found=0; indx=0 && x<=mpi && y>=0 && y<=mpi) + found=1; + else + indx++; + } + + if (found) + { + dem[indx].mask[x][y]=value; + return ((int)dem[indx].mask[x][y]); + } + + else + return -1; +} + +int OrMask(double lat, double lon, int value) +{ + /* Lines, text, markings, and coverage areas are stored in a + mask that is combined with topology data when topographic + maps are generated by ss. This function sets bits in + the mask based on the latitude and longitude of the area + pointed to. */ + + int x, y, indx; + char found; + + for (indx=0, found=0; indx=0 && x<=mpi && y>=0 && y<=mpi) + found=1; + else + indx++; + } + + if (found) + { + dem[indx].mask[x][y]|=value; + return ((int)dem[indx].mask[x][y]); + } + + else + return -1; +} + +int GetMask(double lat, double lon) +{ + /* This function returns the mask bits based on the latitude + and longitude given. */ + + return (OrMask(lat,lon,0)); +} + +int PutSignal(double lat, double lon, unsigned char signal) +{ + /* This function writes a signal level (0-255) + at the specified location for later recall. */ + char dotfile[255]; + FILE *fd=NULL; + snprintf(dotfile,80,"%s.dot%c",tx_site[0].filename,0); + + int x, y, indx; + char found; + + if(signal > hottest) + hottest=signal; + + //lookup x/y for this co-ord + for (indx=0, found=0; indx=0 && x<=mpi && y>=0 && y<=mpi) + found=1; + else + indx++; + } + + + if (found) + { + // Write values to file + dem[indx].signal[x][y]=signal; + + return (dem[indx].signal[x][y]); + } + + else + return 0; +} + +unsigned char GetSignal(double lat, double lon) +{ + /* This function reads the signal level (0-255) at the + specified location that was previously written by the + complimentary PutSignal() function. */ + + int x, y, indx; + char found; + + for (indx=0, found=0; indx=0 && x<=mpi && y>=0 && y<=mpi) + found=1; + else + indx++; + } + + if (found) + return (dem[indx].signal[x][y]); + else + return 0; +} + +double GetElevation(struct site location) +{ + /* This function returns the elevation (in feet) of any location + represented by the digital elevation model data in memory. + Function returns -5000.0 for locations not found in memory. */ + + char found; + int x, y, indx; + double elevation; + + for (indx=0, found=0; indx=0 && x<=mpi && y>=0 && y<=mpi) + found=1; + else + indx++; + } + + if (found) + elevation=3.28084*dem[indx].data[x][y]; + else + elevation=-5000.0; + + return elevation; +} + +int AddElevation(double lat, double lon, double height) +{ + /* This function adds a user-defined terrain feature + (in meters AGL) to the digital elevation model data + in memory. Does nothing and returns 0 for locations + not found in memory. */ + + char found; + int x, y, indx; + + + for (indx=0, found=0; indx=0 && x<=mpi && y>=0 && y<=mpi) + found=1; + else + indx++; + } + + if (found) + dem[indx].data[x][y]+=(short)rint(height); + + return found; +} + +double Distance(struct site site1, struct site site2) +{ + /* This function returns the great circle distance + in miles between any two site locations. */ + + double lat1, lon1, lat2, lon2, distance; + + lat1=site1.lat*DEG2RAD; + lon1=site1.lon*DEG2RAD; + lat2=site2.lat*DEG2RAD; + lon2=site2.lon*DEG2RAD; + + distance=3959.0*acos(sin(lat1)*sin(lat2)+cos(lat1)*cos(lat2)*cos((lon1)-(lon2))); + + return distance; +} + +double Azimuth(struct site source, struct site destination) +{ + /* This function returns the azimuth (in degrees) to the + destination as seen from the location of the source. */ + + double dest_lat, dest_lon, src_lat, src_lon, + beta, azimuth, diff, num, den, fraction; + + dest_lat=destination.lat*DEG2RAD; + dest_lon=destination.lon*DEG2RAD; + + src_lat=source.lat*DEG2RAD; + src_lon=source.lon*DEG2RAD; + + /* Calculate Surface Distance */ + + beta=acos(sin(src_lat)*sin(dest_lat)+cos(src_lat)*cos(dest_lat)*cos(src_lon-dest_lon)); + + /* Calculate Azimuth */ + + num=sin(dest_lat)-(sin(src_lat)*cos(beta)); + den=cos(src_lat)*sin(beta); + fraction=num/den; + + /* Trap potential problems in acos() due to rounding */ + + if (fraction>=1.0) + fraction=1.0; + + if (fraction<=-1.0) + fraction=-1.0; + + /* Calculate azimuth */ + + azimuth=acos(fraction); + + /* Reference it to True North */ + + diff=dest_lon-src_lon; + + if (diff<=-PI) + diff+=TWOPI; + + if (diff>=PI) + diff-=TWOPI; + + if (diff>0.0) + azimuth=TWOPI-azimuth; + + return (azimuth/DEG2RAD); +} + +double ElevationAngle(struct site source, struct site destination) +{ + /* This function returns the angle of elevation (in degrees) + of the destination as seen from the source location. + A positive result represents an angle of elevation (uptilt), + while a negative result represents an angle of depression + (downtilt), as referenced to a normal to the center of + the earth. */ + + register double a, b, dx; + + a=GetElevation(destination)+destination.alt+earthradius; + b=GetElevation(source)+source.alt+earthradius; + + dx=5280.0*Distance(source,destination); + + /* Apply the Law of Cosines */ + + return ((180.0*(acos(((b*b)+(dx*dx)-(a*a))/(2.0*b*dx)))/PI)-90.0); +} + +void ReadPath(struct site source, struct site destination) +{ + /* This function generates a sequence of latitude and + longitude positions between source and destination + locations along a great circle path, and stores + elevation and distance information for points + along that path in the "path" structure. */ + + int c; + double azimuth, distance, lat1, lon1, beta, den, num, + lat2, lon2, total_distance, dx, dy, path_length, + miles_per_sample, samples_per_radian=68755.0; + struct site tempsite; + + lat1=source.lat*DEG2RAD; + lon1=source.lon*DEG2RAD; + + lat2=destination.lat*DEG2RAD; + lon2=destination.lon*DEG2RAD; + + samples_per_radian=ppd*57.295833; + + azimuth=Azimuth(source,destination)*DEG2RAD; + + total_distance=Distance(source,destination); + + if (total_distance>(30.0/ppd)) + { + dx=samples_per_radian*acos(cos(lon1-lon2)); + dy=samples_per_radian*acos(cos(lat1-lat2)); + + path_length=sqrt((dx*dx)+(dy*dy)); + + miles_per_sample=total_distance/path_length; + } + + else + { + c=0; + dx=0.0; + dy=0.0; + path_length=0.0; + miles_per_sample=0.0; + total_distance=0.0; + + lat1=lat1/DEG2RAD; + lon1=lon1/DEG2RAD; + + path.lat[c]=lat1; + path.lon[c]=lon1; + path.elevation[c]=GetElevation(source); + path.distance[c]=0.0; + } + + for (distance=0.0, c=0; (total_distance!=0.0 && distance<=total_distance && cHALFPI-lat1)) + lon2=lon1+PI; + + else if (azimuth==HALFPI && (beta>HALFPI+lat1)) + lon2=lon1+PI; + + else if (fabs(num/den)>1.0) + lon2=lon1; + + else + { + if ((PI-azimuth)>=0.0) + lon2=lon1-arccos(num,den); + else + lon2=lon1+arccos(num,den); + } + + while (lon2<0.0) + lon2+=TWOPI; + + while (lon2>TWOPI) + lon2-=TWOPI; + + lat2=lat2/DEG2RAD; + lon2=lon2/DEG2RAD; + + path.lat[c]=lat2; + path.lon[c]=lon2; + tempsite.lat=lat2; + tempsite.lon=lon2; + path.elevation[c]=GetElevation(tempsite); + path.distance[c]=distance; + } + + /* Make sure exact destination point is recorded at path.length-1 */ + + if (c=cos_test_angle) + { + block=1; + first_obstruction_angle=((acos(cos_test_angle))/DEG2RAD)-90.0; + } + } + + if (block) + elevation=first_obstruction_angle; + + else + elevation=((acos(cos_xmtr_angle))/DEG2RAD)-90.0; + + path=temp; + + return elevation; +} + +double AverageTerrain(struct site source, double azimuthx, double start_distance, double end_distance) +{ + /* This function returns the average terrain calculated in + the direction of "azimuth" (degrees) between "start_distance" + and "end_distance" (miles) from the source location. If + the terrain is all water (non-critical error), -5000.0 is + returned. If not enough SDF data has been loaded into + memory to complete the survey (critical error), then + -9999.0 is returned. */ + + int c, samples, endpoint; + double beta, lat1, lon1, lat2, lon2, num, den, azimuth, terrain=0.0; + struct site destination; + + lat1=source.lat*DEG2RAD; + lon1=source.lon*DEG2RAD; + + /* Generate a path of elevations between the source + location and the remote location provided. */ + + beta=end_distance/3959.0; + + azimuth=DEG2RAD*azimuthx; + + lat2=asin(sin(lat1)*cos(beta)+cos(azimuth)*sin(beta)*cos(lat1)); + num=cos(beta)-(sin(lat1)*sin(lat2)); + den=cos(lat1)*cos(lat2); + + if (azimuth==0.0 && (beta>HALFPI-lat1)) + lon2=lon1+PI; + + else if (azimuth==HALFPI && (beta>HALFPI+lat1)) + lon2=lon1+PI; + + else if (fabs(num/den)>1.0) + lon2=lon1; + + else + { + if ((PI-azimuth)>=0.0) + lon2=lon1-arccos(num,den); + else + lon2=lon1+arccos(num,den); + } + + while (lon2<0.0) + lon2+=TWOPI; + + while (lon2>TWOPI) + lon2-=TWOPI; + + lat2=lat2/DEG2RAD; + lon2=lon2/DEG2RAD; + + destination.lat=lat2; + destination.lon=lon2; + + /* If SDF data is missing for the endpoint of + the radial, then the average terrain cannot + be accurately calculated. Return -9999.0 */ + + if (GetElevation(destination)<-4999.0) + return (-9999.0); + else + { + ReadPath(source,destination); + + endpoint=path.length; + + /* Shrink the length of the radial if the + outermost portion is not over U.S. land. */ + + for (c=endpoint-1; c>=0 && path.elevation[c]==0.0; c--); + + endpoint=c+1; + + for (c=0, samples=0; c=start_distance) + { + terrain+=(path.elevation[c]==0.0?path.elevation[c]:path.elevation[c]+clutter); + samples++; + } + } + + if (samples==0) + terrain=-5000.0; /* No land */ + else + terrain=(terrain/(double)samples); + + return terrain; + } +} + +double haat(struct site antenna) +{ + /* This function returns the antenna's Height Above Average + Terrain (HAAT) based on FCC Part 73.313(d). If a critical + error occurs, such as a lack of SDF data to complete the + survey, -5000.0 is returned. */ + + int azi, c; + char error=0; + double terrain, avg_terrain, haat, sum=0.0; + + /* Calculate the average terrain between 2 and 10 miles + from the antenna site at azimuths of 0, 45, 90, 135, + 180, 225, 270, and 315 degrees. */ + + for (c=0, azi=0; azi<=315 && error==0; azi+=45) + { + terrain=AverageTerrain(antenna, (double)azi, 2.0, 10.0); + + if (terrain<-9998.0) /* SDF data is missing */ + error=1; + + if (terrain>-4999.0) /* It's land, not water */ + { + sum+=terrain; /* Sum of averages */ + c++; + } + } + + if (error) + return -5000.0; + else + { + avg_terrain=(sum/(double)c); + haat=(antenna.alt+GetElevation(antenna))-avg_terrain; + return haat; + } +} +double ReadBearing(char *input) +{ + /* This function takes numeric input in the form of a character + string, and returns an equivalent bearing in degrees as a + decimal number (double). The input may either be expressed + in decimal format (40.139722) or degree, minute, second + format (40 08 23). This function also safely handles + extra spaces found either leading, trailing, or + embedded within the numbers expressed in the + input string. Decimal seconds are permitted. */ + + double seconds, bearing=0.0; + char string[20]; + int a, b, length, degrees, minutes; + + /* Copy "input" to "string", and ignore any extra + spaces that might be present in the process. */ + + string[0]=0; + length=strlen(input); + + for (a=0, b=0; a360.0 || bearing<-360.0) + bearing=0.0; + + return bearing; +} + +void LoadPAT(char *filename) +{ + /* This function reads and processes antenna pattern (.az + and .el) files that correspond in name to previously + loaded ss .lrp files. */ + + int a, b, w, x, y, z, last_index, next_index, span; + char string[255], azfile[255], elfile[255], *pointer=NULL, *s=NULL; + float az, xx, elevation, amplitude, rotation, valid1, valid2, + delta, azimuth[361], azimuth_pattern[361], el_pattern[10001], + elevation_pattern[361][1001], slant_angle[361], tilt, + mechanical_tilt=0.0, tilt_azimuth, tilt_increment, sum; + FILE *fd=NULL; + unsigned char read_count[10001]; + + for (x=0; filename[x]!='.' && filename[x]!=0 && x<250; x++) + { + azfile[x]=filename[x]; + elfile[x]=filename[x]; + } + + azfile[x]='.'; + azfile[x+1]='a'; + azfile[x+2]='z'; + azfile[x+3]=0; + + elfile[x]='.'; + elfile[x+1]='e'; + elfile[x+2]='l'; + elfile[x+3]=0; + + rotation=0.0; + + got_azimuth_pattern=0; + got_elevation_pattern=0; + + /* Load .az antenna pattern file */ + + fd=fopen(azfile,"r"); + + if (fd!=NULL) + { + /* Clear azimuth pattern array */ + + for (x=0; x<=360; x++) + { + azimuth[x]=0.0; + read_count[x]=0; + } + + + /* Read azimuth pattern rotation + in degrees measured clockwise + from true North. */ + + s=fgets(string,254,fd); + pointer=strchr(string,';'); + + if (pointer!=NULL) + *pointer=0; + + sscanf(string,"%f",&rotation); + + + /* Read azimuth (degrees) and corresponding + normalized field radiation pattern amplitude + (0.0 to 1.0) until EOF is reached. */ + + s=fgets(string,254,fd); + pointer=strchr(string,';'); + + if (pointer!=NULL) + *pointer=0; + + sscanf(string,"%f %f",&az, &litude); + + do + { + x=(int)rintf(az); + + if (x>=0 && x<=360 && fd!=NULL) + { + azimuth[x]+=amplitude; + read_count[x]++; + } + + s=fgets(string,254,fd); + pointer=strchr(string,';'); + + if (pointer!=NULL) + *pointer=0; + + sscanf(string,"%f %f",&az, &litude); + + } while (feof(fd)==0); + + fclose(fd); + + + /* Handle 0=360 degree ambiguity */ + + if ((read_count[0]==0) && (read_count[360]!=0)) + { + read_count[0]=read_count[360]; + azimuth[0]=azimuth[360]; + } + + if ((read_count[0]!=0) && (read_count[360]==0)) + { + read_count[360]=read_count[0]; + azimuth[360]=azimuth[0]; + } + + /* Average pattern values in case more than + one was read for each degree of azimuth. */ + + for (x=0; x<=360; x++) + { + if (read_count[x]>1) + azimuth[x]/=(float)read_count[x]; + } + + /* Interpolate missing azimuths + to completely fill the array */ + + last_index=-1; + next_index=-1; + + for (x=0; x<=360; x++) + { + if (read_count[x]!=0) + { + if (last_index==-1) + last_index=x; + else + next_index=x; + } + + if (last_index!=-1 && next_index!=-1) + { + valid1=azimuth[last_index]; + valid2=azimuth[next_index]; + + span=next_index-last_index; + delta=(valid2-valid1)/(float)span; + + for (y=last_index+1; y=360) + y-=360; + + azimuth_pattern[y]=azimuth[x]; + } + + azimuth_pattern[360]=azimuth_pattern[0]; + + got_azimuth_pattern=255; + } + + /* Read and process .el file */ + + fd=fopen(elfile,"r"); + + if (fd!=NULL) + { + for (x=0; x<=10000; x++) + { + el_pattern[x]=0.0; + read_count[x]=0; + } + + /* Read mechanical tilt (degrees) and + tilt azimuth in degrees measured + clockwise from true North. */ + + s=fgets(string,254,fd); + pointer=strchr(string,';'); + + if (pointer!=NULL) + *pointer=0; + + sscanf(string,"%f %f",&mechanical_tilt, &tilt_azimuth); + + /* Read elevation (degrees) and corresponding + normalized field radiation pattern amplitude + (0.0 to 1.0) until EOF is reached. */ + + s=fgets(string,254,fd); + pointer=strchr(string,';'); + + if (pointer!=NULL) + *pointer=0; + + sscanf(string,"%f %f", &elevation, &litude); + + while (feof(fd)==0) + { + /* Read in normalized radiated field values + for every 0.01 degrees of elevation between + -10.0 and +90.0 degrees */ + + x=(int)rintf(100.0*(elevation+10.0)); + + if (x>=0 && x<=10000) + { + el_pattern[x]+=amplitude; + read_count[x]++; + } + + s=fgets(string,254,fd); + pointer=strchr(string,';'); + + if (pointer!=NULL) + *pointer=0; + + sscanf(string,"%f %f", &elevation, &litude); + } + + fclose(fd); + + /* Average the field values in case more than + one was read for each 0.01 degrees of elevation. */ + + for (x=0; x<=10000; x++) + { + if (read_count[x]>1) + el_pattern[x]/=(float)read_count[x]; + } + + /* Interpolate between missing elevations (if + any) to completely fill the array and provide + radiated field values for every 0.01 degrees of + elevation. */ + + last_index=-1; + next_index=-1; + + for (x=0; x<=10000; x++) + { + if (read_count[x]!=0) + { + if (last_index==-1) + last_index=x; + else + next_index=x; + } + + if (last_index!=-1 && next_index!=-1) + { + valid1=el_pattern[last_index]; + valid2=el_pattern[next_index]; + + span=next_index-last_index; + delta=(valid2-valid1)/(float)span; + + for (y=last_index+1; y=360) + y-=360; + + while (y<0) + y+=360; + + if (x<=180) + slant_angle[y]=-(tilt_increment*(90.0-xx)); + + if (x>180) + slant_angle[y]=-(tilt_increment*(xx-270.0)); + } + } + + slant_angle[360]=slant_angle[0]; /* 360 degree wrap-around */ + + for (w=0; w<=360; w++) + { + tilt=slant_angle[w]; + + /** Convert tilt angle to + an array index offset **/ + + y=(int)rintf(100.0*tilt); + + /* Copy shifted el_pattern[10001] field + values into elevation_pattern[361][1001] + at the corresponding azimuth, downsampling + (averaging) along the way in chunks of 10. */ + + for (x=y, z=0; z<=1000; x+=10, z++) + { + for (sum=0.0, a=0; a<10; a++) + { + b=a+x; + + if (b>=0 && b<=10000) + sum+=el_pattern[b]; + if (b<0) + sum+=el_pattern[0]; + if (b>10000) + sum+=el_pattern[10000]; + } + + elevation_pattern[w][z]=sum/10.0; + } + } + + got_elevation_pattern=255; + } + + for (x=0; x<=360; x++) + { + for (y=0; y<=1000; y++) + { + if (got_elevation_pattern) + elevation=elevation_pattern[x][y]; + else + elevation=1.0; + + if (got_azimuth_pattern) + az=azimuth_pattern[x]; + else + az=1.0; + + LR.antenna_pattern[x][y]=az*elevation; + } + } +} + +int LoadSDF_SDF(char *name, int winfiles) +{ + /* This function reads uncompressed ss Data Files (.sdf) + containing digital elevation model data into memory. + Elevation data, maximum and minimum elevations, and + quadrangle limits are stored in the first available + dem[] structure. */ + + int x, y, data, indx, minlat, minlon, maxlat, maxlon,j; + char found, free_page=0, line[20], jline[20], sdf_file[255], + path_plus_name[255], *s=NULL,*junk=NULL; + + + FILE *fd; + + for (x=0; name[x]!='.' && name[x]!=0 && x<250; x++) + sdf_file[x]=name[x]; + + sdf_file[x]=0; + + /* Parse filename for minimum latitude and longitude values */ + if(winfiles==1){ + sscanf(sdf_file,"%d=%d=%d=%d",&minlat,&maxlat,&minlon,&maxlon); + }else{ + sscanf(sdf_file,"%d:%d:%d:%d",&minlat,&maxlat,&minlon,&maxlon); + } + + sdf_file[x]='.'; + sdf_file[x+1]='s'; + sdf_file[x+2]='d'; + sdf_file[x+3]='f'; + sdf_file[x+4]=0; + + /* Is it already in memory? */ + + + for (indx=0, found=0; indx=0 && indxdem[indx].max_el) + dem[indx].max_el=data; + + if (datamax_elevation) + max_elevation=dem[indx].max_el; + + if (max_north==-90) + max_north=dem[indx].max_north; + + else if (dem[indx].max_north>max_north) + max_north=dem[indx].max_north; + + if (min_north==90) + min_north=dem[indx].min_north; + + else if (dem[indx].min_northmax_west) + max_west=dem[indx].max_west; + } + + else + { + if (dem[indx].max_westmin_west) + min_west=dem[indx].min_west; + } + } + + + return 1; + } + + else + return -1; + } + + else + return 0; +} +char LoadSDF(char *name, int winfiles) +{ + /* This function loads the requested SDF file from the filesystem. + It first tries to invoke the LoadSDF_SDF() function to load an + uncompressed SDF file (since uncompressed files load slightly + faster). If that attempt fails, then it tries to load a + compressed SDF file by invoking the LoadSDF_BZ() function. + If that fails, then we can assume that no elevation data + exists for the region requested, and that the region + requested must be entirely over water. */ + + int x, y, indx, minlat, minlon, maxlat, maxlon; + char found, free_page=0; + int return_value=-1; + + return_value=LoadSDF_SDF(name, winfiles); + + + /* If neither format can be found, then assume the area is water. */ + + if (return_value==0 || return_value==-1) + { + + + + if(winfiles==1){ + sscanf(name,"%d=%d=%d=%d",&minlat,&maxlat,&minlon,&maxlon); + }else{ + sscanf(name,"%d:%d:%d:%d",&minlat,&maxlat,&minlon,&maxlon); + } + /* Is it already in memory? */ + + for (indx=0, found=0; indx=0 && indx0) + dem[indx].min_el=0; + } + + if (dem[indx].min_elmax_elevation) + max_elevation=dem[indx].max_el; + + if (max_north==-90) + max_north=dem[indx].max_north; + + else if (dem[indx].max_north>max_north) + max_north=dem[indx].max_north; + + if (min_north==90) + min_north=dem[indx].min_north; + + else if (dem[indx].min_northmax_west) + max_west=dem[indx].max_west; + } + + else + { + if (dem[indx].max_westmin_west) + min_west=dem[indx].min_west; + } + } + + return_value=1; + } + } + + return return_value; +} + +void PlotLOSPath(struct site source, struct site destination, char mask_value, FILE *fd) +{ + /* This function analyzes the path between the source and + destination locations. It determines which points along + the path have line-of-sight visibility to the source. + Points along with path having line-of-sight visibility + to the source at an AGL altitude equal to that of the + destination location are stored by setting bit 1 in the + mask[][] array, which are displayed in green when PPM + maps are later generated by ss. */ + + char block; + int x, y; + register double cos_xmtr_angle, cos_test_angle, test_alt; + double distance, rx_alt, tx_alt; + + ReadPath(source,destination); + + for (y=0; y=0 && block==0; x--) + { + distance=5280.0*(path.distance[y]-path.distance[x]); + test_alt=earthradius+(path.elevation[x]==0.0?path.elevation[x]:path.elevation[x]+clutter); + + cos_test_angle=((rx_alt*rx_alt)+(distance*distance)-(test_alt*test_alt))/(2.0*rx_alt*distance); + + /* Compare these two angles to determine if + an obstruction exists. Since we're comparing + the cosines of these angles rather than + the angles themselves, the following "if" + statement is reversed from what it would + be if the actual angles were compared. */ + + if (cos_xmtr_angle>=cos_test_angle) + block=1; + } + + if (block==0) + OrMask(path.lat[y],path.lon[y],mask_value); + } + } +} + +void PlotPropPath(struct site source, struct site destination, unsigned char mask_value, FILE *fd, int propmodel, int knifeedge) +{ + + int x, y, ifs, ofs, errnum; + char block=0, strmode[100]; + double loss, azimuth, pattern=0.0, + xmtr_alt, dest_alt, xmtr_alt2, dest_alt2, + cos_rcvr_angle, cos_test_angle=0.0, test_alt, + elevation=0.0, distance=0.0, radius=0.0, four_thirds_earth, + field_strength=0.0, rxp, dBm, txelev, dkm, diffloss; + struct site temp; + + radius = Distance(source,destination); + + ReadPath(source,destination); + + four_thirds_earth=FOUR_THIRDS*EARTHRADIUS; + + + for (x=1; x1.0) + cos_rcvr_angle=1.0; + + if (cos_rcvr_angle<-1.0) + cos_rcvr_angle=-1.0; + + if (got_elevation_pattern || fd!=NULL) + { + /* Determine the elevation angle to the first obstruction + along the path IF elevation pattern data is available + or an output (.ano) file has been designated. */ + + for (x=2, block=0; (x1.0) + cos_test_angle=1.0; + + if (cos_test_angle<-1.0) + cos_test_angle=-1.0; + + /* Compare these two angles to determine if + an obstruction exists. Since we're comparing + the cosines of these angles rather than + the angles themselves, the sense of the + following "if" statement is reversed from + what it would be if the angles themselves + were compared. */ + + if (cos_rcvr_angle>=cos_test_angle) + block=1; + } + + if (block) + elevation=((acos(cos_test_angle))/DEG2RAD)-90.0; + else + elevation=((acos(cos_rcvr_angle))/DEG2RAD)-90.0; + } + + /* Determine attenuation for each point along the + path using a prop model starting at y=2 (number_of_points = 1), the + shortest distance terrain can play a role in + path loss. */ + + elev[0]=y-1; /* (number of points - 1) */ + + /* Distance between elevation samples */ + + elev[1]=METERS_PER_MILE*(path.distance[y]-path.distance[y-1]); + + /* + elev[2]=path.elevation[0]*METERS_PER_FOOT; + elev[path.length+1]=path.elevation[path.length-1]*METERS_PER_FOOT; + */ + if(path.elevation[y] < 1){ + path.elevation[y]=1; + } + + dkm=(elev[1]*elev[0])/1000; // km + + switch (propmodel) + { + case 1: + // Longley Rice + point_to_point_ITM(elev,source.alt*METERS_PER_FOOT, + destination.alt*METERS_PER_FOOT, LR.eps_dielect, + LR.sgm_conductivity, LR.eno_ns_surfref, LR.frq_mhz, + LR.radio_climate, LR.pol, LR.conf, LR.rel, loss, + strmode, errnum); + break; + case 3: + //HATA urban + loss=HataLinkdB(LR.frq_mhz,txelev,path.elevation[y]+(destination.alt*METERS_PER_FOOT),dkm, 1); + break; + case 4: + //HATA suburban + loss=HataLinkdB(LR.frq_mhz,txelev,path.elevation[y]+(destination.alt*METERS_PER_FOOT),dkm, 2); + break; + case 5: + //HATA open + loss=HataLinkdB(LR.frq_mhz,txelev,path.elevation[y]+(destination.alt*METERS_PER_FOOT),dkm, 3); + break; + case 6: + // COST231-HATA + loss=CostHataLinkdB(LR.frq_mhz,txelev,path.elevation[y]+(destination.alt*METERS_PER_FOOT),dkm); + break; + case 7: + // ITU-R P.525 Free space path loss + loss=FsplLinkdB(LR.frq_mhz,dkm); + //fprintf(stdout,"MHz: %1f KM: %1f = %1fdB",LR.frq_mhz,dkm,loss); + break; + case 8: + // ITWOM 3.0 + point_to_point(elev,source.alt*METERS_PER_FOOT, + destination.alt*METERS_PER_FOOT, LR.eps_dielect, + LR.sgm_conductivity, LR.eno_ns_surfref, LR.frq_mhz, + LR.radio_climate, LR.pol, LR.conf, LR.rel, loss, + strmode, errnum); + break; + + default: + point_to_point_ITM(elev,source.alt*METERS_PER_FOOT, + destination.alt*METERS_PER_FOOT, LR.eps_dielect, + LR.sgm_conductivity, LR.eno_ns_surfref, LR.frq_mhz, + LR.radio_climate, LR.pol, LR.conf, LR.rel, loss, + strmode, errnum); + + } + + + if(knifeedge==1){ + diffloss = ked(LR.frq_mhz,elev,destination.alt*METERS_PER_FOOT,dkm); + loss+=(diffloss); // ;) + } + + + + + //Key stage. Link dB for p2p is returned as 'loss'. + + temp.lat=path.lat[y]; + temp.lon=path.lon[y]; + + azimuth=(Azimuth(source,temp)); + + if (fd!=NULL) + fprintf(fd,"%.7f, %.7f, %.3f, %.3f, ",path.lat[y], path.lon[y], azimuth, elevation); + + /* If ERP==0, write path loss to alphanumeric + output file. Otherwise, write field strength + or received power level (below), as appropriate. */ + + if (fd!=NULL && LR.erp==0.0) + fprintf(fd,"%.2f",loss); + + /* Integrate the antenna's radiation + pattern into the overall path loss. */ + + x=(int)rint(10.0*(10.0-elevation)); + + if (x>=0 && x<=1000) + { + azimuth=rint(azimuth); + + pattern=(double)LR.antenna_pattern[(int)azimuth][x]; + + if (pattern!=0.0) + { + pattern=20.0*log10(pattern); + loss-=pattern; + } + } + + if (LR.erp!=0.0) + { + if (dbm) + { + /* dBm is based on EIRP (ERP + 2.14) */ + + rxp=LR.erp/(pow(10.0,(loss-2.14)/10.0)); + + dBm=10.0*(log10(rxp*1000.0)); + + if (fd!=NULL) + fprintf(fd,"%.3f",dBm); + + /* Scale roughly between 0 and 255 */ + + ifs=200+(int)rint(dBm); + + if (ifs<0) + ifs=0; + + if (ifs>255) + ifs=255; + + ofs=GetSignal(path.lat[y],path.lon[y]); + + if (ofs>ifs) + ifs=ofs; + + + PutSignal(path.lat[y],path.lon[y],(unsigned char)ifs); + + } + + else + { + field_strength=(139.4+(20.0*log10(LR.frq_mhz))-loss)+(10.0*log10(LR.erp/1000.0)); + + ifs=100+(int)rint(field_strength); + + if (ifs<0) + ifs=0; + + if (ifs>255) + ifs=255; + + ofs=GetSignal(path.lat[y],path.lon[y]); + + if (ofs>ifs) + ifs=ofs; + + PutSignal(path.lat[y],path.lon[y],(unsigned char)ifs); + + if (fd!=NULL) + fprintf(fd,"%.3f",field_strength); + } + } + + else + { + if (loss>255) + ifs=255; + else + ifs=(int)rint(loss); + + ofs=GetSignal(path.lat[y],path.lon[y]); + + if (ofs=360.0) + lon-=360.0; + + edge.lat=max_north; + edge.lon=lon; + edge.alt=altitude; + + PlotLOSPath(source,edge,mask_value,fd); + } + + + + z=(int)(th*(double)(max_north-min_north)); + + for (lat=maxnorth, x=0, y=0; lat>=(double)min_north; y++, lat=maxnorth-(dpp*(double)y)) + { + edge.lat=lat; + edge.lon=min_west; + edge.alt=altitude; + + PlotLOSPath(source,edge,mask_value,fd); + + } + + + + z=(int)(th*ReduceAngle(max_west-min_west)); + + for (lon=minwest, x=0, y=0; (LonDiff(lon,(double)max_west)<=0.0); y++, lon=minwest+(dpp*(double)y)) + { + if (lon>=360.0) + lon-=360.0; + + edge.lat=min_north; + edge.lon=lon; + edge.alt=altitude; + + PlotLOSPath(source,edge,mask_value,fd); + + } + + + z=(int)(th*(double)(max_north-min_north)); + + for (lat=(double)min_north, x=0, y=0; lat<(double)max_north; y++, lat=(double)min_north+(dpp*(double)y)) + { + edge.lat=lat; + edge.lon=max_west; + edge.alt=altitude; + + PlotLOSPath(source,edge,mask_value,fd); + + + } + + + switch (mask_value) + { + case 1: + mask_value=8; + break; + + case 8: + mask_value=16; + break; + + case 16: + mask_value=32; + } +} + +void PlotPropagation(struct site source, double altitude, char *plo_filename, int propmodel, int knifeedge, int haf) +{ + int y, z, count; + struct site edge; + double lat, lon, minwest, maxnorth, th; + unsigned char x; + static unsigned char mask_value=1; + FILE *fd=NULL; + + minwest=dpp+(double)min_west; + maxnorth=(double)max_north-dpp; + + count=0; + + + if (LR.erp==0.0 && debug) + fprintf(stdout,"path loss"); + else + { + if(debug){ + if (dbm) + fprintf(stdout,"signal power level"); + else + fprintf(stdout,"field strength"); + } + } + if (debug){ + fprintf(stdout," contours of \"%s\"\nout to a radius of %.2f %s with Rx antenna(s) at %.2f %s AGL\n",source.name,metric?max_range*KM_PER_MILE:max_range,metric?"kilometers":"miles",metric?altitude*METERS_PER_FOOT:altitude,metric?"meters":"feet"); + } + + if (clutter>0.0 && debug) + fprintf(stdout,"\nand %.2f %s of ground clutter",metric?clutter*METERS_PER_FOOT:clutter,metric?"meters":"feet"); + + if(debug){ + fprintf(stdout,"...\n\n 0%c to 25%c ",37,37); + fflush(stdout); + } + + if (plo_filename[0]!=0) + fd=fopen(plo_filename,"wb"); + + if (fd!=NULL) + { + fprintf(fd,"%d, %d\t; max_west, min_west\n%d, %d\t; max_north, min_north\n",max_west, min_west, max_north, min_north); + } + + th=ppd/loops; + + // Four sections start here + + //S1 + if(haf==0 || haf==1){ + z=(int)(th*ReduceAngle(max_west-min_west)); + + for (lon=minwest, x=0, y=0; (LonDiff(lon,(double)max_west)<=0.0); y++, lon=minwest+(dpp*(double)y)) + { + if (lon>=360.0) + lon-=360.0; + + edge.lat=max_north; + edge.lon=lon; + edge.alt=altitude; + + PlotPropPath(source,edge,mask_value,fd,propmodel,knifeedge); + count++; + + if (count==z) + { + count=0; + + if (x==3) + x=0; + else + x++; + } + } + + } + + //S2 + if(haf==0 || haf==1){ + count=0; + if(debug){ + fprintf(stdout,"\n25%c to 50%c ",37,37); + fflush(stdout); + } + + z=(int)(th*(double)(max_north-min_north)); + + for (lat=maxnorth, x=0, y=0; lat>=(double)min_north; y++, lat=maxnorth-(dpp*(double)y)) + { + edge.lat=lat; + edge.lon=min_west; + edge.alt=altitude; + + PlotPropPath(source,edge,mask_value,fd,propmodel,knifeedge); + count++; + + if (count==z) + { + //fprintf(stdout,"%c",symbol[x]); + //fflush(stdout); + count=0; + + if (x==3) + x=0; + else + x++; + } + } + + } + //S3 + if(haf==0 || haf==2){ + count=0; + if(debug){ + fprintf(stdout,"\n50%c to 75%c ",37,37); + fflush(stdout); + } + + z=(int)(th*ReduceAngle(max_west-min_west)); + + for (lon=minwest, x=0, y=0; (LonDiff(lon,(double)max_west)<=0.0); y++, lon=minwest+(dpp*(double)y)) + { + if (lon>=360.0) + lon-=360.0; + + edge.lat=min_north; + edge.lon=lon; + edge.alt=altitude; + + PlotPropPath(source,edge,mask_value,fd,propmodel,knifeedge); + count++; + if (count==z) + { + //fprintf(stdout,"%c",symbol[x]); + //fflush(stdout); + count=0; + + if (x==3) + x=0; + else + x++; + } + + } + + } + //S4 + if(haf==0 || haf==2){ + count=0; + if(debug){ + fprintf(stdout,"\n75%c to 100%c ",37,37); + fflush(stdout); + } + z=(int)(th*(double)(max_north-min_north)); + + for (lat=(double)min_north, x=0, y=0; lat<(double)max_north; y++, lat=(double)min_north+(dpp*(double)y)) + { + edge.lat=lat; + edge.lon=max_west; + edge.alt=altitude; + + PlotPropPath(source,edge,mask_value,fd,propmodel,knifeedge); + count++; + + if (count==z) + { + + count=0; + + if (x==3) + x=0; + else + x++; + } + } + + } //S4 + + if (fd!=NULL) + fclose(fd); + + if (mask_value<30) + mask_value++; +} + +void LoadSignalColors(struct site xmtr) +{ + int x, y, ok, val[4]; + char filename[255], string[80], *pointer=NULL, *s=NULL; + FILE *fd=NULL; + + for (x=0; xmtr.filename[x]!='.' && xmtr.filename[x]!=0 && x<250; x++) + filename[x]=xmtr.filename[x]; + + filename[x]='.'; + filename[x+1]='s'; + filename[x+2]='c'; + filename[x+3]='f'; + filename[x+4]=0; + + /* Default values */ + + region.level[0]=128; + region.color[0][0]=255; + region.color[0][1]=0; + region.color[0][2]=0; + + region.level[1]=118; + region.color[1][0]=255; + region.color[1][1]=165; + region.color[1][2]=0; + + region.level[2]=108; + region.color[2][0]=255; + region.color[2][1]=206; + region.color[2][2]=0; + + region.level[3]=98; + region.color[3][0]=255; + region.color[3][1]=255; + region.color[3][2]=0; + + region.level[4]=88; + region.color[4][0]=184; + region.color[4][1]=255; + region.color[4][2]=0; + + region.level[5]=78; + region.color[5][0]=0; + region.color[5][1]=255; + region.color[5][2]=0; + + region.level[6]=68; + region.color[6][0]=0; + region.color[6][1]=208; + region.color[6][2]=0; + + region.level[7]=58; + region.color[7][0]=0; + region.color[7][1]=196; + region.color[7][2]=196; + + region.level[8]=48; + region.color[8][0]=0; + region.color[8][1]=148; + region.color[8][2]=255; + + region.level[9]=38; + region.color[9][0]=80; + region.color[9][1]=80; + region.color[9][2]=255; + + region.level[10]=28; + region.color[10][0]=0; + region.color[10][1]=38; + region.color[10][2]=255; + + region.level[11]=18; + region.color[11][0]=142; + region.color[11][1]=63; + region.color[11][2]=255; + + region.level[12]=8; + region.color[12][0]=140; + region.color[12][1]=0; + region.color[12][2]=128; + + region.levels=13; + + fd=fopen(filename,"r"); + + if (fd==NULL) + fd=fopen(filename,"r"); + + if (fd==NULL) + { + fd=fopen(filename,"w"); + + + for (x=0; x255) + val[y]=255; + + if (val[y]<0) + val[y]=0; + } + + region.level[x]=val[0]; + region.color[x][0]=val[1]; + region.color[x][1]=val[2]; + region.color[x][2]=val[3]; + x++; + } + + s=fgets(string,80,fd); + } + + fclose(fd); + region.levels=x; + } +} + +void LoadLossColors(struct site xmtr) +{ + int x, y, ok, val[4]; + char filename[255], string[80], *pointer=NULL, *s=NULL; + FILE *fd=NULL; + + for (x=0; xmtr.filename[x]!='.' && xmtr.filename[x]!=0 && x<250; x++) + filename[x]=xmtr.filename[x]; + + filename[x]='.'; + filename[x+1]='l'; + filename[x+2]='c'; + filename[x+3]='f'; + filename[x+4]=0; + + /* Default values */ + + region.level[0]=80; + region.color[0][0]=255; + region.color[0][1]=0; + region.color[0][2]=0; + + region.level[1]=90; + region.color[1][0]=255; + region.color[1][1]=128; + region.color[1][2]=0; + + region.level[2]=100; + region.color[2][0]=255; + region.color[2][1]=165; + region.color[2][2]=0; + + region.level[3]=110; + region.color[3][0]=255; + region.color[3][1]=206; + region.color[3][2]=0; + + region.level[4]=120; + region.color[4][0]=255; + region.color[4][1]=255; + region.color[4][2]=0; + + region.level[5]=130; + region.color[5][0]=184; + region.color[5][1]=255; + region.color[5][2]=0; + + region.level[6]=140; + region.color[6][0]=0; + region.color[6][1]=255; + region.color[6][2]=0; + + region.level[7]=150; + region.color[7][0]=0; + region.color[7][1]=208; + region.color[7][2]=0; + + region.level[8]=160; + region.color[8][0]=0; + region.color[8][1]=196; + region.color[8][2]=196; + + region.level[9]=170; + region.color[9][0]=0; + region.color[9][1]=148; + region.color[9][2]=255; + + region.level[10]=180; + region.color[10][0]=80; + region.color[10][1]=80; + region.color[10][2]=255; + + region.level[11]=190; + region.color[11][0]=0; + region.color[11][1]=38; + region.color[11][2]=255; + + region.level[12]=200; + region.color[12][0]=142; + region.color[12][1]=63; + region.color[12][2]=255; + + region.level[13]=210; + region.color[13][0]=196; + region.color[13][1]=54; + region.color[13][2]=255; + + region.level[14]=220; + region.color[14][0]=255; + region.color[14][1]=0; + region.color[14][2]=255; + + region.level[15]=230; + region.color[15][0]=255; + region.color[15][1]=194; + region.color[15][2]=204; + + region.levels=16; + + fd=fopen(filename,"r"); + + if (fd==NULL) + fd=fopen(filename,"r"); + + if (fd==NULL) + { + fd=fopen(filename,"w"); + + + + for (x=0; x255) + val[y]=255; + + if (val[y]<0) + val[y]=0; + } + + region.level[x]=val[0]; + region.color[x][0]=val[1]; + region.color[x][1]=val[2]; + region.color[x][2]=val[3]; + x++; + } + + s=fgets(string,80,fd); + } + + fclose(fd); + region.levels=x; + } +} + +void LoadDBMColors(struct site xmtr) +{ + int x, y, ok, val[4]; + char filename[255], string[80], *pointer=NULL, *s=NULL; + FILE *fd=NULL; + + for (x=0; xmtr.filename[x]!='.' && xmtr.filename[x]!=0 && x<250; x++) + filename[x]=xmtr.filename[x]; + + filename[x]='.'; + filename[x+1]='d'; + filename[x+2]='c'; + filename[x+3]='f'; + filename[x+4]=0; + + /* Default values */ + + region.level[0]=0; + region.color[0][0]=255; + region.color[0][1]=0; + region.color[0][2]=0; + + region.level[1]=-10; + region.color[1][0]=255; + region.color[1][1]=128; + region.color[1][2]=0; + + region.level[2]=-20; + region.color[2][0]=255; + region.color[2][1]=165; + region.color[2][2]=0; + + region.level[3]=-30; + region.color[3][0]=255; + region.color[3][1]=206; + region.color[3][2]=0; + + region.level[4]=-40; + region.color[4][0]=255; + region.color[4][1]=255; + region.color[4][2]=0; + + region.level[5]=-50; + region.color[5][0]=184; + region.color[5][1]=255; + region.color[5][2]=0; + + region.level[6]=-60; + region.color[6][0]=0; + region.color[6][1]=255; + region.color[6][2]=0; + + region.level[7]=-70; + region.color[7][0]=0; + region.color[7][1]=208; + region.color[7][2]=0; + + region.level[8]=-80; + region.color[8][0]=0; + region.color[8][1]=196; + region.color[8][2]=196; + + region.level[9]=-90; + region.color[9][0]=0; + region.color[9][1]=148; + region.color[9][2]=255; + + region.level[10]=-100; + region.color[10][0]=80; + region.color[10][1]=80; + region.color[10][2]=255; + + region.level[11]=-110; + region.color[11][0]=0; + region.color[11][1]=38; + region.color[11][2]=255; + + region.level[12]=-120; + region.color[12][0]=142; + region.color[12][1]=63; + region.color[12][2]=255; + + region.level[13]=-130; + region.color[13][0]=196; + region.color[13][1]=54; + region.color[13][2]=255; + + region.level[14]=-140; + region.color[14][0]=255; + region.color[14][1]=0; + region.color[14][2]=255; + + region.level[15]=-150; + region.color[15][0]=255; + region.color[15][1]=194; + region.color[15][2]=204; + + region.levels=16; + + fd=fopen(filename,"r"); + + if (fd==NULL) + fd=fopen(filename,"r"); + + if (fd==NULL) + { + fd=fopen(filename,"w"); + + + for (x=0; x+40) + val[0]=+40; + + region.level[x]=val[0]; + + for (y=1; y<4; y++) + { + if (val[y]>255) + val[y]=255; + + if (val[y]<0) + val[y]=0; + } + + region.color[x][0]=val[1]; + region.color[x][1]=val[2]; + region.color[x][2]=val[3]; + x++; + } + + s=fgets(string,80,fd); + } + + fclose(fd); + region.levels=x; + } +} + + +void DoPathLoss(char *filename, unsigned char geo, unsigned char kml, unsigned char ngs, struct site *xmtr, unsigned char txsites) +{ + /* This function generates a topographic map in Portable Pix Map + (PPM) format based on the content of flags held in the mask[][] + array (only). The image created is rotated counter-clockwise + 90 degrees from its representation in dem[][] so that north + points up and east points right in the image generated. */ + + char mapfile[255]; + unsigned width, height, red, green, blue, terrain=0; + unsigned char found, mask, cityorcounty; + int indx, x, y, z, x0, y0, loss,match; + double lat, lon, conversion, one_over_gamma,minwest; + FILE *fd; + + one_over_gamma=1.0/GAMMA; + conversion=255.0/pow((double)(max_elevation-min_elevation),one_over_gamma); + + width=(unsigned)(ippd*ReduceAngle(max_west-min_west)); + height=(unsigned)(ippd*ReduceAngle(max_north-min_north)); + + LoadLossColors(xmtr[0]); + + if (filename[0]==0) + { + strncpy(filename, xmtr[0].filename,254); + filename[strlen(filename)-4]=0; /* Remove .qth */ + } + + y=strlen(filename); + + if (y>4) + { + if (filename[y-1]=='m' && filename[y-2]=='p' && filename[y-3]=='p' && filename[y-4]=='.') + y-=4; + } + + for (x=0; x360.0) + minwest-=360.0; + + north=(double)max_north-dpp; + + if (kml || geo) + south=(double)min_north; /* No bottom legend */ + else + south=(double)min_north-(30.0/ppd); /* 30 pixels for bottom legend */ + + east=(minwest<180.0?-minwest:360.0-min_west); + west=(double)(max_west<180?-max_west:360-max_west); + + + // WriteKML() + //writeKML(xmtr,filename); + + fd=fopen(mapfile,"wb"); + + fprintf(fd,"P6\n%u %u\n255\n",width,(kml?height:height+30)); + if(debug){ + fprintf(stdout,"\nWriting \"%s\" (%ux%u pixmap image)... ",mapfile,width,(kml?height:height+30)); + fflush(stdout); + } + for (y=0, lat=north; y<(int)height; y++, lat=north-(dpp*(double)y)) + { + for (x=0, lon=max_west; x<(int)width; x++, lon=max_west-(dpp*(double)x)) + { + if (lon<0.0) + lon+=360.0; + + for (indx=0, found=0; indx=0 && x0<=mpi && y0>=0 && y0<=mpi) + found=1; + else + indx++; + } + + + + if (found) + { + mask=dem[indx].mask[x0][y0]; + loss=(dem[indx].signal[x0][y0]); + cityorcounty=0; + + //check loss isn't a near field void + // Receiver sensitivity kicks in later on + /* if(loss==0 && prevloss > 60){ + loss=(prevloss-5); + }else{ + prevloss=loss; + } + */ + if(debug){ + fprintf(stdout,"\n%d\t%d\t%d\t%d",loss,indx,x0,y0); + fflush(stdout); + } + match=255; + + red=0; + green=0; + blue=0; + + if (loss<=region.level[0]) + match=0; + else + { + for (z=1; (z=region.level[z-1] && loss=180 && green<=75 && blue<=75 && loss==0) + fprintf(fd,"%c%c%c",255^red,255^green,255^blue); + else + fprintf(fd,"%c%c%c",255,0,0); + + cityorcounty=1; + } + + else if (mask&4) + { + /* County Boundaries: Black */ + + fprintf(fd,"%c%c%c",0,0,0); + + cityorcounty=1; + } + + if (cityorcounty==0) + { + if (loss==0 || (contour_threshold!=0 && loss>abs(contour_threshold))) + { + if (ngs) /* No terrain */ + fprintf(fd,"%c%c%c",255,255,255); + else + { + /* Display land or sea elevation */ + + if (dem[indx].data[x0][y0]==0) + fprintf(fd,"%c%c%c",0,0,170); + else + { + terrain=(unsigned)(0.5+pow((double)(dem[indx].data[x0][y0]-min_elevation),one_over_gamma)*conversion); + fprintf(fd,"%c%c%c",terrain,terrain,terrain); + } + } + } + + else + { + /* Plot path loss in color */ + + if (red!=0 || green!=0 || blue!=0) + fprintf(fd,"%c%c%c",red,green,blue); + + else /* terrain / sea-level */ + { + if (dem[indx].data[x0][y0]==0) + fprintf(fd,"%c%c%c",0,0,170); + else + { + /* Elevation: Greyscale */ + terrain=(unsigned)(0.5+pow((double)(dem[indx].data[x0][y0]-min_elevation),one_over_gamma)*conversion); + fprintf(fd,"%c%c%c",terrain,terrain,terrain); + } + } + } + } + } + + else + { + /* We should never get here, but if */ + /* we do, display the region as black */ + + fprintf(fd,"%c%c%c",0,0,0); + } + } + } + + + + fclose(fd); + +} + +void DoSigStr(char *filename, unsigned char geo, unsigned char kml, unsigned char ngs, struct site *xmtr, unsigned char txsites) +{ + /* This function generates a topographic map in Portable Pix Map + (PPM) format based on the signal strength values held in the + signal[][] array. The image created is rotated counter-clockwise + 90 degrees from its representation in dem[][] so that north + points up and east points right in the image generated. */ + + char mapfile[255]; + unsigned width, height, terrain, red, green, blue; + unsigned char found, mask, cityorcounty; + int indx, x, y, z=1, x0, y0, signal,match; + double conversion, one_over_gamma, lat, lon, minwest; + FILE *fd; + + one_over_gamma=1.0/GAMMA; + conversion=255.0/pow((double)(max_elevation-min_elevation),one_over_gamma); + + width=(unsigned)(ippd*ReduceAngle(max_west-min_west)); + height=(unsigned)(ippd*ReduceAngle(max_north-min_north)); + + LoadSignalColors(xmtr[0]); + + if (filename[0]==0) + { + strncpy(filename, xmtr[0].filename,254); + filename[strlen(filename)-4]=0; /* Remove .qth */ + } + + y=strlen(filename); + + if (y>4) + { + if (filename[y-1]=='m' && filename[y-2]=='p' && filename[y-3]=='p' && filename[y-4]=='.') + y-=4; + } + + for (x=0; x360.0) + minwest-=360.0; + + north=(double)max_north-dpp; + + + south=(double)min_north; /* No bottom legend */ + + east=(minwest<180.0?-minwest:360.0-min_west); + west=(double)(max_west<180?-max_west:360-max_west); + + // WriteKML() + //writeKML(xmtr,filename); + + fd=fopen(mapfile,"wb"); + + fprintf(fd,"P6\n%u %u\n255\n",width,(kml?height:height+30)); + if(debug){ + fprintf(stdout,"\nWriting \"%s\" (%ux%u pixmap image)... ",mapfile,width,(kml?height:height+30)); + fflush(stdout); + } + for (y=0, lat=north; y<(int)height; y++, lat=north-(dpp*(double)y)) + { + for (x=0, lon=max_west; x<(int)width; x++, lon=max_west-(dpp*(double)x)) + { + if (lon<0.0) + lon+=360.0; + + for (indx=0, found=0; indx=0 && x0<=mpi && y0>=0 && y0<=mpi) + found=1; + else + indx++; + } + + if (found) + { + mask=dem[indx].mask[x0][y0]; + signal=(dem[indx].signal[x0][y0])-100; + cityorcounty=0; + + //check signal isn't near field void + // Receiver sensitivity kicks in later on + /*if(signal==-100 && prevsignal > -40){ + signal=(prevsignal+5); + }else{ + prevsignal=signal; + }*/ + + if(debug){ + fprintf(stdout,"\n%d\t%d\t%d\t%d",signal,indx,x0,y0); + fflush(stdout); + } + + match=255; + + red=0; + green=0; + blue=0; + + if (signal>=region.level[0]) + match=0; + else + { + for (z=1; (z=region.level[z]) + match=z; + } + } + + if (match=180 && green<=75 && blue<=75) + fprintf(fd,"%c%c%c",255^red,255^green,255^blue); + else + fprintf(fd,"%c%c%c",255,0,0); + + cityorcounty=1; + } + + else if (mask&4) + { + /* County Boundaries: Black */ + + fprintf(fd,"%c%c%c",0,0,0); + + cityorcounty=1; + } + + if (cityorcounty==0) + { + if (contour_threshold!=0 && signal4) + { + if (filename[y-1]=='m' && filename[y-2]=='p' && filename[y-3]=='p' && filename[y-4]=='.') + y-=4; + } + + for (x=0; x360.0) + minwest-=360.0; + + north=(double)max_north-dpp; + + + south=(double)min_north; /* No bottom legend */ + + + east=(minwest<180.0?-minwest:360.0-min_west); + west=(double)(max_west<180?-max_west:360-max_west); + + fd=fopen(mapfile,"wb"); + + fprintf(fd,"P6\n%u %u\n255\n",width,(kml?height:height+30)); + if(debug){ + fprintf(stdout,"\nWriting \"%s\" (%ux%u pixmap image)... ",mapfile,width,(kml?height:height+30)); + fflush(stdout); + } + // WriteKML() + //writeKML(xmtr,filename); + + for (y=0, lat=north; y<(int)height; y++, lat=north-(dpp*(double)y)) + { + for (x=0, lon=max_west; x<(int)width; x++, lon=max_west-(dpp*(double)x)) + { + if (lon<0.0) + lon+=360.0; + + for (indx=0, found=0; indx=0 && x0<=mpi && y0>=0 && y0<=mpi) + found=1; + else + indx++; + } + + if (found) + { + mask=dem[indx].mask[x0][y0]; + dBm=(dem[indx].signal[x0][y0])-200; + cityorcounty=0; + + + + + + + + + if(debug){ + fprintf(stdout,"\n%d\t%d\t%d\t%d",dBm,indx,x0,y0); + fflush(stdout); + } + + match=255; + + red=0; + green=0; + blue=0; + + if (dBm>=region.level[0]) + match=0; + else + { + for (z=1; (z=region.level[z]) + match=z; + } + } + + if (match=180 && green<=75 && blue<=75 && dBm!=0) + fprintf(fd,"%c%c%c",255^red,255^green,255^blue); + else + fprintf(fd,"%c%c%c",255,0,0); + + cityorcounty=1; + } + + else if (mask&4) + { + /* County Boundaries: Black */ + + fprintf(fd,"%c%c%c",0,0,0); + + cityorcounty=1; + } + + if (cityorcounty==0) + { + if (contour_threshold!=0 && dBm4) + { + if (filename[y-1]=='m' && filename[y-2]=='p' && filename[y-3]=='p' && filename[y-4]=='.') + y-=4; + } + + for (x=0; x360.0) + minwest-=360.0; + + north=(double)max_north-dpp; + + + south=(double)min_north; /* No bottom legend */ + + + east=(minwest<180.0?-minwest:360.0-min_west); + west=(double)(max_west<180?-max_west:360-max_west); + + fd=fopen(mapfile,"wb"); + + fprintf(fd,"P6\n%u %u\n255\n",width,(kml?height:height+30)); + if(debug){ + fprintf(stdout,"\nWriting \"%s\" (%ux%u pixmap image)... ",mapfile,width,(kml?height:height+30)); + fflush(stdout); + } + // WriteKML() + //writeKML(xmtr,filename); + + for (y=0, lat=north; y<(int)height; y++, lat=north-(dpp*(double)y)) + { + for (x=0, lon=max_west; x<(int)width; x++, lon=max_west-(dpp*(double)x)) + { + if (lon<0.0) + lon+=360.0; + + for (indx=0, found=0; indx=0 && x0<=mpi && y0>=0 && y0<=mpi) + found=1; + else + indx++; + } + + if (found) + { + mask=dem[indx].mask[x0][y0]; + + if (mask&2) + /* Text Labels: Red */ + fprintf(fd,"%c%c%c",255,0,0); + + else if (mask&4) + /* County Boundaries: Light Cyan */ + fprintf(fd,"%c%c%c",128,128,255); + + else switch (mask&57) + { + case 1: + /* TX1: Green */ + fprintf(fd,"%c%c%c",0,255,0); + break; + + case 8: + /* TX2: Cyan */ + fprintf(fd,"%c%c%c",0,255,255); + break; + + case 9: + /* TX1 + TX2: Yellow */ + fprintf(fd,"%c%c%c",255,255,0); + break; + + case 16: + /* TX3: Medium Violet */ + fprintf(fd,"%c%c%c",147,112,219); + break; + + case 17: + /* TX1 + TX3: Pink */ + fprintf(fd,"%c%c%c",255,192,203); + break; + + case 24: + /* TX2 + TX3: Orange */ + fprintf(fd,"%c%c%c",255,165,0); + break; + + case 25: + /* TX1 + TX2 + TX3: Dark Green */ + fprintf(fd,"%c%c%c",0,100,0); + break; + + case 32: + /* TX4: Sienna 1 */ + fprintf(fd,"%c%c%c",255,130,71); + break; + + case 33: + /* TX1 + TX4: Green Yellow */ + fprintf(fd,"%c%c%c",173,255,47); + break; + + case 40: + /* TX2 + TX4: Dark Sea Green 1 */ + fprintf(fd,"%c%c%c",193,255,193); + break; + + case 41: + /* TX1 + TX2 + TX4: Blanched Almond */ + fprintf(fd,"%c%c%c",255,235,205); + break; + + case 48: + /* TX3 + TX4: Dark Turquoise */ + fprintf(fd,"%c%c%c",0,206,209); + break; + + case 49: + /* TX1 + TX3 + TX4: Medium Spring Green */ + fprintf(fd,"%c%c%c",0,250,154); + break; + + case 56: + /* TX2 + TX3 + TX4: Tan */ + fprintf(fd,"%c%c%c",210,180,140); + break; + + case 57: + /* TX1 + TX2 + TX3 + TX4: Gold2 */ + fprintf(fd,"%c%c%c",238,201,0); + break; + + default: + if (ngs) /* No terrain */ + fprintf(fd,"%c%c%c",255,255,255); + else + { + /* Sea-level: Medium Blue */ + if (dem[indx].data[x0][y0]==0) + fprintf(fd,"%c%c%c",0,0,170); + else + { + /* Elevation: Greyscale */ + terrain=(unsigned)(0.5+pow((double)(dem[indx].data[x0][y0]-min_elevation),one_over_gamma)*conversion); + fprintf(fd,"%c%c%c",terrain,terrain,terrain); + } + } + } + } + + else + { + /* We should never get here, but if */ + /* we do, display the region as black */ + + fprintf(fd,"%c%c%c",0,0,0); + } + } + } + + fclose(fd); + +} + + +void LoadTopoData(int max_lon, int min_lon, int max_lat, int min_lat, int winfiles) +{ + /* This function loads the SDF files required + to cover the limits of the region specified. */ + + int x, y, width, ymin, ymax; + + width=ReduceAngle(max_lon-min_lon); + + if ((max_lon-min_lon)<=180.0) + { + for (y=0; y<=width; y++) + for (x=min_lat; x<=max_lat; x++) + { + ymin=(int)(min_lon+(double)y); + + while (ymin<0) + ymin+=360; + + while (ymin>=360) + ymin-=360; + + ymax=ymin+1; + + while (ymax<0) + ymax+=360; + + while (ymax>=360) + ymax-=360; + + if (winfiles==1){ + if (ippd==3600) + snprintf(string,19,"%d=%d=%d=%d=hd",x, x+1, ymin, ymax); + else + snprintf(string,16,"%d=%d=%d=%d",x, x+1, ymin, ymax); + + }else{ + if (ippd==3600) + snprintf(string,19,"%d:%d:%d:%d-hd",x, x+1, ymin, ymax); + else + snprintf(string,16,"%d:%d:%d:%d",x, x+1, ymin, ymax); + } + + LoadSDF(string,winfiles); + } + } + + else + { + for (y=0; y<=width; y++) + for (x=min_lat; x<=max_lat; x++) + { + ymin=max_lon+y; + + while (ymin<0) + ymin+=360; + + while (ymin>=360) + ymin-=360; + + ymax=ymin+1; + + while (ymax<0) + ymax+=360; + + while (ymax>=360) + ymax-=360; + + if (winfiles==1){ + if (ippd==3600) + snprintf(string,19,"%d=%d=%d=%d=hd",x, x+1, ymin, ymax); + else + snprintf(string,16,"%d=%d=%d=%d",x, x+1, ymin, ymax); + + }else{ + if (ippd==3600) + snprintf(string,19,"%d:%d:%d:%d-hd",x, x+1, ymin, ymax); + else + snprintf(string,16,"%d:%d:%d:%d",x, x+1, ymin, ymax); + } + + LoadSDF(string,winfiles); + } + } +} + + + +void LoadUDT(char *filename) +{ + /* This function reads a file containing User-Defined Terrain + features for their addition to the digital elevation model + data used by SPLAT!. Elevations in the UDT file are evaluated + and then copied into a temporary file under /tmp. Then the + contents of the temp file are scanned, and if found to be unique, + are added to the ground elevations described by the digital + elevation data already loaded into memory. */ + + int i, x, y, z, ypix, xpix, tempxpix, tempypix, fd=0, n=0, pixelfound=0; + char input[80], str[3][80], tempname[15], *pointer=NULL, *s=NULL; + double latitude, longitude, height, tempheight; + FILE *fd1=NULL, *fd2=NULL; + + strcpy(tempname,"/tmp/XXXXXX\0"); + + fd1=fopen(filename,"r"); + + if (fd1!=NULL) + { + fd=mkstemp(tempname); + fd2=fopen(tempname,"w"); + + s=fgets(input,78,fd1); + + pointer=strchr(input,';'); + + if (pointer!=NULL) + *pointer=0; + + + while (feof(fd1)==0) + { + /* Parse line for latitude, longitude, height */ + + for (x=0, y=0, z=0; x<78 && input[x]!=0 && z<3; x++) + { + if (input[x]!=',' && y<78) + { + str[z][y]=input[x]; + y++; + } + + else + { + str[z][y]=0; + z++; + y=0; + } + } + + latitude=ReadBearing(str[0]); + longitude=ReadBearing(str[1]); + + if (longitude<0.0) + longitude+=360; + + /* Remove and/or from antenna height string */ + + for (i=0; str[2][i]!=13 && str[2][i]!=10 && str[2][i]!=0; i++); + + str[2][i]=0; + + /* The terrain feature may be expressed in either + feet or meters. If the letter 'M' or 'm' is + discovered in the string, then this is an + indication that the value given is expressed + in meters. Otherwise the height is interpreted + as being expressed in feet. */ + + for (i=0; str[2][i]!='M' && str[2][i]!='m' && str[2][i]!=0 && i<48; i++); + + if (str[2][i]=='M' || str[2][i]=='m') + { + str[2][i]=0; + height=rint(atof(str[2])); + } + + else + { + str[2][i]=0; + height=rint(METERS_PER_FOOT*atof(str[2])); + } + + if (height>0.0) + fprintf(fd2,"%d, %d, %f\n",(int)rint(latitude/dpp), (int)rint(longitude/dpp), height); + + + s=fgets(input,78,fd1); + + pointer=strchr(input,';'); + + if (pointer!=NULL) + *pointer=0; + } + + fclose(fd1); + fclose(fd2); + close(fd); + + + fd1=fopen(tempname,"r"); + fd2=fopen(tempname,"r"); + + y=0; + + n=fscanf(fd1,"%d, %d, %lf", &xpix, &ypix, &height); + + do + { + x=0; + z=0; + + n=fscanf(fd2,"%d, %d, %lf", &tempxpix, &tempypix, &tempheight); + + do + { + if (x>y && xpix==tempxpix && ypix==tempypix) + { + z=1; /* Dupe! */ + + if (tempheight>height) + height=tempheight; + } + + else + { + n=fscanf(fd2,"%d, %d, %lf", &tempxpix, &tempypix, &tempheight); + x++; + } + + } while (feof(fd2)==0 && z==0); + + if (z==0) /* No duplicate found */ + + //fprintf(stdout,"%lf, %lf \n",xpix*dpp, ypix*dpp); + fflush(stdout); + pixelfound = AddElevation(xpix*dpp, ypix*dpp, height); + //fprintf(stdout,"%d \n",pixelfound); + fflush(stdout); + + n=fscanf(fd1,"%d, %d, %lf", &xpix, &ypix, &height); + y++; + + rewind(fd2); + + } while (feof(fd1)==0); + + fclose(fd1); + fclose(fd2); + unlink(tempname); + } + +} + +void PlotPath(struct site source, struct site destination, char mask_value) +{ + /* This function analyzes the path between the source and + destination locations. It determines which points along + the path have line-of-sight visibility to the source. + Points along with path having line-of-sight visibility + to the source at an AGL altitude equal to that of the + destination location are stored by setting bit 1 in the + mask[][] array, which are displayed in green when PPM + maps are later generated by SPLAT!. */ + + char block; + int x, y; + register double cos_xmtr_angle, cos_test_angle, test_alt; + double distance, rx_alt, tx_alt; + + ReadPath(source,destination); + + for (y=0; y=0 && block==0; x--) + { + distance=5280.0*(path.distance[y]-path.distance[x]); + test_alt=earthradius+(path.elevation[x]==0.0?path.elevation[x]:path.elevation[x]+clutter); + + cos_test_angle=((rx_alt*rx_alt)+(distance*distance)-(test_alt*test_alt))/(2.0*rx_alt*distance); + + /* Compare these two angles to determine if + an obstruction exists. Since we're comparing + the cosines of these angles rather than + the angles themselves, the following "if" + statement is reversed from what it would + be if the actual angles were compared. */ + + if (cos_xmtr_angle>=cos_test_angle) + block=1; + } + + if (block==0) + OrMask(path.lat[y],path.lon[y],mask_value); + } + } +} + +void ObstructionAnalysis(struct site xmtr, struct site rcvr, double f, FILE *outfile) +{ + /* Perform an obstruction analysis along the + path between receiver and transmitter. */ + + int x; + struct site site_x; + double h_r, h_t, h_x, h_r_orig, cos_tx_angle, cos_test_angle, + cos_tx_angle_f1, cos_tx_angle_fpt6, d_tx, d_x, + h_r_f1, h_r_fpt6, h_f, h_los, lambda=0.0; + char string[255], string_fpt6[255], string_f1[255]; + + ReadPath(xmtr,rcvr); + h_r=GetElevation(rcvr)+rcvr.alt+earthradius; + h_r_f1=h_r; + h_r_fpt6=h_r; + h_r_orig=h_r; + h_t=GetElevation(xmtr)+xmtr.alt+earthradius; + d_tx=5280.0*Distance(rcvr,xmtr); + cos_tx_angle=((h_r*h_r)+(d_tx*d_tx)-(h_t*h_t))/(2.0*h_r*d_tx); + cos_tx_angle_f1=cos_tx_angle; + cos_tx_angle_fpt6=cos_tx_angle; + + if (f) + lambda=9.8425e8/(f*1e6); + + if (clutter>0.0) + { + fprintf(outfile,"Terrain has been raised by"); + + if (metric) + fprintf(outfile," %.2f meters",METERS_PER_FOOT*clutter); + else + fprintf(outfile," %.2f feet",clutter); + + fprintf(outfile," to account for ground clutter.\n\n"); + } + + /* At each point along the path calculate the cosine + of a sort of "inverse elevation angle" at the receiver. + From the antenna, 0 deg. looks at the ground, and 90 deg. + is parallel to the ground. + + Start at the receiver. If this is the lowest antenna, + then terrain obstructions will be nearest to it. (Plus, + that's the way ppa!'s original los() did it.) + + Calculate cosines only. That's sufficient to compare + angles and it saves the extra computational burden of + acos(). However, note the inverted comparison: if + acos(A) > acos(B), then B > A. */ + + for (x=path.length-1; x>0; x--) + { + site_x.lat=path.lat[x]; + site_x.lon=path.lon[x]; + site_x.alt=0.0; + + h_x=GetElevation(site_x)+earthradius+clutter; + d_x=5280.0*Distance(rcvr,site_x); + + /* Deal with the LOS path first. */ + + cos_test_angle=((h_r*h_r)+(d_x*d_x)-(h_x*h_x))/(2.0*h_r*d_x); + + if (cos_tx_angle>cos_test_angle) + { + if (h_r==h_r_orig) + fprintf(outfile,"Between %s and %s, obstructions were detected at:\n\n",rcvr.name,xmtr.name); + + if (site_x.lat>=0.0) + { + if (metric) + fprintf(outfile," %8.4f N,%9.4f W, %5.2f kilometers, %6.2f meters AMSL\n",site_x.lat, site_x.lon, KM_PER_MILE*(d_x/5280.0), METERS_PER_FOOT*(h_x-earthradius)); + else + fprintf(outfile," %8.4f N,%9.4f W, %5.2f miles, %6.2f feet AMSL\n",site_x.lat, site_x.lon, d_x/5280.0, h_x-earthradius); + } + + else + { + if (metric) + fprintf(outfile," %8.4f S,%9.4f W, %5.2f kilometers, %6.2f meters AMSL\n",-site_x.lat, site_x.lon, KM_PER_MILE*(d_x/5280.0), METERS_PER_FOOT*(h_x-earthradius)); + else + + fprintf(outfile," %8.4f S,%9.4f W, %5.2f miles, %6.2f feet AMSL\n",-site_x.lat, site_x.lon, d_x/5280.0, h_x-earthradius); + } + } + + while (cos_tx_angle>cos_test_angle) + { + h_r+=1; + cos_test_angle=((h_r*h_r)+(d_x*d_x)-(h_x*h_x))/(2.0*h_r*d_x); + cos_tx_angle=((h_r*h_r)+(d_tx*d_tx)-(h_t*h_t))/(2.0*h_r*d_tx); + } + + if (f) + { + /* Now clear the first Fresnel zone... */ + + cos_tx_angle_f1=((h_r_f1*h_r_f1)+(d_tx*d_tx)-(h_t*h_t))/(2.0*h_r_f1*d_tx); + h_los=sqrt(h_r_f1*h_r_f1+d_x*d_x-2*h_r_f1*d_x*cos_tx_angle_f1); + h_f=h_los-sqrt(lambda*d_x*(d_tx-d_x)/d_tx); + + while (h_fh_r_orig) + { + if (metric) + snprintf(string,150,"\nAntenna at %s must be raised to at least %.2f meters AGL\nto clear all obstructions detected.\n",rcvr.name, METERS_PER_FOOT*(h_r-GetElevation(rcvr)-earthradius)); + else + snprintf(string,150,"\nAntenna at %s must be raised to at least %.2f feet AGL\nto clear all obstructions detected.\n",rcvr.name, h_r-GetElevation(rcvr)-earthradius); + } + + else + snprintf(string,150,"\nNo obstructions to LOS path due to terrain were detected\n"); + + if (f) + { + if (h_r_fpt6>h_r_orig) + { + if (metric) + snprintf(string_fpt6,150,"\nAntenna at %s must be raised to at least %.2f meters AGL\nto clear %.0f%c of the first Fresnel zone.\n",rcvr.name, METERS_PER_FOOT*(h_r_fpt6-GetElevation(rcvr)-earthradius),fzone_clearance*100.0,37); + + else + snprintf(string_fpt6,150,"\nAntenna at %s must be raised to at least %.2f feet AGL\nto clear %.0f%c of the first Fresnel zone.\n",rcvr.name, h_r_fpt6-GetElevation(rcvr)-earthradius,fzone_clearance*100.0,37); + } + + else + snprintf(string_fpt6,150,"\n%.0f%c of the first Fresnel zone is clear.\n",fzone_clearance*100.0,37); + + if (h_r_f1>h_r_orig) + { + if (metric) + snprintf(string_f1,150,"\nAntenna at %s must be raised to at least %.2f meters AGL\nto clear the first Fresnel zone.\n",rcvr.name, METERS_PER_FOOT*(h_r_f1-GetElevation(rcvr)-earthradius)); + + else + snprintf(string_f1,150,"\nAntenna at %s must be raised to at least %.2f feet AGL\nto clear the first Fresnel zone.\n",rcvr.name, h_r_f1-GetElevation(rcvr)-earthradius); + + } + + else + snprintf(string_f1,150,"\nThe first Fresnel zone is clear.\n"); + } + + fprintf(outfile,"%s",string); + + if (f) + { + fprintf(outfile,"%s",string_f1); + fprintf(outfile,"%s",string_fpt6); + } + + +} + + +void PathReport(struct site source, struct site destination, char *name, char graph_it) +{ + /* This function writes a PPA Path Report (name.txt) to + the filesystem. If (graph_it == 1), then gnuplot is invoked + to generate an appropriate output file indicating the Longley-Rice + model loss between the source and destination locations. + "filename" is the name assigned to the output file generated + by gnuplot. The filename extension is used to set gnuplot's + terminal setting and output file type. If no extension is + found, .png is assumed. */ + + int x, y, z, errnum; + char basename[255], term[30], ext[15], strmode[100], + report_name[80], block=0; + double maxloss=-100000.0, minloss=100000.0, angle1, angle2, + azimuth, pattern=1.0, patterndB=0.0, + total_loss=0.0, cos_xmtr_angle, cos_test_angle=0.0, + source_alt, test_alt, dest_alt, source_alt2, dest_alt2, + distance, elevation, four_thirds_earth, + free_space_loss=0.0, eirp=0.0, voltage, rxp, power_density; + FILE *fd=NULL, *fd2=NULL; + + //sprintf(report_name,"%s.txt",*name); + snprintf(report_name,80,"%s.txt%c",name,0); + + + + four_thirds_earth=FOUR_THIRDS*EARTHRADIUS; + + /*for (x=0; report_name[x]!=0; x++) + if (report_name[x]==32 || report_name[x]==17 || report_name[x]==92 || report_name[x]==42 || report_name[x]==47) + report_name[x]='_'; */ + + fd2=fopen(report_name,"w"); + + fprintf(fd2,"\n\t\t--==[ Path Profile Analysis ]==--\n\n"); + //fprintf(fd2,"%s\n\n",dashes); + fprintf(fd2,"Transmitter site: %s\n",source.name); + + if (source.lat>=0.0) + { + fprintf(fd2,"Site location: %.4f North / %.4f West\n",source.lat, source.lon); + //fprintf(fd2, " (%s N / ", source.lat); + } + + else + { + + fprintf(fd2,"Site location: %.4f South / %.4f West\n",-source.lat, source.lon); + //fprintf(fd2, " (%s S / ", source.lat); + } + + + if (metric) + { + fprintf(fd2,"Ground elevation: %.2f meters AMSL\n",METERS_PER_FOOT*GetElevation(source)); + fprintf(fd2,"Antenna height: %.2f meters AGL / %.2f meters AMSL\n",METERS_PER_FOOT*source.alt,METERS_PER_FOOT*(source.alt+GetElevation(source))); + } + + else + { + fprintf(fd2,"Ground elevation: %.2f feet AMSL\n",GetElevation(source)); + fprintf(fd2,"Antenna height: %.2f feet AGL / %.2f feet AMSL\n",source.alt, source.alt+GetElevation(source)); + } + +/* + haavt=haat(source); + + if (haavt>-4999.0) + { + if (metric) + fprintf(fd2,"Antenna height above average terrain: %.2f meters\n",METERS_PER_FOOT*haavt); + else + fprintf(fd2,"Antenna height above average terrain: %.2f feet\n",haavt); + } +*/ + azimuth=Azimuth(source,destination); + angle1=ElevationAngle(source,destination); + angle2=ElevationAngle2(source,destination,earthradius); + + if (got_azimuth_pattern || got_elevation_pattern) + { + x=(int)rint(10.0*(10.0-angle2)); + + if (x>=0 && x<=1000) + pattern=(double)LR.antenna_pattern[(int)rint(azimuth)][x]; + + patterndB=20.0*log10(pattern); + } + + if (metric) + fprintf(fd2,"Distance to %s: %.2f kilometers\n",destination.name,KM_PER_MILE*Distance(source,destination)); + + else + fprintf(fd2,"Distance to %s: %.2f miles\n",destination.name,Distance(source,destination)); + + fprintf(fd2,"Azimuth to %s: %.2f degrees\n",destination.name,azimuth); + + if (angle1>=0.0) + fprintf(fd2,"Elevation angle to %s: %+.4f degrees\n",destination.name,angle1); + + else + fprintf(fd2,"Depression angle to %s: %+.4f degrees\n",destination.name,angle1); + + if ((angle2-angle1)>0.0001) + { + if (angle2<0.0) + fprintf(fd2,"Depression\n"); + else + fprintf(fd2,"Elevation\n"); + + //fprintf(fd2," angle to the first obstruction: %+.4f degrees\n",angle2); + } + + //fprintf(fd2,"\n%s\n\n",dashes); + + /* Receiver */ + + fprintf(fd2,"Receiver site: %s\n",destination.name); + + if (destination.lat>=0.0) + { + fprintf(fd2,"Site location: %.4f North / %.4f West\n",destination.lat, destination.lon); + //fprintf(fd2, " (%s N / ", destination.lat); + } + + else + { + fprintf(fd2,"Site location: %.4f South / %.4f West\n",-destination.lat, destination.lon); + //fprintf(fd2, " (%s S / ", destination.lat); + } + + if (metric) + { + fprintf(fd2,"Ground elevation: %.2f meters AMSL\n",METERS_PER_FOOT*GetElevation(destination)); + fprintf(fd2,"Antenna height: %.2f meters AGL / %.2f meters AMSL\n",METERS_PER_FOOT*destination.alt, METERS_PER_FOOT*(destination.alt+GetElevation(destination))); + } + + else + { + fprintf(fd2,"Ground elevation: %.2f feet AMSL\n",GetElevation(destination)); + fprintf(fd2,"Antenna height: %.2f feet AGL / %.2f feet AMSL\n",destination.alt, destination.alt+GetElevation(destination)); + } + + /*haavt=haat(destination); + + if (haavt>-4999.0) + { + if (metric) + fprintf(fd2,"Antenna height above average terrain: %.2f meters\n",METERS_PER_FOOT*haavt); + else + fprintf(fd2,"Antenna height above average terrain: %.2f feet\n",haavt); + }*/ + + if (metric) + fprintf(fd2,"Distance to %s: %.2f kilometers\n",source.name,KM_PER_MILE*Distance(source,destination)); + + else + fprintf(fd2,"Distance to %s: %.2f miles\n",source.name,Distance(source,destination)); + + azimuth=Azimuth(destination,source); + + angle1=ElevationAngle(destination,source); + angle2=ElevationAngle2(destination,source,earthradius); + + fprintf(fd2,"Azimuth to %s: %.2f degrees\n",source.name,azimuth); + + if (angle1>=0.0) + fprintf(fd2,"Elevation angle to %s: %+.4f degrees\n",source.name,angle1); + + else + fprintf(fd2,"Depression angle to %s: %+.4f degrees\n",source.name,angle1); + + if ((angle2-angle1)>0.0001) + { + if (angle2<0.0) + fprintf(fd2,"Depression"); + else + fprintf(fd2,"Elevation"); + + //fprintf(fd2," angle to the first obstruction: %+.4f degrees\n",angle2); + } + + //fprintf(fd2,"\n%s\n\n",dashes); + + if (LR.frq_mhz>0.0) + { + fprintf(fd2,"Longley-Rice path calculation parameters used in this analysis:\n\n"); + fprintf(fd2,"Earth's Dielectric Constant: %.3lf\n",LR.eps_dielect); + fprintf(fd2,"Earth's Conductivity: %.3lf Siemens/meter\n",LR.sgm_conductivity); + fprintf(fd2,"Atmospheric Bending Constant (N-units): %.3lf ppm\n",LR.eno_ns_surfref); + fprintf(fd2,"Frequency: %.3lf MHz\n",LR.frq_mhz); + fprintf(fd2,"Radio Climate: %d (",LR.radio_climate); + + switch (LR.radio_climate) + { + case 1: + fprintf(fd2,"Equatorial"); + break; + + case 2: + fprintf(fd2,"Continental Subtropical"); + break; + + case 3: + fprintf(fd2,"Maritime Subtropical"); + break; + + case 4: + fprintf(fd2,"Desert"); + break; + + case 5: + fprintf(fd2,"Continental Temperate"); + break; + + case 6: + fprintf(fd2,"Martitime Temperate, Over Land"); + break; + + case 7: + fprintf(fd2,"Maritime Temperate, Over Sea"); + break; + + default: + fprintf(fd2,"Unknown"); + } + + fprintf(fd2,")\nPolarisation: %d (",LR.pol); + + if (LR.pol==0) + fprintf(fd2,"Horizontal"); + + if (LR.pol==1) + fprintf(fd2,"Vertical"); + + fprintf(fd2,")\nFraction of Situations: %.1lf%c\n",LR.conf*100.0,37); + fprintf(fd2,"Fraction of Time: %.1lf%c\n",LR.rel*100.0,37); + + if (LR.erp!=0.0) + { + fprintf(fd2,"Transmitter ERP: "); + + if (LR.erp<1.0) + fprintf(fd2,"%.1lf milliwatts",1000.0*LR.erp); + + if (LR.erp>=1.0 && LR.erp<10.0) + fprintf(fd2,"%.1lf Watts",LR.erp); + + if (LR.erp>=10.0 && LR.erp<10.0e3) + fprintf(fd2,"%.0lf Watts",LR.erp); + + if (LR.erp>=10.0e3) + fprintf(fd2,"%.3lf kilowatts",LR.erp/1.0e3); + + dBm=10.0*(log10(LR.erp*1000.0)); + fprintf(fd2," (%+.2f dBm)\n",dBm); + + /* EIRP = ERP + 2.14 dB */ + + fprintf(fd2,"Transmitter EIRP: "); + + eirp=LR.erp*1.636816521; + + if (eirp<1.0) + fprintf(fd2,"%.1lf milliwatts",1000.0*eirp); + + if (eirp>=1.0 && eirp<10.0) + fprintf(fd2,"%.1lf Watts",eirp); + + if (eirp>=10.0 && eirp<10.0e3) + fprintf(fd2,"%.0lf Watts",eirp); + + if (eirp>=10.0e3) + fprintf(fd2,"%.3lf kilowatts",eirp/1.0e3); + + dBm=10.0*(log10(eirp*1000.0)); + fprintf(fd2," (%+.2f dBm)\n",dBm); + } + + fprintf(fd2,"\n%s\n\n",dashes); + + fprintf(fd2,"Summary for the link between %s and %s:\n\n",source.name, destination.name); + + if (patterndB!=0.0) + fprintf(fd2,"%s antenna pattern towards %s: %.3f (%.2f dB)\n", source.name, destination.name, pattern, patterndB); + + ReadPath(source, destination); /* source=TX, destination=RX */ + + /* Copy elevations plus clutter along + path into the elev[] array. */ + + for (x=1; x=cos_test_angle) + block=1; + } + + /* At this point, we have the elevation angle + to the first obstruction (if it exists). */ + } + + /* Determine path loss for each point along the + path using Longley-Rice's point_to_point mode + starting at x=2 (number_of_points = 1), the + shortest distance terrain can play a role in + path loss. */ + + elev[0]=y-1; /* (number of points - 1) */ + + /* Distance between elevation samples */ + + elev[1]=METERS_PER_MILE*(path.distance[y]-path.distance[y-1]); + + point_to_point(elev, source.alt*METERS_PER_FOOT, + destination.alt*METERS_PER_FOOT, LR.eps_dielect, + LR.sgm_conductivity, LR.eno_ns_surfref, LR.frq_mhz, + LR.radio_climate, LR.pol, LR.conf, LR.rel, loss, + strmode, errnum); + + if (block) + elevation=((acos(cos_test_angle))/DEG2RAD)-90.0; + else + elevation=((acos(cos_xmtr_angle))/DEG2RAD)-90.0; + + /* Integrate the antenna's radiation + pattern into the overall path loss. */ + + x=(int)rint(10.0*(10.0-elevation)); + + if (x>=0 && x<=1000) + { + pattern=(double)LR.antenna_pattern[(int)azimuth][x]; + + if (pattern!=0.0) + patterndB=20.0*log10(pattern); + } + + else + patterndB=0.0; + + total_loss=loss-patterndB; + + /* if (metric) + fprintf(fd,"%.3f %.3f\n",KM_PER_MILE*(path.distance[path.length-1]-path.distance[y]),total_loss); + + else + fprintf(fd,"%.3f %.3f\n",path.distance[path.length-1]-path.distance[y],total_loss); + */ + + if (total_loss>maxloss) + maxloss=total_loss; + + if (total_loss0 && name[x]!='.'; x--); + + if (x>0) /* Extension found */ + { + for (z=x+1; z<=y && (z-(x+1))<10; z++) + { + ext[z-(x+1)]=tolower(name[z]); + term[z-(x+1)]=name[z]; + } + + ext[z-(x+1)]=0; /* Ensure an ending 0 */ + term[z-(x+1)]=0; + basename[x]=0; + } + } + + if (ext[0]==0) /* No extension -- Default is png */ + { + strncpy(term,"png\0",4); + strncpy(ext,"png\0",4); + } + + /* Either .ps or .postscript may be used + as an extension for postscript output. */ + + if (strncmp(term,"postscript",10)==0) + strncpy(ext,"ps\0",3); + + else if (strncmp(ext,"ps",2)==0) + strncpy(term,"postscript enhanced color\0",26); + + fd=fopen("ppa.gp","w"); + + fprintf(fd,"set grid\n"); + fprintf(fd,"set yrange [%2.3f to %2.3f]\n", minloss, maxloss); + fprintf(fd,"set encoding iso_8859_1\n"); + fprintf(fd,"set term %s\n",term); + fprintf(fd,"set title \"Path Loss Profile Along Path Between %s and %s (%.2f%c azimuth)\"\n",destination.name, source.name, Azimuth(destination,source),176); + + if (metric) + fprintf(fd,"set xlabel \"Distance Between %s and %s (%.2f kilometers)\"\n",destination.name,source.name,KM_PER_MILE*Distance(destination,source)); + else + fprintf(fd,"set xlabel \"Distance Between %s and %s (%.2f miles)\"\n",destination.name,source.name,Distance(destination,source)); + + if (got_azimuth_pattern || got_elevation_pattern) + fprintf(fd,"set ylabel \"Total Path Loss (including TX antenna pattern) (dB)"); + else + fprintf(fd,"set ylabel \"Longley-Rice Path Loss (dB)"); + + fprintf(fd,"\"\nset output \"%s.%s\"\n",basename,ext); + fprintf(fd,"plot \"profile.gp\" title \"Path Loss\" with lines\n"); + + fclose(fd); + + x=system("gnuplot ppa.gp"); + + if (x!=-1) + { + if (gpsav==0) + { + //unlink("ppa.gp"); + //unlink("profile.gp"); + //unlink("reference.gp"); + } + + + } + + else + fprintf(stderr,"\n*** ERROR: Error occurred invoking gnuplot!\n"); + } + +} + +void SeriesData(struct site source, struct site destination, char *name, unsigned char fresnel_plot, unsigned char normalised) +{ + + int x, y, z; + char basename[255], term[30], ext[15], profilename[255], referencename[255],cluttername[255],curvaturename[255],fresnelname[255],fresnel60name[255]; + double a, b, c, height=0.0, refangle, cangle, maxheight=-100000.0, + minheight=100000.0, lambda=0.0, f_zone=0.0, fpt6_zone=0.0, + nm=0.0, nb=0.0, ed=0.0, es=0.0, r=0.0, d=0.0, d1=0.0, + terrain, azimuth, distance, minterrain=100000.0, + minearth=100000.0; + struct site remote; + FILE *fd=NULL, *fd1=NULL, *fd2=NULL, *fd3=NULL, *fd4=NULL, *fd5=NULL; + + ReadPath(destination,source); + azimuth=Azimuth(destination,source); + distance=Distance(destination,source); + refangle=ElevationAngle(destination,source); + b=GetElevation(destination)+destination.alt+earthradius; + + if (fresnel_plot) + { + lambda=9.8425e8/(LR.frq_mhz*1e6); + d=5280.0*path.distance[path.length-1]; + } + + if (normalised) + { + ed=GetElevation(destination); + es=GetElevation(source); + nb=-destination.alt-ed; + nm=(-source.alt-es-nb)/(path.distance[path.length-1]); + } + + strcpy(profilename,name); + strcat(profilename,"_profile\0"); + strcpy(referencename,name); + strcat(referencename,"_reference\0"); + strcpy(cluttername,name); + strcat(cluttername,"_clutter\0"); + strcpy(curvaturename,name); + strcat(curvaturename,"_curvature\0"); + strcpy(fresnelname,name); + strcat(fresnelname,"_fresnel\0"); + strcpy(fresnel60name,name); + strcat(fresnel60name,"_fresnel60\0"); + + fd=fopen(profilename,"wb"); + if (clutter>0.0) + fd1=fopen(cluttername,"wb"); + fd2=fopen(referencename,"wb"); + fd5=fopen(curvaturename, "wb"); + + if ((LR.frq_mhz>=20.0) && (LR.frq_mhz<=100000.0) && fresnel_plot) + { + fd3=fopen(fresnelname, "wb"); + fd4=fopen(fresnel60name, "wb"); + } + + for (x=0; x=20.0) && (LR.frq_mhz<=100000.0) && fresnel_plot) + { + d1=5280.0*path.distance[x]; + f_zone=-1.0*sqrt(lambda*d1*(d-d1)/d); + fpt6_zone=f_zone*fzone_clearance; + } + + if (normalised) + { + r=-(nm*path.distance[x])-nb; + height+=r; + + if ((LR.frq_mhz>=20.0) && (LR.frq_mhz<=100000.0) && fresnel_plot) + { + f_zone+=r; + fpt6_zone+=r; + } + } + + else + r=0.0; + + if (metric) + { + if (METERS_PER_FOOT*height > 0){ + fprintf(fd,"%.3f %.3f\n",KM_PER_MILE*path.distance[x],METERS_PER_FOOT*height); + } + + if (fd1!=NULL && x>0 && x0 && x=20.0) && (LR.frq_mhz<=100000.0) && fresnel_plot) + { + if (metric) + { + fprintf(fd3,"%.3f %.3f\n",KM_PER_MILE*path.distance[x],METERS_PER_FOOT*f_zone); + fprintf(fd4,"%.3f %.3f\n",KM_PER_MILE*path.distance[x],METERS_PER_FOOT*fpt6_zone); + } + + else + { + fprintf(fd3,"%.3f %.3f\n",path.distance[x],f_zone); + fprintf(fd4,"%.3f %.3f\n",path.distance[x],fpt6_zone); + } + + if (f_zonemaxheight) + maxheight=height+clutter; + + if (heightmaxheight) + maxheight=r; + + if (terrain=20.0) && (LR.frq_mhz<=100000.0) && fresnel_plot) + { + if (metric) + { + fprintf(fd3,"%.3f %.3f",KM_PER_MILE*path.distance[path.length-1],METERS_PER_FOOT*r); + fprintf(fd4,"%.3f %.3f",KM_PER_MILE*path.distance[path.length-1],METERS_PER_FOOT*r); + } + + else + { + fprintf(fd3,"%.3f %.3f",path.distance[path.length-1],r); + fprintf(fd4,"%.3f %.3f",path.distance[path.length-1],r); + } + } + + if (r>maxheight) + maxheight=r; + + if (r=20.0) && (LR.frq_mhz<=100000.0) && fresnel_plot) + { + fclose(fd3); + fclose(fd4); + } + + if (name[0]=='.') + { + strncpy(basename,"profile\0",8); + strncpy(term,"png\0",4); + strncpy(ext,"png\0",4); + } + + else + { + + ext[0]=0; + y=strlen(name); + strncpy(basename,name,254); + + for (x=y-1; x>0 && name[x]!='.'; x--); + + if (x>0) + { + for (z=x+1; z<=y && (z-(x+1))<10; z++) + { + ext[z-(x+1)]=tolower(name[z]); + term[z-(x+1)]=name[z]; + } + + ext[z-(x+1)]=0; + term[z-(x+1)]=0; + basename[x]=0; + } + + if (ext[0]==0) + { + strncpy(term,"png\0",4); + strncpy(ext,"png\0",4); + } + } + + fprintf(stdout,"\n"); + fflush(stdout); + +} + +int main(int argc, char *argv[]) +{ + int x, y, z=0, min_lat, min_lon, max_lat, max_lon, + rxlat, rxlon, txlat, txlon, west_min, west_max, + north_min, north_max, propmodel, winfiles,knifeedge=0,ppa=0,normalise=0, haf=0; + + unsigned char LRmap=0, txsites=0,topomap=0, geo=0, kml=0, area_mode=0, max_txsites,ngs=0; + + char mapfile[255], longley_file[255], udt_file[255],ano_filename[255]; + + double altitude=0.0, altitudeLR=0.0, tx_range=0.0, + rx_range=0.0, deg_range=0.0, deg_limit=0.0, + deg_range_lon; + + strncpy(ss_name,"Signal Server\0",14); + + if (argc==1) + { + fprintf(stdout,"\n\t\t -- %s %.2f options --\n\n",ss_name, version); + fprintf(stdout," -d Directory containing .sdf tiles\n"); + fprintf(stdout," -lat Tx Latitude (decimal degrees) -70/+70\n"); + fprintf(stdout," -lon Tx Longitude (decimal degrees) -180/+180\n"); + fprintf(stdout," -txh Tx Height (above ground)\n"); + fprintf(stdout," -rla (Optional) Rx Latitude for PPA (decimal degrees) -70/+70\n"); + fprintf(stdout," -rlo (Optional) Rx Longitude for PPA (decimal degrees) -180/+180\n"); + fprintf(stdout," -f Tx Frequency (MHz) 20MHz to 100GHz (LOS after 20GHz)\n"); + fprintf(stdout," -erp Tx Effective Radiated Power (Watts)\n"); + fprintf(stdout," -rxh Rx Height(s) (optional. Default=0.1)\n"); + fprintf(stdout," -rt Rx Threshold (dB / dBm / dBuV/m)\n"); + fprintf(stdout," -hp Horizontal Polarisation (default=vertical)\n"); + fprintf(stdout," -gc Ground clutter (feet/meters)\n"); + fprintf(stdout," -udt User defined terrain filename\n"); + fprintf(stdout," -dbm Plot Rxd signal power instead of field strength\n"); + fprintf(stdout," -m Metric units of measurement\n"); + fprintf(stdout," -te Terrain code 1-6 (optional)\n"); + fprintf(stdout," -terdic Terrain dielectric value 2-80 (optional)\n"); + fprintf(stdout," -tercon Terrain conductivity 0.01-0.0001 (optional)\n"); + fprintf(stdout," -cl Climate code 1-6 (optional)\n"); + fprintf(stdout," -o Filename. Required. \n"); + fprintf(stdout," -R Radius (miles/kilometers)\n"); + fprintf(stdout," -res Pixels per degree. 300/600/1200(default)/3600 (optional)\n"); + fprintf(stdout," -t Terrain background\n"); + fprintf(stdout," -pm Prop model. 1: ITM, 2: LOS, 3-5: Hata, 6: COST231, 7: ITU525, 8: ITWOM3.0\n"); + fprintf(stdout," -ked Knife edge diffraction (Default for ITM)\n"); + fprintf(stdout," -ng Normalise Path Profile graph\n"); + fprintf(stdout," -haf Halve 1 or 2 (optional)\n"); + + + fflush(stdout); + + return 1; + } + + y=argc-1; + + kml=0; + geo=0; + dbm=0; + gpsav=0; + metric=0; + //rxfile[0]=0; + //txfile[0]=0; + string[0]=0; + mapfile[0]=0; + clutter=0.0; + forced_erp=-1.0; + forced_freq=0.0; + //elevation_file[0]=0; + //terrain_file[0]=0; + sdf_path[0]=0; + udt_file[0]=0; + path.length=0; + max_txsites=30; + fzone_clearance=0.6; + contour_threshold=0; + + longley_file[0]=0; + ano_filename[0]=0; + //ani_filename[0]=0; + earthradius=EARTHRADIUS; + max_range=1.0; + propmodel=1; //ITM + winfiles=0; + + lat=0; + lon=0; + txh=0; + ngs=1; // no terrain background + kml=1; + + //map=1; + LRmap=1; + area_mode=1; + ippd=IPPD; // default resolution + + sscanf("0.1","%lf",&altitudeLR); + + // Defaults + LR.eps_dielect=15.0; // Farmland + LR.sgm_conductivity=0.005; // Farmland + LR.eno_ns_surfref=301.0; + LR.frq_mhz=19.0; // Deliberately too low + LR.radio_climate=5; // continental + LR.pol=1; // vert + LR.conf=0.50; + LR.rel=0.50; + LR.erp=0.0; // will default to Path Loss + + tx_site[0].lat=91.0; + tx_site[0].lon=361.0; + tx_site[1].lat=91.0; + tx_site[1].lon=361.0; + + for (x=0; x 90 || tx_site[0].lat < -90) + { + fprintf(stdout,"ERROR: Either the lat was missing or out of range!"); + exit(0); + + } + if (tx_site[0].lon > 360 || tx_site[0].lon < 0) + { + fprintf(stdout,"ERROR: Either the lon was missing or out of range!"); + exit(0); + + } + + if (LR.frq_mhz < 20 || LR.frq_mhz > 100000) + { + fprintf(stdout,"ERROR: Either the Frequency was missing or out of range!"); + exit(0); + } + if (LR.erp>2000000) + { + fprintf(stdout,"ERROR: Power was out of range!"); + exit(0); + + } + if (LR.eps_dielect > 80 || LR.eps_dielect < 0.1) + { + fprintf(stdout,"ERROR: Ground Dielectric value out of range!"); + exit(0); + + } + if (LR.sgm_conductivity > 0.01 || LR.sgm_conductivity < 0.000001) + { + fprintf(stdout,"ERROR: Ground conductivity out of range!"); + exit(0); + + } + + if (tx_site[0].alt < 0 || tx_site[0].alt > 60000) + { + fprintf(stdout,"ERROR: Tx altitude above ground was too high: %f", tx_site[0].alt); + exit(0); + } + if (altitudeLR < 0 || altitudeLR > 60000) + { + fprintf(stdout,"ERROR: Rx altitude above ground was too high!"); + exit(0); + } + + + if (ippd < 300 || ippd > 3600){ + fprintf(stdout,"ERROR: resolution out of range!"); + exit(0); + } + + if(contour_threshold < -200 || contour_threshold > 200) + { + fprintf(stdout,"ERROR: Receiver threshold out of range (-200 / +200)"); + exit(0); + } + if(propmodel>2 && propmodel<8 && LR.frq_mhz < 150){ + fprintf(stdout,"ERROR: Frequency too low for Propagation model"); + exit(0); + } + + /* ERROR DETECTION COMPLETE */ + + + + if (metric) + { + altitudeLR/=METERS_PER_FOOT; /* 10ft * 0.3 = 3.3m */ + max_range/=KM_PER_MILE; /* 10 / 1.6 = 7.5 */ + altitude/=METERS_PER_FOOT; + tx_site[0].alt/=METERS_PER_FOOT; /* Feet to metres */ + tx_site[1].alt/=METERS_PER_FOOT; /* Feet to metres */ + clutter/=METERS_PER_FOOT; /* Feet to metres */ + } + + /* Ensure a trailing '/' is present in sdf_path */ + + if (sdf_path[0]) + { + x=strlen(sdf_path); + + if (sdf_path[x-1]!='/' && x!=0) + { + sdf_path[x]='/'; + sdf_path[x+1]=0; + } + } + + x=0; + y=0; + + min_lat=70; + max_lat=-70; + + min_lon=(int)floor(tx_site[0].lon); + max_lon=(int)floor(tx_site[0].lon); + + + txlat=(int)floor(tx_site[0].lat); + txlon=(int)floor(tx_site[0].lon); + + if (txlatmax_lat) + max_lat=txlat; + + if (LonDiff(txlon,min_lon)<0.0) + min_lon=txlon; + + if (LonDiff(txlon,max_lon)>=0.0) + max_lon=txlon; + + + if (ppa==1) + { + rxlat=(int)floor(tx_site[1].lat); + rxlon=(int)floor(tx_site[1].lon); + + if (rxlatmax_lat) + max_lat=rxlat; + + if (LonDiff(rxlon,min_lon)<0.0) + min_lon=rxlon; + + if (LonDiff(rxlon,max_lon)>=0.0) + max_lon=rxlon; + } + + /* Load the required SDF files */ + + LoadTopoData(max_lon, min_lon, max_lat, min_lat, winfiles); + + if (area_mode || topomap) + { + for (z=0; zdeg_limit) + deg_range=deg_limit; + + if (deg_range_lon>deg_limit) + deg_range_lon=deg_limit; + + north_min=(int)floor(tx_site[z].lat-deg_range); + north_max=(int)floor(tx_site[z].lat+deg_range); + + west_min=(int)floor(tx_site[z].lon-deg_range_lon); + + while (west_min<0) + west_min+=360; + + while (west_min>=360) + west_min-=360; + + west_max=(int)floor(tx_site[z].lon+deg_range_lon); + + while (west_max<0) + west_max+=360; + + while (west_max>=360) + west_max-=360; + + if (north_minmax_lat) + max_lat=north_max; + + if (LonDiff(west_min,min_lon)<0.0) + min_lon=west_min; + + if (LonDiff(west_max,max_lon)>=0.0) + max_lon=west_max; + } + + /* Load any additional SDF files, if required */ + + LoadTopoData(max_lon, min_lon, max_lat, min_lat, winfiles); + } + + // UDT clutter + LoadUDT (udt_file); + + + + + if(ppa==0){ + if (propmodel==2){ + PlotLOSMap(tx_site[0],altitudeLR,ano_filename); + DoLOS(mapfile,geo,kml,ngs,tx_site,txsites); + } + else{ + // 90% of effort here + PlotPropagation(tx_site[0],altitudeLR,ano_filename,propmodel,knifeedge,haf); + + // Near field bugfix + PutSignal(tx_site[0].lat,tx_site[0].lon,hottest); + for(lat=tx_site[0].lat-0.002;lat<=tx_site[0].lat+0.002;lat=lat+0.0005){ + for(lon=tx_site[0].lon-0.002;lon<=tx_site[0].lon+0.002;lon=lon+0.0005){ + PutSignal(lat,lon,hottest); + } + } + + if (LR.erp==0.0) + DoPathLoss(mapfile,geo,kml,ngs,tx_site,txsites); + else + if (dbm) + DoRxdPwr(mapfile,geo,kml,ngs,tx_site,txsites); + else + DoSigStr(mapfile,geo,kml,ngs,tx_site,txsites); + + + } + fprintf(stdout,"|%.5f",north); + fprintf(stdout,"|%.5f",east); + fprintf(stdout,"|%.5f",south); + fprintf(stdout,"|%.5f|",west); + + }else{ + strncpy(tx_site[0].name,"Tx",3); + strncpy(tx_site[1].name,"Rx",3); + PlotPath(tx_site[0],tx_site[1],1); + PathReport(tx_site[0],tx_site[1],tx_site[0].filename,0); + SeriesData(tx_site[0],tx_site[1],tx_site[0].filename,1,normalise); + } + fflush(stdout); + printf("\n"); + return 0; +} +