whisper.cpp/ggml/src/ggml-cann/aclnn_ops.cpp
Chenguang Li 2bb4ca9cba CANN: RoPE operator optimization (llama/10563)
* [cann] RoPE operator optimization

* [CANN]Code Formatting

---------

Co-authored-by: noemotiovon <noemotiovon@gmail.com>
2024-12-08 20:14:35 +02:00

3428 lines
137 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "aclnn_ops.h"
#include <aclnnop/aclnn_addcdiv.h>
#include <aclnnop/aclnn_avgpool2d.h>
#include <aclnnop/aclnn_batch_matmul.h>
#include <aclnnop/aclnn_cast.h>
#include <aclnnop/aclnn_constant_pad_nd.h>
#include <aclnnop/aclnn_copy.h>
#include <aclnnop/aclnn_cos.h>
#include <aclnnop/aclnn_div.h>
#include <aclnnop/aclnn_exp.h>
#include <aclnnop/aclnn_fill_scalar.h>
#include <aclnnop/aclnn_group_norm.h>
#include <aclnnop/aclnn_index_fill_tensor.h>
#include <aclnnop/aclnn_layer_norm.h>
#include <aclnnop/aclnn_matmul.h>
#include <aclnnop/aclnn_max_pool.h>
#include <aclnnop/aclnn_mm.h>
#include <aclnnop/aclnn_permute.h>
#include <aclnnop/aclnn_pow_tensor_tensor.h>
#include <aclnnop/aclnn_reduce_sum.h>
#include <aclnnop/aclnn_repeat.h>
#include <aclnnop/aclnn_repeat_interleave.h>
#include <aclnnop/aclnn_roll.h>
#include <aclnnop/aclnn_sin.h>
#include <aclnnop/aclnn_softmax.h>
#include <aclnnop/aclnn_tril.h>
#include <aclnnop/aclnn_triu.h>
#include <aclnnop/aclnn_upsample_nearest_2d.h>
#include <aclnnop/aclnn_weight_quant_batch_matmul_v2.h>
#include <float.h>
#include <cmath>
#include <cstring>
#include <exception>
#include <vector>
#include "ggml-impl.h"
#include "kernels/ascendc_kernels.h"
#define GGML_COMMON_DECL_C
#include "../ggml-common.h"
/**
* @brief Repeats elements of a tensor along each dimension according to the
* specified repeat array.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor to be repeated.
* @param acl_dst The destination tensor after repeating.
* @param repeat_array The array specifying the number of repetitions along each
* dimension.
*/
static void aclnn_repeat(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst, int64_t* repeat_array) {
// repeat tensor along each dim with repeat_array
aclIntArray* repeats = aclCreateIntArray(repeat_array, GGML_MAX_DIMS);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnRepeatGetWorkspaceSize(acl_src, repeats, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
// Memory from allocator will "free" immediately, and this memory
// will be alloced to other pointers, but it won't access before
// this async task end because all tasks in same stream will execute
// in queue.
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnRepeat(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyIntArray(repeats));
}
void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
GGML_ASSERT(ggml_can_repeat(src, dst));
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
int64_t repeatsArray[] = {dst->ne[3] / src->ne[3], dst->ne[2] / src->ne[2],
dst->ne[1] / src->ne[1], dst->ne[0] / src->ne[0]};
aclnn_repeat(ctx, acl_src, acl_dst, repeatsArray);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Adds two tensors element-wise and stores the result in a destination
* tensor.
*
* This function performs the operation:
* \f[
* dst = acl\_src0 + alpha \times acl\_src1
* \f]
* where alpha is a scalar value and defaults to 1.0f.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src0 The first source tensor.
* @param acl_src1 The second source tensor.
* @param acl_dst The destination tensor where the result will be stored.
*/
static void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
aclTensor* acl_src1, aclTensor* acl_dst) {
aclScalar* alpha = nullptr;
float alphaValue = 1.0f;
alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnAddGetWorkspaceSize(acl_src0, acl_src1, alpha, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnAdd(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyScalar(alpha));
}
void ggml_cann_add(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1];
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
aclTensor* acl_src0;
aclTensor* acl_src1;
aclTensor* acl_dst;
// Need bcast
if (!ggml_are_same_shape(src0, src1) && ggml_cann_need_bcast(src0, src1)) {
BCAST_SHAPE(src0, src1)
acl_src0 = ggml_cann_create_tensor(src0, BCAST_PARAM(src0));
acl_src1 = ggml_cann_create_tensor(src1, BCAST_PARAM(src1));
acl_dst = ggml_cann_create_tensor(dst, BCAST_PARAM(src0));
} else {
acl_src0 = ggml_cann_create_tensor(src0);
acl_src1 = ggml_cann_create_tensor(src1);
acl_dst = ggml_cann_create_tensor(dst);
}
aclnn_add(ctx, acl_src0, acl_src1, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src0));
ACL_CHECK(aclDestroyTensor(acl_src1));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
GGML_ASSERT(src->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
float negative_slope;
memcpy(&negative_slope, dst->op_params, sizeof(float));
aclScalar* acl_negative_slope =
aclCreateScalar(&negative_slope, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnLeakyReluGetWorkspaceSize(
acl_src, acl_negative_slope, acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnLeakyRelu(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyScalar(acl_negative_slope));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Concatenates a list of tensors along a specified dimension and stores
* the result in a destination tensor.
*
* @param ctx The context for the CANN backend operations.
* @param tensorList The list of tensors to be concatenated.
* @param acl_dst The destination tensor where the concatenated result will be
* stored.
* @param concat_dim The dimension along which the tensors will be concatenated.
*/
static void aclnn_concat(ggml_backend_cann_context& ctx,
aclTensorList* tensorList, aclTensor* acl_dst,
int64_t concat_dim) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnCatGetWorkspaceSize(tensorList, concat_dim, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnCat(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1];
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
aclTensor* acl_src1 = ggml_cann_create_tensor(src1);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
const int32_t dim = ggml_get_op_params_i32(dst, 0);
GGML_ASSERT(dim >= 0 && dim < 4);
int32_t acl_dim = 3 - dim;
aclTensor* tensors[] = {acl_src0, acl_src1};
aclTensorList* tensorList = aclCreateTensorList(tensors, 2);
aclnn_concat(ctx, tensorList, acl_dst, acl_dim);
ACL_CHECK(aclDestroyTensorList(tensorList));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Creates a tensor with values starting from `start`, incremented by
* `step`, and ending before `stop`.
*
* This function performs the operation:
* \f[
* \text {out }_{i+1}=\text {out }_i+\text {step}
* \f]
* the range is [start, stop).
*
* @param ctx The context for the CANN backend operations.
* @param acl_dst The destination tensor where the values will be stored.
* @param start The starting value of the range.
* @param stop The ending value of the range (exclusive).
* @param step The step size between consecutive values.
* @param n_elements The number of elements in the destination tensor.
*/
static void aclnn_arange(ggml_backend_cann_context& ctx, aclTensor* acl_dst,
float start, float stop, float step,
int64_t n_elements) {
int64_t steps = (int64_t)std::ceil((stop - start) / step);
GGML_ASSERT(n_elements == steps);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
aclScalar* acl_start = aclCreateScalar(&start, aclDataType::ACL_FLOAT);
aclScalar* acl_end = aclCreateScalar(&stop, aclDataType::ACL_FLOAT);
aclScalar* acl_step = aclCreateScalar(&step, aclDataType::ACL_FLOAT);
ACL_CHECK(aclnnArangeGetWorkspaceSize(acl_start, acl_end, acl_step, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnArange(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyScalar(acl_start));
ACL_CHECK(aclDestroyScalar(acl_end));
ACL_CHECK(aclDestroyScalar(acl_step));
}
void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
GGML_ASSERT(dst->type == GGML_TYPE_F32);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
int64_t n_elements = ggml_nelements(dst);
float start;
float stop;
float step;
memcpy(&start, (float*)dst->op_params + 0, sizeof(float));
memcpy(&stop, (float*)dst->op_params + 1, sizeof(float));
memcpy(&step, (float*)dst->op_params + 2, sizeof(float));
aclnn_arange(ctx, acl_dst, start, stop, step, n_elements);
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_sqr(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
dst->src[1] = dst->src[0];
ggml_cann_mul_div<aclnnMulGetWorkspaceSize, aclnnMul>(ctx, dst);
}
void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
GGML_ASSERT(src->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
float min;
float max;
memcpy(&min, dst->op_params, sizeof(float));
memcpy(&max, (float*)dst->op_params + 1, sizeof(float));
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
aclScalar* acl_min = aclCreateScalar(&min, aclDataType::ACL_FLOAT);
aclScalar* acl_max = aclCreateScalar(&max, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnClampGetWorkspaceSize(acl_src, acl_min, acl_max, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnClamp(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyScalar(acl_min));
ACL_CHECK(aclDestroyScalar(acl_max));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
// scale factor
float v;
memcpy(&v, dst->op_params, sizeof(float));
aclScalar* scale = aclCreateScalar(&v, aclDataType::ACL_FLOAT);
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnMulsGetWorkspaceSize(acl_src, scale, acl_dst, &workspaceSize,
&executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnMuls(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyScalar(scale));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
enum ggml_sort_order order = (enum ggml_sort_order)dst->op_params[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
ggml_cann_pool_alloc temp_buffer_allocator(
ctx.pool(), ggml_nelements(dst) * sizeof(int64_t));
void* buffer = temp_buffer_allocator.get();
aclTensor* tmp_tensor =
ggml_cann_create_tensor(buffer, ACL_INT64, ggml_type_size(dst->type),
dst->ne, dst->nb, GGML_MAX_DIMS);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnArgsortGetWorkspaceSize(
acl_src, -1, (order == GGML_SORT_ORDER_DESC ? true : false), tmp_tensor,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnArgsort(workspaceAddr, workspaceSize, executor, ctx.stream()));
workspaceSize = 0;
ACL_CHECK(aclnnCastGetWorkspaceSize(tmp_tensor,
ggml_cann_type_mapping(dst->type),
acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnCast(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(tmp_tensor));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
std::vector<int64_t> normData = {dst->ne[0]};
aclIntArray* norm = aclCreateIntArray(normData.data(), normData.size());
ACL_CHECK(aclnnLayerNormGetWorkspaceSize(acl_src, norm, nullptr, nullptr,
eps, acl_dst, nullptr, nullptr,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnLayerNorm(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyIntArray(norm));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
int n_groups = dst->op_params[0];
float eps;
memcpy(&eps, dst->op_params + 1, sizeof(float));
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
int64_t N = src->ne[3];
int64_t C = src->ne[2];
int64_t HxW = src->ne[1] * src->ne[0];
size_t type_size = ggml_type_size(src->type);
int64_t ne[] = {n_groups, N};
size_t nb[] = {type_size, type_size * n_groups};
size_t n_bytes = N * n_groups;
ggml_cann_pool_alloc temp_buffer_allocator(ctx.pool(), n_bytes * 2);
void* buffer = temp_buffer_allocator.get();
aclTensor* acl_mean_out = ggml_cann_create_tensor(
buffer, ACL_FLOAT, type_size, ne, nb, ACL_FORMAT_ND);
aclTensor* acl_rstd_out = ggml_cann_create_tensor(
(char*)buffer + n_bytes, ACL_FLOAT, type_size, ne, nb, ACL_FORMAT_ND);
ACL_CHECK(aclnnGroupNormGetWorkspaceSize(
acl_src, nullptr, nullptr, N, C, HxW, n_groups, eps, acl_dst,
acl_mean_out, acl_rstd_out, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnGroupNorm(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
ACL_CHECK(aclDestroyTensor(acl_mean_out));
ACL_CHECK(aclDestroyTensor(acl_rstd_out));
}
void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1];
size_t nb1 = ((int32_t*)dst->op_params)[0];
size_t nb2 = ((int32_t*)dst->op_params)[1];
size_t nb3 = ((int32_t*)dst->op_params)[2];
size_t offset = ((int32_t*)dst->op_params)[3];
bool inplace = (bool)((int32_t*)dst->op_params)[4];
size_t param_nb[] = {ggml_element_size(src0), nb1, nb2, nb3};
aclTensor* acl_dst = ggml_cann_create_tensor(
dst, src1->ne, param_nb, GGML_MAX_DIMS, ACL_FORMAT_ND, offset);
aclTensor* acl_src1 = ggml_cann_create_tensor(src1);
aclScalar* alpha = nullptr;
float alphaValue = 1.0f;
alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
if (!inplace) {
size_t cpy_size = ggml_nbytes(dst);
ACL_CHECK(aclrtMemcpyAsync(dst->data, cpy_size, src0->data, cpy_size,
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
aclTensor* acl_src0 = ggml_cann_create_tensor(
src0, src1->ne, src0->nb, GGML_MAX_DIMS, ACL_FORMAT_ND, offset);
ACL_CHECK(aclnnAddGetWorkspaceSize(acl_src0, acl_src1, alpha, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnAdd(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_src0));
} else {
ACL_CHECK(aclnnInplaceAddGetWorkspaceSize(acl_dst, acl_src1, alpha,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnInplaceAdd(workspaceAddr, workspaceSize, executor,
ctx.stream()));
}
ACL_CHECK(aclDestroyTensor(acl_src1));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
GGML_ASSERT(dst->ne[0] == 1);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
int64_t reduce_dims_host[] = {3};
aclIntArray* reduce_dims = aclCreateIntArray(reduce_dims_host, 1);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnReduceSumGetWorkspaceSize(
acl_src, reduce_dims, true, ggml_cann_type_mapping(src->type), acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnReduceSum(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx,
ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src =
ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
aclTensor* acl_dst =
ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
std::vector<int64_t> output_size{dst->ne[1], dst->ne[0]};
auto output_size_array = aclCreateIntArray(output_size.data(), 2);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnUpsampleNearest2dGetWorkspaceSize(
acl_src, output_size_array, acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnUpsampleNearest2d(workspaceAddr, workspaceSize, executor,
ctx.stream()));
ACL_CHECK(aclDestroyIntArray(output_size_array));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Pads a tensor with a specified value along each dimension.
*
* This function performs padding of the source tensor `acl_src` and stores the
* result in the destination tensor `acl_dst`. The padding values for each
* dimension are specified in the `paddings` array.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor to be padded.
* @param acl_dst The destination tensor where the padded result will be stored.
* @param paddings An array specifying the padding values for each dimension.
* The size of the array should be twice the number of dimensions of the tensor.
* @param value The value to be used for padding. The default value is 0.0.
*/
static void aclnn_pad(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst, int64_t* paddings,
float value = 0.0f) {
aclIntArray* acl_pad = aclCreateIntArray(paddings, GGML_MAX_DIMS * 2);
aclScalar* acl_value = aclCreateScalar(&value, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnConstantPadNdGetWorkspaceSize(
acl_src, acl_pad, acl_value, acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnConstantPadNd(workspaceAddr, workspaceSize, executor,
ctx.stream()));
ACL_CHECK(aclDestroyIntArray(acl_pad));
ACL_CHECK(aclDestroyScalar(acl_value));
}
void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
// padding: value in the array means how much distance will be padding.
// the position of elements in the array means which dirction to padding,
// each position means: [dim0.front, dim0.behind, dim1.front, dim1.behind,
// dim2.front, dim2.behind, dim3.front, dim3.behind]
int64_t paddings[] = {
0, dst->ne[0] - src->ne[0], 0, dst->ne[1] - src->ne[1],
0, dst->ne[2] - src->ne[2], 0, dst->ne[3] - src->ne[3]};
aclnn_pad(ctx, acl_src, acl_dst, paddings);
ACL_CHECK(aclDestroyTensor(acl_dst));
ACL_CHECK(aclDestroyTensor(acl_src));
}
/**
* @brief Performs 2D average pooling on the input tensor and stores the result
* in the destination tensor.
*
* This function performs average pooling on the source tensor and stores the
* result in the destination tensor. The pooling parameters (kernel size,
* strides, padding) are specified in the `op_params` of the destination tensor.
*
* @param ctx The context for the CANN backend operations.
* @param dst The destination tensor where the result will be stored. The source
* tensor is referenced by `dst->src[0]`.
*/
static void ggml_cann_avg_pool2d(ggml_backend_cann_context& ctx,
ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
GGML_ASSERT(src->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
aclTensor* acl_src =
ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
aclTensor* acl_dst =
ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
const int32_t* opts = (const int32_t*)dst->op_params;
const int k0 = opts[1];
const int k1 = opts[2];
const int s0 = opts[3];
const int s1 = opts[4];
const int p0 = opts[5];
const int p1 = opts[6];
std::vector<int64_t> kernel_dims = {k1, k0};
std::vector<int64_t> stride_dims = {s1, s0};
std::vector<int64_t> padding_avg_dims = {p1, p0}; // (padH, padW)
auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2);
auto* strides = aclCreateIntArray(stride_dims.data(), 2);
auto* paddings_avg = aclCreateIntArray(padding_avg_dims.data(), 2);
bool ceil_mode = false;
bool count_include_pad = true;
int64_t divisor_override = 0;
int8_t cube_math_type = 0;
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnAvgPool2dGetWorkspaceSize(
acl_src, kernel_size, strides, paddings_avg, ceil_mode,
count_include_pad, divisor_override, cube_math_type, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnAvgPool2d(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
ACL_CHECK(aclDestroyIntArray(kernel_size));
ACL_CHECK(aclDestroyIntArray(strides));
ACL_CHECK(aclDestroyIntArray(paddings_avg));
}
/**
* @brief Performs 2D max pooling on the input tensor and stores the result in
* the destination tensor.
*
* This function performs max pooling on the source tensor and stores the result
* in the destination tensor. The pooling parameters (kernel size, strides,
* padding) are specified in the `op_params` of the destination tensor.
*
* @param ctx The context for the CANN backend operations.
* @param dst The destination tensor where the result will be stored. The source
* tensor is referenced by `dst->src[0]`.
*/
static void ggml_cann_max_pool2d(ggml_backend_cann_context& ctx,
ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
GGML_ASSERT(src->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
aclTensor* acl_src =
ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
aclTensor* acl_dst =
ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
const int32_t* opts = (const int32_t*)dst->op_params;
const int k0 = opts[1];
const int k1 = opts[2];
const int s0 = opts[3];
const int s1 = opts[4];
const int p0 = opts[5];
const int p1 = opts[6];
int64_t temp_ne[] = {src->ne[0] + p0 * 2, src->ne[1] + p1 * 2, src->ne[2],
src->ne[3]};
size_t temp_nb[GGML_MAX_DIMS];
temp_nb[0] = ggml_element_size(src);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
temp_nb[i] = temp_nb[i - 1] * temp_ne[i - 1];
}
ggml_cann_pool_alloc temp_buffer_allocator(
ctx.pool(), ggml_nbytes(src) + p0 * 2 + p1 * 2 * src->nb[1]);
void* buffer = temp_buffer_allocator.get();
aclTensor* tmp_tensor = ggml_cann_create_tensor(
buffer, ACL_FLOAT, ggml_element_size(src), temp_ne, temp_nb,
GGML_MAX_DIMS, ACL_FORMAT_NCHW);
// pad: see padding in ggml_cann_pad()
int64_t paddings[] = {p0, p0, p1, p1, 0, 0, 0, 0};
float value = -FLT_MAX;
aclnn_pad(ctx, acl_src, tmp_tensor, paddings, value);
// max_pool
std::vector<int64_t> kernel_dims = {k1, k0};
std::vector<int64_t> stride_dims = {s1, s0};
// padding_max_dims: [dim0_start, dim0_end, dim1_start, dim1_end]
std::vector<int64_t> padding_max_dims = {0, 0, 0, 0};
std::vector<int64_t> dilation_size = {1, 1};
auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2);
auto* strides = aclCreateIntArray(stride_dims.data(), 2);
auto* paddings_max = aclCreateIntArray(padding_max_dims.data(), 4);
auto* dilations = aclCreateIntArray(dilation_size.data(), 2);
bool ceil_mode = false;
int64_t auto_pads = 0;
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnMaxPoolGetWorkspaceSize(
tmp_tensor, kernel_size, strides, auto_pads, paddings_max, dilations,
ceil_mode, acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnMaxPool(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
ACL_CHECK(aclDestroyTensor(tmp_tensor));
ACL_CHECK(aclDestroyIntArray(kernel_size));
ACL_CHECK(aclDestroyIntArray(strides));
ACL_CHECK(aclDestroyIntArray(paddings_max));
ACL_CHECK(aclDestroyIntArray(dilations));
}
void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
const int32_t* opts = (const int32_t*)dst->op_params;
enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
switch (op) {
case GGML_OP_POOL_AVG:
ggml_cann_avg_pool2d(ctx, dst);
break;
case GGML_OP_POOL_MAX:
ggml_cann_max_pool2d(ctx, dst);
break;
case GGML_OP_POOL_COUNT:
GGML_ABORT("fatal error");
break;
}
}
/**
* @brief Copies data from the source tensor to the destination tensor.
*
* This function copies data from the source tensor `acl_src` to the destination
* tensor `acl_dst`.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor from which data will be copied.
* @param acl_dst The destination tensor where the data will be copied to.
*/
static void cann_copy(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnInplaceCopyGetWorkspaceSize(acl_dst, acl_src, &workspaceSize,
&executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnInplaceCopy(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
ggml_cann_pool_alloc src_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
ggml_cann_pool_alloc dst_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
src->extra = src_extra_allocator.get();
dst->extra = dst_extra_allocator.get();
ACL_CHECK(aclrtMemcpyAsync(src->extra, sizeof(ggml_tensor), src,
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
ctx.stream()));
ACL_CHECK(aclrtMemcpyAsync(dst->extra, sizeof(ggml_tensor), dst,
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
ctx.stream()));
if ((dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32) &&
ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
}
// TODO: simplify
if (src->type == GGML_TYPE_F16) {
if (dst->type == GGML_TYPE_Q8_0) {
aclrtlaunch_ascendc_quantize_f16_q8_0(
24, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne);
return;
}
if (dst->type == GGML_TYPE_Q4_0) {
aclrtlaunch_ascendc_quantize_f16_to_q4_0(
24, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne);
return;
}
if (dst->type == GGML_TYPE_F16) {
if (ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
}
if (ggml_is_contiguous(dst)) {
const size_t src_type_size = ggml_type_size(src->type);
if (src->nb[0] == src_type_size) {
// src0 is contigous on first dimension, copy by rows
int64_t rows_num = ggml_nrows(src);
aclrtlaunch_ascendc_dup_by_rows_fp16(
rows_num, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne,
((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
return;
}
GGML_ABORT("fatal error");
}
GGML_ABORT("fatal error");
}
if (dst->type == GGML_TYPE_F32) {
if (ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
}
if (ggml_is_contiguous(dst)) {
const size_t src_type_size = ggml_type_size(src->type);
if (src->nb[0] == src_type_size) {
// src0 is contigous on first dimension, copy by rows
int64_t rows_num = ggml_nrows(src);
aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32(
rows_num, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne,
((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
return;
}
GGML_ABORT("fatal error");
}
GGML_ABORT("fatal error");
}
// TODO
GGML_ABORT("fatal error");
} else if (src->type == GGML_TYPE_F32) {
// TODO: if (src0->type == dst->type && ne00 == ne0 && nb00 == type_size
// && nb0 == type_size)
if (dst->type == GGML_TYPE_Q8_0) {
aclrtlaunch_ascendc_quantize_f32_q8_0(
24, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne);
return;
}
if (dst->type == GGML_TYPE_Q4_0) {
aclrtlaunch_ascendc_quantize_f32_to_q4_0(
24, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne);
return;
}
if (dst->type == GGML_TYPE_F32) {
if (ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
}
if (ggml_is_contiguous(dst)) {
const size_t src_type_size = ggml_type_size(src->type);
if (src->nb[0] == src_type_size) {
// src0 is contigous on first dimension, copy by rows
int64_t rows_num = ggml_nrows(src);
aclrtlaunch_ascendc_dup_by_rows_fp32(
rows_num, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne,
((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
return;
}
GGML_ABORT("fatal error");
} else {
// TODO: dst not contiguous
GGML_ABORT("fatal error");
}
}
if (dst->type == GGML_TYPE_F16) {
if (ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
}
if (ggml_is_contiguous(dst)) {
const size_t src_type_size = ggml_type_size(src->type);
if (src->nb[0] == src_type_size) {
// src0 is contigous on first dimension, copy by rows
int64_t rows_num = ggml_nrows(src);
aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16(
rows_num, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne,
((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
return;
}
GGML_ABORT("fatal error");
}
}
// TODO
GGML_ABORT("fatal error");
} else {
if (ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
}
GGML_ABORT("fatal error");
}
}
#ifdef __cplusplus
extern "C" {
#endif
aclnnStatus aclnnRmsNormGetWorkspaceSize(const aclTensor* x,
const aclTensor* gamma, double epsilon,
const aclTensor* yOut,
const aclTensor* rstdOout,
uint64_t* workspaceSize,
aclOpExecutor** executor);
aclnnStatus aclnnRmsNorm(void* workspace, uint64_t workspaceSize,
aclOpExecutor* executor, aclrtStream stream);
#ifdef __cplusplus
}
#endif
/**
* @brief Creates an ACL tensor initialized with zeros using a provided buffer.
*
* This function initializes a tensor with zeros using the specified buffer and
* tensor parameters.
*
* @param ctx The context for the CANN backend operations.
* @param buffer The buffer to be used for the tensor data.
* @param n_bytes The size of the buffer in bytes.
* @param ne An array specifying the extents (sizes) of each dimension of the
* tensor.
* @param dims The number of dimensions of the tensor.
* @param type The data type of the tensor.
* @param type_size The size of each element in the tensor data type.
* @return An ACL tensor initialized with zeros.
*/
static aclTensor* aclnn_zero(ggml_backend_cann_context& ctx, void* buffer,
size_t n_bytes, int64_t* ne, int64_t dims,
aclDataType type, size_t type_size) {
size_t nb[GGML_MAX_DIMS];
nb[0] = type_size;
for (int i = 1; i < dims; i++) {
nb[i] = nb[i - 1] * ne[i - 1];
}
ACL_CHECK(aclrtMemsetAsync(buffer, n_bytes, 0, n_bytes, ctx.stream()));
aclTensor* zero =
ggml_cann_create_tensor(buffer, type, type_size, ne, nb, dims);
return zero;
}
/**
* @brief Creates an ACL tensor initialized with value using a provided buffer.
*
* This function initializes a tensor with value using the specified buffer and
* tensor parameters.
*
* @param ctx The context for the CANN backend operations.
* @param buffer The buffer to be used for the tensor data.
* @param n_bytes The size of the buffer in bytes.
* @param ne An array specifying the extents (sizes) of each dimension of the
* tensor.
* @param dims The number of dimensions of the tensor.
* @param type The data type of the tensor.
* @param type_size The size of each element in the tensor data type.
* @param value The value to be used for initializing the tensor (default
* is 1.0).
* @return An ACL tensor initialized with value.
*/
static aclTensor* aclnn_values(ggml_backend_cann_context& ctx, void* buffer,
size_t n_bytes, int64_t* ne, int64_t dims,
aclDataType type, size_t type_size,
float value = 1.0f) {
aclTensor* acl_tensor =
aclnn_zero(ctx, buffer, n_bytes, ne, dims, type, type_size);
float alpha_host = 1.0f;
aclScalar* alpha = aclCreateScalar(&alpha_host, aclDataType::ACL_FLOAT);
aclScalar* other = aclCreateScalar(&value, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnInplaceAddsGetWorkspaceSize(acl_tensor, other, alpha,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnInplaceAdds(workspaceAddr, workspaceSize, executor, ctx.stream()));
return acl_tensor;
}
void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps > 0.0f);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
size_t one_tensor_n_bytes = src->ne[0] * ggml_element_size(src);
ggml_cann_pool_alloc one_tensor_allocator(ctx.pool(), one_tensor_n_bytes);
aclTensor* acl_gamma = aclnn_values(
ctx, one_tensor_allocator.get(), one_tensor_n_bytes, src->ne, 1,
ggml_cann_type_mapping(src->type), ggml_element_size(src));
size_t zero_tensor_n_bytes =
src->ne[1] * src->ne[2] * src->ne[3] * ggml_element_size(src);
ggml_cann_pool_alloc zero_tensor_allocator(ctx.pool(), zero_tensor_n_bytes);
aclTensor* acl_rstd =
aclnn_zero(ctx, zero_tensor_allocator.get(), zero_tensor_n_bytes,
src->ne, GGML_MAX_DIMS, ggml_cann_type_mapping(src->type),
ggml_element_size(src));
ACL_CHECK(aclnnRmsNormGetWorkspaceSize(
acl_src, acl_gamma, eps, acl_dst, acl_rstd, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnRmsNorm(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
ACL_CHECK(aclDestroyTensor(acl_gamma));
ACL_CHECK(aclDestroyTensor(acl_rstd));
}
// TODO: performace is low.
void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst,
float value) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
const int n_past = ((int32_t*)dst->op_params)[0];
size_t one_tensor_n_bytes = src->ne[0] * src->ne[1] * src->ne[2] *
src->ne[3] * ggml_element_size(src);
ggml_cann_pool_alloc one_tensor_allocator(ctx.pool(), one_tensor_n_bytes);
aclTensor* mask_tensor =
aclnn_values(ctx, one_tensor_allocator.get(), one_tensor_n_bytes,
src->ne, GGML_MAX_DIMS, ggml_cann_type_mapping(src->type),
ggml_element_size(src), value);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnInplaceTriuGetWorkspaceSize(mask_tensor, n_past + 1,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnInplaceTriu(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclnnTrilGetWorkspaceSize(acl_src, n_past + 1, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnTril(workspaceAddr, workspaceSize, executor, ctx.stream()));
aclScalar* alpha = nullptr;
float alphaValue = 1.0f;
alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
ACL_CHECK(aclnnInplaceAddGetWorkspaceSize(acl_dst, mask_tensor, alpha,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnInplaceAdd(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyScalar(alpha));
ACL_CHECK(aclDestroyTensor(mask_tensor));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Casts the data type of a source tensor to a destination tensor.
*
* This function casts the data type of the source tensor `acl_src` to the
* specified data type `cast_data_type` and stores the result in the destination
* tensor `acl_dst`.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor whose data type will be casted.
* @param acl_dst The destination tensor where the casted result will be stored.
* @param cast_data_type The target data type to which the source tensor will be
* casted.
*/
static void aclnn_cast(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst, aclDataType cast_data_type) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnCastGetWorkspaceSize(acl_src, cast_data_type, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnCast(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Permutes the dimensions of a tensor according to a specified order.
*
* This function permutes the dimensions of the source tensor `acl_src`
* according to the order specified in the `new_dim` array and stores the result
* in the destination tensor `acl_dst`.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor whose dimensions will be permuted.
* @param acl_dst The destination tensor where the permuted result will be
* stored.
* @param new_dim An array specifying the new order of dimensions for the
* tensor.
* @param dims The number of dimensions in the tensor.
*/
static void aclnn_permute(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst, int64_t* new_dim, uint64_t dims) {
aclIntArray* acl_dims = aclCreateIntArray(new_dim, dims);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnPermuteGetWorkspaceSize(acl_src, acl_dims, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnPermute(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyIntArray(acl_dims));
}
#ifdef __cplusplus
extern "C" {
#endif
aclnnStatus aclnnIm2colGetWorkspaceSize(const aclTensor* self,
const aclIntArray* kernelSize,
const aclIntArray* dilation,
const aclIntArray* padding,
const aclIntArray* stride,
aclTensor* out, uint64_t* workspaceSize,
aclOpExecutor** executor);
aclnnStatus aclnnIm2col(void* workspace, uint64_t workspaceSize,
aclOpExecutor* executor, aclrtStream stream);
#ifdef __cplusplus
}
#endif
static void ggml_cann_im2col_2d_post_process(ggml_backend_cann_context& ctx,
ggml_tensor* dst,
ggml_tensor* src1,
aclTensor* tmp_cast_tensor,
aclTensor* tmp_im2col_tensor) {
// Permute: [N, IC * KH * KW, OW * OH] -> [N, OW * OH, IC * KH * KW]
int64_t dst_ne[] = {dst->ne[0], dst->ne[1] * dst->ne[2], dst->ne[3]};
size_t dst_nb[] = {dst->nb[0], dst->nb[1], dst->nb[3]};
aclTensor* acl_dst =
ggml_cann_create_tensor(dst, dst_ne, dst_nb, GGML_MAX_DIMS - 1);
int64_t permute_dim[] = {0, 2, 1};
if (src1->type != dst->type) {
aclnn_permute(ctx, tmp_cast_tensor, acl_dst, permute_dim, 3);
} else {
aclnn_permute(ctx, tmp_im2col_tensor, acl_dst, permute_dim, 3);
}
// release
ACL_CHECK(aclDestroyTensor(acl_dst));
}
static void ggml_cann_im2col_1d_post_process(
ggml_backend_cann_context& ctx, ggml_tensor* dst, ggml_tensor* src1,
aclTensor* tmp_cast_tensor, aclTensor* tmp_im2col_tensor,
const std::vector<int64_t>& im2col_op_params) {
// get params
const int64_t KH = im2col_op_params[0];
const int64_t KW = im2col_op_params[1];
const int64_t IW = im2col_op_params[2];
const int64_t IC = im2col_op_params[3];
const int64_t N = im2col_op_params[4];
const int64_t OH = im2col_op_params[5];
const int64_t OW = im2col_op_params[6];
const int64_t s0 = im2col_op_params[7];
const int64_t p0 = im2col_op_params[8];
const int64_t d0 = im2col_op_params[9];
const int64_t n_bytes_factor = im2col_op_params[10];
// Permute: [N, IC * KH * KW, OW * OH] ->
// [N, OW * OH * n_bytes_factor, IC * KH * KW]
aclTensor* tmp_permute_tensor = nullptr;
ggml_cann_pool_alloc tmp_permute_allocator(ctx.pool());
tmp_permute_allocator.alloc(ggml_nbytes(dst) * n_bytes_factor);
void* tmp_permute_buffer = tmp_permute_allocator.get();
int64_t tmp_permute_ne[] = {IC * KH * KW, OW * OH * n_bytes_factor, N};
size_t tmp_permute_nb[GGML_MAX_DIMS - 1];
tmp_permute_nb[0] = ggml_type_size(dst->type);
for (int i = 1; i < GGML_MAX_DIMS - 1; i++) {
tmp_permute_nb[i] = tmp_permute_nb[i - 1] * tmp_permute_ne[i - 1];
}
tmp_permute_tensor = ggml_cann_create_tensor(
tmp_permute_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_permute_ne, tmp_permute_nb,
GGML_MAX_DIMS - 1, ACL_FORMAT_ND);
int64_t permute_dim[] = {0, 2, 1};
if (src1->type != dst->type) {
aclnn_permute(ctx, tmp_cast_tensor, tmp_permute_tensor, permute_dim, 3);
} else {
aclnn_permute(ctx, tmp_im2col_tensor, tmp_permute_tensor, permute_dim,
3);
}
// number of times the kernel moves in W dimension
const int n_step_w = (IW + 2 * p0 - d0 * (KW - 1) - 1) / s0 + 1;
size_t offset;
void *cur_dst_buffer = dst->data, *cur_permute_buffer = tmp_permute_buffer;
// memory copy with offset to restore 1D im2col from 2d
if (IC > 1) {
offset = IC * KH * KW * n_step_w * ggml_type_size(dst->type);
size_t size_cpy = KH * KW * ggml_type_size(dst->type);
for (int c = 0; c < IC; c++) {
cur_permute_buffer = (char*)tmp_permute_buffer + offset +
KH * KW * c * ggml_type_size(dst->type);
cur_dst_buffer = (char*)dst->data +
c * KH * KW * n_step_w * ggml_type_size(dst->type);
for (int i = 0; i < n_step_w; i++) {
ACL_CHECK(aclrtMemcpyAsync(
cur_dst_buffer, size_cpy, cur_permute_buffer, size_cpy,
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
cur_dst_buffer =
(char*)cur_dst_buffer + KH * KW * ggml_type_size(dst->type);
cur_permute_buffer = (char*)cur_permute_buffer +
KH * KW * IC * ggml_type_size(dst->type);
}
}
} else {
offset = KH * KW * n_step_w *
ggml_type_size(dst->type); // equal to ggml_nbytes(dst)
ACL_CHECK(aclrtMemcpyAsync(dst->data, offset,
(char*)tmp_permute_buffer + offset, offset,
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
}
// release
ACL_CHECK(aclDestroyTensor(tmp_permute_tensor));
}
void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0]; // kernel
ggml_tensor* src1 = dst->src[1]; // input
GGML_TENSOR_BINARY_OP_LOCALS;
// aclnnIm2col only works on 2D. set s1, p1, d1 to 1 to perform 2D
// im2col and do post-processing to restore it to 1D.
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
const int32_t s1 = is_2D ? ((const int32_t*)(dst->op_params))[1] : 1;
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
const int32_t p1 = is_2D ? ((const int32_t*)(dst->op_params))[3] : 1;
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
const int32_t d1 = is_2D ? ((const int32_t*)(dst->op_params))[5] : 1;
const int64_t N = ne13;
const int64_t IC = ne12;
const int64_t KH = ne01;
const int64_t KW = ne00;
const int64_t IW = ne10;
const int64_t OH = is_2D ? ne2 : 1;
const int64_t OW = ne1;
// memory allocated increased to 3x when is_2D == false
const int64_t n_bytes_factor = is_2D ? 1 : 3;
// im2col: [N,C,H,W] -> [N, IC * KH * KW, OW * OH * n_bytes_factor]
aclTensor* acl_src1 = ggml_cann_create_tensor(src1);
int64_t tmp_im2col_ne[] = {OW * OH * n_bytes_factor, IC * KH * KW, N};
size_t tmp_im2col_nb[GGML_MAX_DIMS - 1];
tmp_im2col_nb[0] = ggml_type_size(src1->type);
for (int i = 1; i < GGML_MAX_DIMS - 1; i++) {
tmp_im2col_nb[i] = tmp_im2col_nb[i - 1] * tmp_im2col_ne[i - 1];
}
// Calculate im2col.
// If dst is f16, tmp_buffer is f32, we need alloc src.typesize *
// dst.elemcount.
ggml_cann_pool_alloc im2col_allocator(
ctx.pool(),
ggml_nelements(dst) * ggml_element_size(src1) * n_bytes_factor);
void* tmp_im2col_buffer = im2col_allocator.get();
aclTensor* tmp_im2col_tensor = ggml_cann_create_tensor(
tmp_im2col_buffer, ggml_cann_type_mapping(src1->type),
ggml_type_size(src1->type), tmp_im2col_ne, tmp_im2col_nb,
GGML_MAX_DIMS - 1, ACL_FORMAT_ND);
std::vector<int64_t> kernel_dims = {KH, KW};
std::vector<int64_t> dilation_size = {d1, d0};
std::vector<int64_t> padding_dims = {p1, p0};
std::vector<int64_t> stride_dims = {s1, s0};
auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2);
auto* dilations = aclCreateIntArray(dilation_size.data(), 2);
auto* paddings = aclCreateIntArray(padding_dims.data(), 2);
auto* strides = aclCreateIntArray(stride_dims.data(), 2);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnIm2colGetWorkspaceSize(acl_src1, kernel_size, dilations,
paddings, strides, tmp_im2col_tensor,
&workspaceSize, &executor));
ggml_cann_pool_alloc workspace_allocator(ctx.pool());
if (workspaceSize > 0) {
workspace_allocator.alloc(workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnIm2col(workspaceAddr, workspaceSize, executor, ctx.stream()));
// Cast if dst is f16.
aclTensor* tmp_cast_tensor = nullptr;
ggml_cann_pool_alloc tmp_cast_allocator(ctx.pool());
void* tmp_cast_buffer = nullptr;
if (src1->type != dst->type) {
tmp_cast_allocator.alloc(ggml_nbytes(dst) * n_bytes_factor);
tmp_cast_buffer = tmp_cast_allocator.get();
size_t temp_cast_nb[GGML_MAX_DIMS - 1];
temp_cast_nb[0] = ggml_type_size(dst->type);
for (int i = 1; i < GGML_MAX_DIMS - 1; i++) {
temp_cast_nb[i] = temp_cast_nb[i - 1] * tmp_im2col_ne[i - 1];
}
tmp_cast_tensor = ggml_cann_create_tensor(
tmp_cast_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_im2col_ne, temp_cast_nb,
GGML_MAX_DIMS - 1, ACL_FORMAT_ND);
aclnn_cast(ctx, tmp_im2col_tensor, tmp_cast_tensor,
ggml_cann_type_mapping(dst->type));
}
// post-processing
if (is_2D) {
ggml_cann_im2col_2d_post_process(ctx, dst, src1, tmp_cast_tensor,
tmp_im2col_tensor);
} else {
std::vector<int64_t> im2col_op_params = {
KH, KW, IW, IC, N, OH, OW, s0, p0, d0, n_bytes_factor};
ggml_cann_im2col_1d_post_process(ctx, dst, src1, tmp_cast_tensor,
tmp_im2col_tensor, im2col_op_params);
}
// release
ACL_CHECK(aclDestroyTensor(acl_src1));
ACL_CHECK(aclDestroyTensor(tmp_im2col_tensor));
ACL_CHECK(aclDestroyTensor(tmp_cast_tensor));
ACL_CHECK(aclDestroyIntArray(kernel_size));
ACL_CHECK(aclDestroyIntArray(dilations));
ACL_CHECK(aclDestroyIntArray(paddings));
ACL_CHECK(aclDestroyIntArray(strides));
}
/**
* @brief Applies element-wise exponential function to the elements of a tensor.
*
* This function computes the exponential of each element in the source tensor
* `acl_src` and stores the result back into the same tensor.
* The operation is defined as:
* \f[
* \text {acl_src }_i=e^{acl\_src_i}
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The tensor on which the exponential function will be applied.
*/
static void aclnn_exp(ggml_backend_cann_context& ctx, aclTensor* acl_src) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(
aclnnInplaceExpGetWorkspaceSize(acl_src, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnInplaceExp(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Multiplies elements of a tensor by a scalar value, optionally
* in-place.
*
* This function multiplies each element of the source tensor `acl_src` by the
* scalar `scale` and stores the result in the destination tensor `acl_dst`. If
* `inplace` is true, `acl_dst` will not be used and the operation is performed
* in-place on `acl_src`.
* The operation is defined as:
* \f[
* \text {acl_dst }_i=\text {acl_src }_i \times \text {scale}
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor whose elements will be multiplied.
* @param scale The scalar value by which each element of `acl_src` will be
* multiplied.
* @param acl_dst The destination tensor where the result will be stored if
* `inplace` is false.
* @param inplace Flag indicating whether to perform the operation in-place on
* `acl_src`.
*/
static void aclnn_muls(ggml_backend_cann_context& ctx, aclTensor* acl_src,
float scale, aclTensor* acl_dst, bool inplace) {
aclScalar* acl_scale = aclCreateScalar(&scale, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
if (inplace) {
ACL_CHECK(aclnnInplaceMulsGetWorkspaceSize(acl_src, acl_scale,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnInplaceMuls(workspaceAddr, workspaceSize, executor,
ctx.stream()));
} else {
ACL_CHECK(aclnnMulsGetWorkspaceSize(acl_src, acl_scale, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnMuls(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
ACL_CHECK(aclDestroyScalar(acl_scale));
}
/**
* @brief Performs an in-place element-wise multiplication of two tensors.
*
* This function performs an element-wise multiplication of the tensors
* `acl_src` and `acl_other` and stores the result in `acl_src`.
* The operation is defined as:
* \f[
* \text {acl_src }_i=\text {acl_src }_i \times \text {acl_other }_i
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor where the multiplication result will be
* stored.
* @param acl_other The tensor whose elements will be multiplied with `acl_src`.
*/
static void aclnn_inplace_mul(ggml_backend_cann_context& ctx,
aclTensor* acl_src, aclTensor* acl_other) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnInplaceMulGetWorkspaceSize(acl_src, acl_other,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnInplaceMul(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Performs element-wise multiplication of two tensors and stores the
* result in a destination tensor.
*
* This function performs element-wise multiplication of the tensors `acl_src`
* and `acl_other` and stores the result in the destination tensor `acl_dst`.
* The operation is defined as:
* \f[
* \text {acl_dst }_i=\text {acl_src }_i \times \text {acl_other }_i
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The first tensor for element-wise multiplication.
* @param acl_other The second tensor for element-wise multiplication.
* @param acl_dst The destination tensor where the result will be stored.
*/
static void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_other, aclTensor* acl_dst) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnMulGetWorkspaceSize(acl_src, acl_other, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnMul(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Applies element-wise cosine function to the elements of a tensor.
*
* This function computes the cosine of each element in the source tensor
* `acl_src` and stores the result in the destination tensor `acl_dst`. The
* operation is defined as: \f[ \text {acl_dst }_i=\cos \left(\text {acl_src
* }_i\right) \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor on which the cosine function will be
* applied.
* @param acl_dst The destination tensor where the cosine results will be
* stored.
*/
static void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(
aclnnCosGetWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnCos(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Applies element-wise sine function to the elements of a tensor.
*
* This function computes the sine of each element in the source tensor
`acl_src`
* and stores the result in the destination tensor `acl_dst`.
* The operation is defined as:
* \f[
* \text {acl_dst }_i=\sin \left(\text {acl_src }_i\right)
* \f]
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor on which the sine function will be applied.
* @param acl_dst The destination tensor where the sine results will be stored.
*/
static void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(
aclnnSinGetWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnSin(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Performs element-wise division of tensor1 by tensor2 , multiplies the
result by the scalar value and adds it to self .
*
* Performs element-wise division of tensor1 by tensor2,
* multiplies the result by the scalar value and adds it to self .
* The operation is defined as:
* \f[
* \text{out}_i = \text{selft}_i + \text{value} \times
\frac{\text{tensor1}_i}{\text{tensor2}_i}
* \f]
* @param ctx The context for the CANN backend operations.
* @param acl_self The source tensor on which the addcdiv function will be
applied.
* @param tensor1 Numerator tensor.
* @param tensor2 Denominator tensor.
* @param value The value to be used for coefficient.
*/
static void aclnn_inplace_addcdiv(ggml_backend_cann_context& ctx,
aclTensor* acl_self, aclTensor* tensor1,
aclTensor* tensor2, float value) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
aclScalar* acl_value = aclCreateScalar(&value, aclDataType::ACL_FLOAT);
ACL_CHECK(aclnnInplaceAddcdivGetWorkspaceSize(
acl_self, tensor1, tensor2, acl_value, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnInplaceAddcdiv(workspaceAddr, workspaceSize, executor,
ctx.stream()));
}
/**
* @brief Matrix division, optionally in-place.
*
* This function division each element of the source tensor `acl_src` by the
* tensor `acl_other` and stores the result in the destination tensor `acl_dst`.
* If `inplace` is true, `acl_dst` will not be used and the operation is
* performed in-place on `acl_src`. The operation is defined as: \f[
* \text{dst}_i = \frac{\text{acl_src}_i}{\text{acl_other}_i}
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_src Numerator tensor..
* @param acl_other Denominator tensor.
* @param acl_dst The destination tensor where the result will be stored if
* `inplace` is false.
* @param inplace Flag indicating whether to perform the operation in-place on
* `acl_src`.
*/
static void aclnn_div_tensor(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_other, aclTensor* acl_dst,
bool inplace) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
if (inplace) {
ACL_CHECK(aclnnInplaceDivGetWorkspaceSize(acl_src, acl_other,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnInplaceDiv(workspaceAddr, workspaceSize, executor,
ctx.stream()));
} else {
ACL_CHECK(aclnnDivGetWorkspaceSize(acl_src, acl_other, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnDiv(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
}
void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx,
ggml_tensor* dst) {
const ggml_tensor* src = dst->src[0];
GGML_ASSERT(src->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int dim = dst->op_params[0];
const int max_period = dst->op_params[1];
int half = dim / 2;
aclTensor* acl_src = ggml_cann_create_tensor(src);
// arange: [0, ..., half)
float start = 0;
float stop = half;
float step = 1;
int64_t n_elements_arange = half;
int64_t tmp_arange_ne[] = {half};
size_t tmp_arange_nb[] = {sizeof(dst->type)};
ggml_cann_pool_alloc arange_allocator(ctx.pool(), half * sizeof(dst->type));
void* tmp_arange_buffer = arange_allocator.get();
aclTensor* tmp_arange_tensor = ggml_cann_create_tensor(
tmp_arange_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_arange_ne, tmp_arange_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_arange(ctx, tmp_arange_tensor, start, stop, step, n_elements_arange);
// freq
float freq_param = -logf(max_period) / half;
bool inplace = true;
aclnn_muls(ctx, tmp_arange_tensor, freq_param, nullptr, inplace);
aclnn_exp(ctx, tmp_arange_tensor);
// permute: src [0,1,2,3]->[0,1,3,2]
int64_t tmp_permute_ne[] = {src->ne[1], src->ne[0], src->ne[2], src->ne[3]};
size_t tmp_permute_nb[GGML_MAX_DIMS];
tmp_permute_nb[0] = ggml_type_size(src->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
tmp_permute_nb[i] = tmp_permute_nb[i - 1] * tmp_permute_ne[i - 1];
}
ggml_cann_pool_alloc permute_allocator(ctx.pool(), ggml_nbytes(src));
void* tmp_permute_buffer = permute_allocator.get();
aclTensor* tmp_permute_tenosr = ggml_cann_create_tensor(
tmp_permute_buffer, ggml_cann_type_mapping(src->type),
ggml_type_size(src->type), tmp_permute_ne, tmp_permute_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
int64_t permute_dim[] = {0, 1, 3, 2};
int64_t num_dims = 4;
aclnn_permute(ctx, acl_src, tmp_permute_tenosr, permute_dim, num_dims);
// timestep * freq
int64_t tmp_mul_ne[] = {src->ne[1] * half, src->ne[0], src->ne[2],
src->ne[3]};
size_t tmp_mul_nb[GGML_MAX_DIMS];
tmp_mul_nb[0] = ggml_type_size(src->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
tmp_mul_nb[i] = tmp_mul_nb[i - 1] * tmp_mul_ne[i - 1];
}
int mul_nelements =
src->ne[1] * half * src->ne[0] * src->ne[2] * src->ne[3];
ggml_cann_pool_alloc mul_allocator(
ctx.pool(), mul_nelements * ggml_type_size(src->type));
void* tmp_mul_buffer = mul_allocator.get();
aclTensor* tmp_mul_tensor = ggml_cann_create_tensor(
tmp_mul_buffer, ggml_cann_type_mapping(src->type),
ggml_type_size(src->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS,
ACL_FORMAT_ND);
aclnn_mul(ctx, tmp_permute_tenosr, tmp_arange_tensor, tmp_mul_tensor);
// cos
ggml_cann_pool_alloc cos_allocator(
ctx.pool(), mul_nelements * ggml_type_size(src->type));
void* tmp_cos_buffer = cos_allocator.get();
aclTensor* tmp_cos_tensor = ggml_cann_create_tensor(
tmp_cos_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS,
ACL_FORMAT_ND);
aclnn_cos(ctx, tmp_mul_tensor, tmp_cos_tensor);
// sin
ggml_cann_pool_alloc sin_allocator(
ctx.pool(), mul_nelements * ggml_type_size(src->type));
void* tmp_sin_buffer = sin_allocator.get();
aclTensor* tmp_sin_tensor = ggml_cann_create_tensor(
tmp_sin_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS,
ACL_FORMAT_ND);
aclnn_sin(ctx, tmp_mul_tensor, tmp_sin_tensor);
// concat
int64_t concat_dim = 3;
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
aclTensor* tensors[] = {tmp_cos_tensor, tmp_sin_tensor};
aclTensorList* tensorList = aclCreateTensorList(tensors, 2);
aclnn_concat(ctx, tensorList, acl_dst, concat_dim);
// release
// segmentation fault when delete both tensorList and his elements.
ACL_CHECK(aclDestroyTensorList(tensorList));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(tmp_arange_tensor));
ACL_CHECK(aclDestroyTensor(tmp_permute_tenosr));
ACL_CHECK(aclDestroyTensor(tmp_mul_tensor));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Fills a tensor with a scalar value.
*
* This function fills the destination tensor `acl_dst` with the scalar value
* `scalar`.
*
* @param ctx The context for the CANN backend operations.
* @param scalar The scalar value used to fill the tensor.
* @param acl_dst The destination tensor to be filled with the scalar value.
*/
static void aclnn_fill_scalar(ggml_backend_cann_context& ctx, float scalar,
aclTensor* acl_dst) {
auto acl_scalar = aclCreateScalar(&scalar, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnInplaceFillScalarGetWorkspaceSize(
acl_dst, acl_scalar, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnInplaceFillScalar(workspaceAddr, workspaceSize, executor,
ctx.stream()));
ACL_CHECK(aclDestroyScalar(acl_scalar));
}
/**
* @brief Raises each element of a tensor to the power of the corresponding
* element in another tensor.
*
* This function computes the element-wise power of the destination tensor
* `acl_dst` raised to the power of the exponent tensor `acl_exp`.
* The operation is defined as:
* \f[
* \text {acl_dst }_i=acl\_dst_i^{\text {acl_exp }_i}
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_dst The destination tensor, which also serves as the base tensor.
* @param acl_exp The exponent tensor, each element of which is used to raise
* the corresponding element in the destination tensor.
*/
static void aclnn_pow_tensor_tensor(ggml_backend_cann_context& ctx,
aclTensor* acl_dst, aclTensor* acl_exp) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnInplacePowTensorTensorGetWorkspaceSize(
acl_dst, acl_exp, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnInplacePowTensorTensor(workspaceAddr, workspaceSize,
executor, ctx.stream()));
}
/**
* @brief Applies the Alibi (Attention with Linear Biases) mechanism to the
* @details This function implements the Alibi mechanism, which introduces
* learnable biases into the attention scores to simulate relative
* position encoding without the need for explicit positional
* embeddings.
*
* @param ctx The backend CANN context for executing operations.
* @param acl_src The source tensor representing the query or key.
* @param acl_position The position tensor containing relative positions.
* @param acl_dst The destination tensor where the result will be stored.
* @param n_head The number of attention heads.
* @param src_ne The dimensions of the source tensor.
* @param src_nb0 The byte size of the first dimension of the source
tensor.
* @param max_bias The maximum bias value used in the Alibi mechanism.
* @param dst The destination tensor object for additional metadata.
*
* The function performs the following steps:
* 1. Calculates the logarithm floor of the number of heads to determine the
base for bias calculation.
* 2. Initializes arrays with arithmetic sequences and fills them with bias
values.
* 3. Computes the bias tensor based on the calculated biases and arithmetic
sequences.
* 4. Reshapes the bias tensor to match the dimensions of the input tensors.
* 5. Multiplies the position tensor by the bias tensor.
* 6. Adds the result of the multiplication to the source tensor to produce the
final output.
*/
static void aclnn_alibi(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_position, aclTensor* acl_dst,
const int n_head, int64_t* src_ne, const size_t src_nb0,
float max_bias, ggml_tensor* dst) {
const int64_t ne2_ne3 = src_ne[2] * src_ne[3];
GGML_ASSERT(src_nb0 == sizeof(float));
GGML_ASSERT(n_head == src_ne[2]);
const int n_heads_log2_floor = 1u << (uint32_t)floor(log2(n_head));
float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
// init arange
ggml_cann_pool_alloc arange_allocator(ctx.pool(),
ne2_ne3 * ggml_type_size(dst->type));
void* tmp_arange_buffer = arange_allocator.get();
// arange1: [1, ..., n_heads_log2_floor+1)
float start = 1;
float stop = n_heads_log2_floor + 1;
float step = 1;
int64_t n_elements_arange = n_heads_log2_floor;
int64_t tmp_arange1_ne[] = {n_heads_log2_floor};
size_t tmp_arange1_nb[] = {sizeof(dst->type)};
aclTensor* tmp_arange1_tensor = ggml_cann_create_tensor(
tmp_arange_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_arange1_ne, tmp_arange1_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_arange(ctx, tmp_arange1_tensor, start, stop, step, n_elements_arange);
aclTensor* tmp_arange2_tensor = nullptr;
if (n_heads_log2_floor < ne2_ne3) {
// arange2: [1, ..., 2 * (k - n_heads_log2_floor) + 1)
start = 1;
stop = 2 * (ne2_ne3 - n_heads_log2_floor) + 1;
step = 2;
n_elements_arange = ne2_ne3 - n_heads_log2_floor;
int64_t tmp_arange2_ne[] = {ne2_ne3 - n_heads_log2_floor};
size_t tmp_arange2_nb[] = {sizeof(dst->type)};
aclTensor* tmp_arange2_tensor = ggml_cann_create_tensor(
(char*)tmp_arange_buffer +
n_heads_log2_floor * ggml_type_size(dst->type),
ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type),
tmp_arange2_ne, tmp_arange2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_arange(ctx, tmp_arange2_tensor, start, stop, step,
n_elements_arange);
}
// init mk_base
ggml_cann_pool_alloc mk_base_allocator(ctx.pool(),
ne2_ne3 * ggml_type_size(dst->type));
void* tmp_mk_base_buffer = mk_base_allocator.get();
int64_t tmp_mk_base1_ne[] = {n_heads_log2_floor};
size_t tmp_mk_base1_nb[] = {sizeof(dst->type)};
aclTensor* tmp_mk_base1_tensor = ggml_cann_create_tensor(
tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_mk_base1_ne, tmp_mk_base1_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_fill_scalar(ctx, m0, tmp_mk_base1_tensor);
aclTensor* tmp_mk_base2_tensor = nullptr;
if (n_heads_log2_floor < ne2_ne3) {
int64_t tmp_mk_base2_ne[] = {ne2_ne3 - n_heads_log2_floor};
size_t tmp_mk_base2_nb[] = {sizeof(dst->type)};
aclTensor* tmp_mk_base2_tensor = ggml_cann_create_tensor(
(char*)tmp_mk_base_buffer +
n_heads_log2_floor * ggml_type_size(dst->type),
ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type),
tmp_mk_base2_ne, tmp_mk_base2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_fill_scalar(ctx, m1, tmp_mk_base2_tensor);
}
// init mk
int64_t tmp_mk_base_ne[] = {ne2_ne3};
size_t tmp_mk_base_nb[] = {sizeof(dst->type)};
aclTensor* tmp_mk_base_tensor = ggml_cann_create_tensor(
tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_mk_base_ne, tmp_mk_base_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclTensor* tmp_arange_tensor = ggml_cann_create_tensor(
tmp_arange_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_mk_base_ne, tmp_mk_base_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_pow_tensor_tensor(ctx, tmp_mk_base_tensor, tmp_arange_tensor);
// reshape mk
int64_t tmp_mk_ne[] = {1, 1, src_ne[2], src_ne[3]};
size_t tmp_mk_nb[GGML_MAX_DIMS];
tmp_mk_nb[0] = ggml_type_size(dst->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
tmp_mk_nb[i] = tmp_mk_nb[i - 1] * tmp_mk_ne[i - 1];
}
aclTensor* tmp_mk_tensor = ggml_cann_create_tensor(
tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_mk_ne, tmp_mk_nb, GGML_MAX_DIMS,
ACL_FORMAT_ND);
// acl_position * mk
int64_t tmp_output_ne[] = {src_ne[0], src_ne[1], src_ne[2], src_ne[3]};
size_t tmp_output_nb[GGML_MAX_DIMS];
tmp_output_nb[0] = ggml_type_size(dst->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
tmp_output_nb[i] = tmp_output_nb[i - 1] * tmp_output_ne[i - 1];
}
ggml_cann_pool_alloc output_allocator(ctx.pool(), ggml_nbytes(dst));
void* tmp_output_buffer = output_allocator.get();
aclTensor* tmp_output_tensor = ggml_cann_create_tensor(
tmp_output_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_output_ne, tmp_output_nb, GGML_MAX_DIMS,
ACL_FORMAT_ND);
aclnn_mul(ctx, acl_position, tmp_mk_tensor, tmp_output_tensor);
// add
aclnn_add(ctx, tmp_output_tensor, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(tmp_arange1_tensor));
ACL_CHECK(aclDestroyTensor(tmp_arange2_tensor));
ACL_CHECK(aclDestroyTensor(tmp_mk_base1_tensor));
ACL_CHECK(aclDestroyTensor(tmp_mk_base2_tensor));
ACL_CHECK(aclDestroyTensor(tmp_mk_base_tensor));
ACL_CHECK(aclDestroyTensor(tmp_arange_tensor));
ACL_CHECK(aclDestroyTensor(tmp_mk_tensor));
ACL_CHECK(aclDestroyTensor(tmp_output_tensor));
}
void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_cann_dup(ctx, dst);
}
/**
* @brief Performs element-wise addition of two tensors in place.
*
* This function adds the source tensor `acl_src` to the destination tensor
* `acl_dst` element-wise and stores the result in the destination tensor
* `acl_dst`.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor to be added.
* @param acl_dst The destination tensor which will hold the result of the
* addition.
*/
static void aclnn_inplace_add(ggml_backend_cann_context& ctx,
aclTensor* acl_src, aclTensor* acl_dst) {
aclScalar* alpha = nullptr;
float alphaValue = 1.0f;
alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnInplaceAddGetWorkspaceSize(acl_dst, acl_src, alpha,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnInplaceAdd(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyScalar(alpha));
}
/**
* @brief Applies the softmax function to a tensor along a specified dimension.
*
* This function computes the softmax of the source tensor `acl_src` along the
* specified dimension `dim` and stores the result in the destination tensor
* `acl_dst`.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor on which the softmax function will be
* applied.
* @param dim The dimension along which the softmax function will be computed.
* @param acl_dst The destination tensor where the softmax results will be
* stored.
*/
static void aclnn_softmax(ggml_backend_cann_context& ctx, aclTensor* acl_src,
int64_t dim, aclTensor* acl_dst) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnSoftmaxGetWorkspaceSize(acl_src, dim, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
aclrtStream stream = ctx.stream();
ACL_CHECK(aclnnSoftmax(workspaceAddr, workspaceSize, executor, stream));
}
void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1]; // mask
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, (float*)dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (float*)dst->op_params + 1, sizeof(float));
// input mul scale
aclScalar* acl_scale = aclCreateScalar(&scale, aclDataType::ACL_FLOAT);
size_t n_bytes = ggml_nbytes(src0);
ggml_cann_pool_alloc mul_scale_allocator(ctx.pool(), n_bytes);
void* input_mul_scale_buffer = mul_scale_allocator.get();
aclTensor* acl_input_mul_scale_tensor = ggml_cann_create_tensor(
input_mul_scale_buffer, ACL_FLOAT, ggml_type_size(src0->type), src0->ne,
src0->nb, GGML_MAX_DIMS);
bool inplace = false;
aclnn_muls(ctx, acl_src0, scale, acl_input_mul_scale_tensor, inplace);
// mask
aclTensor* acl_src1_fp32_tensor = nullptr;
aclTensor* tmp_mask_tensor = nullptr;
ggml_cann_pool_alloc src1_fp32_allocator(ctx.pool());
if (src1) {
const bool use_f16 = src1->type == GGML_TYPE_F16;
if (use_f16) {
// cast to fp32
size_t n_bytes = ggml_nelements(src1) * sizeof(float_t);
size_t src1_fp32_nb[GGML_MAX_DIMS];
src1_fp32_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src1_fp32_nb[i] = src1_fp32_nb[i - 1] * src1->ne[i - 1];
}
src1_fp32_allocator.alloc(n_bytes);
void* src1_fp32_buffer = src1_fp32_allocator.get();
acl_src1_fp32_tensor = ggml_cann_create_tensor(
src1_fp32_buffer, ACL_FLOAT, sizeof(float), src1->ne,
src1_fp32_nb, GGML_MAX_DIMS);
aclTensor* acl_src1 = ggml_cann_create_tensor(src1);
aclnn_cast(ctx, acl_src1, acl_src1_fp32_tensor, ACL_FLOAT);
ACL_CHECK(aclDestroyTensor(acl_src1));
} else {
acl_src1_fp32_tensor = ggml_cann_create_tensor(src1);
}
// broadcast the mask across rows, only use ne11 of ne01 in mask
if (src1->ne[1] != src0->ne[1]) {
// mask shape: [1,1,ne11,ne10]
int64_t tmp_mask_ne[] = {src0->ne[0], src0->ne[1], 1, 1};
size_t tmp_mask_nb[GGML_MAX_DIMS];
tmp_mask_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
tmp_mask_nb[i] = tmp_mask_nb[i - 1] * tmp_mask_ne[i - 1];
}
tmp_mask_tensor = ggml_cann_create_tensor(
src1->data, ACL_FLOAT, sizeof(float), tmp_mask_ne, tmp_mask_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
}
// alibi
const int n_head = src0->ne[2];
const size_t src_nb0 = src0->nb[0];
n_bytes = ggml_nbytes(dst);
ggml_cann_pool_alloc output_allocator(ctx.pool(), n_bytes);
void* output_buffer = output_allocator.get();
aclTensor* alibi_output_tensor = ggml_cann_create_tensor(
output_buffer, ACL_FLOAT, ggml_type_size(dst->type), dst->ne,
dst->nb, GGML_MAX_DIMS);
if (max_bias <= 0.0f) {
// slope = 1.0
if (tmp_mask_tensor) {
aclnn_add(ctx, tmp_mask_tensor, acl_input_mul_scale_tensor,
alibi_output_tensor);
} else {
aclnn_add(ctx, acl_src1_fp32_tensor, acl_input_mul_scale_tensor,
alibi_output_tensor);
}
} else {
// slope != 1.0
if (tmp_mask_tensor) {
aclnn_alibi(ctx, acl_input_mul_scale_tensor, tmp_mask_tensor,
alibi_output_tensor, n_head, src0->ne, src_nb0,
max_bias, dst);
} else {
aclnn_alibi(ctx, acl_input_mul_scale_tensor,
acl_src1_fp32_tensor, alibi_output_tensor, n_head,
src0->ne, src_nb0, max_bias, dst);
}
}
// softmax
aclnn_softmax(ctx, alibi_output_tensor, 3, acl_dst);
ACL_CHECK(aclDestroyTensor(alibi_output_tensor));
} else {
aclnn_softmax(ctx, acl_input_mul_scale_tensor, 3, acl_dst);
}
ACL_CHECK(aclDestroyTensor(acl_src0));
ACL_CHECK(aclDestroyTensor(acl_src1_fp32_tensor));
ACL_CHECK(aclDestroyTensor(acl_dst));
ACL_CHECK(aclDestroyScalar(acl_scale));
ACL_CHECK(aclDestroyTensor(acl_input_mul_scale_tensor));
ACL_CHECK(aclDestroyTensor(tmp_mask_tensor));
}
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1];
ggml_cann_pool_alloc src0_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
ggml_cann_pool_alloc src1_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
ggml_cann_pool_alloc dst_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
src0->extra = src0_extra_allocator.get();
src1->extra = src1_extra_allocator.get();
dst->extra = dst_extra_allocator.get();
ACL_CHECK(aclrtMemcpyAsync(src0->extra, sizeof(ggml_tensor), src0,
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
ctx.stream()));
ACL_CHECK(aclrtMemcpyAsync(src1->extra, sizeof(ggml_tensor), src1,
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
ctx.stream()));
ACL_CHECK(aclrtMemcpyAsync(dst->extra, sizeof(ggml_tensor), dst,
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
ctx.stream()));
switch (src0->type) {
case GGML_TYPE_F32: {
#ifdef ASCEND_310P
// Special operation for get_row_f32 kernel of 310P: clear the
// content of dest data buffer when row is not aligned to 32 bytes
if ((src0->ne[0] % 8) != 0) {
size_t dst_len = src1->ne[0] * src1->ne[1] * src1->ne[2] *
src0->ne[0] * ggml_type_size(GGML_TYPE_F32);
ACL_CHECK(aclrtMemset((char*)dst->data, dst_len, 0, dst_len));
}
#endif
aclrtlaunch_ascendc_get_row_f32(
24, ctx.stream(), src0->data, src1->data, dst->data,
((ggml_tensor*)src0->extra)->ne,
((ggml_tensor*)src0->extra)->nb,
((ggml_tensor*)src1->extra)->ne,
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
break;
}
case GGML_TYPE_F16: {
#ifdef ASCEND_310P
// Special operation for get_row_f16 kernel of 310P: clear the
// content of dest data buffer when row is not aligned to 32 bytes
if ((src0->ne[0] % 16) != 0) {
size_t dst_len =
src1->ne[0] * src1->ne[1] * src1->ne[2] * src0->ne[0] *
ggml_type_size(
GGML_TYPE_F32); // out is also f32, even input is f16
ACL_CHECK(aclrtMemset((char*)dst->data, dst_len, 0, dst_len));
}
#endif
aclrtlaunch_ascendc_get_row_f16(
24, ctx.stream(), src0->data, src1->data, dst->data,
((ggml_tensor*)src0->extra)->ne,
((ggml_tensor*)src0->extra)->nb,
((ggml_tensor*)src1->extra)->ne,
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
break;
}
case GGML_TYPE_Q4_0:
aclrtlaunch_ascendc_get_row_q4_0(
24, ctx.stream(), src0->data, src1->data, dst->data,
((ggml_tensor*)src0->extra)->ne,
((ggml_tensor*)src1->extra)->ne,
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
break;
case GGML_TYPE_Q8_0:
aclrtlaunch_ascendc_get_row_q8_0(
24, ctx.stream(), src0->data, src1->data, dst->data,
((ggml_tensor*)src0->extra)->ne,
((ggml_tensor*)src1->extra)->ne,
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
break;
default:
GGML_ABORT("fatal error");
break;
}
}
/**
* @brief Repeats elements of a tensor along a specified dimension.
*
* This function repeats each element of the source tensor `acl_src` a specified
* number of times (`repeats`) along the specified dimension `dim` and stores
* the result in the destination tensor `acl_dst`.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor whose elements will be repeated.
* @param acl_dst The destination tensor where the repeated elements will be
* stored.
* @param dim The dimension along which the elements will be repeated.
* @param repeats The number of times each element will be repeated.
* @param output_size The size of the output tensor.
*/
static void aclnn_repeat_interleave(ggml_backend_cann_context& ctx,
aclTensor* acl_src, aclTensor* acl_dst,
int64_t dim, int64_t repeats,
int64_t output_size) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnRepeatInterleaveIntWithDimGetWorkspaceSize(
acl_src, repeats, dim, output_size, acl_dst, &workspaceSize,
&executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnRepeatInterleaveIntWithDim(workspaceAddr, workspaceSize,
executor, ctx.stream()));
}
/**
* @brief Performs matrix multiplication of two tensors.
*
* This function computes the matrix multiplication of the input tensor
* `acl_input` and the weight tensor `acl_weight`, and stores the result in the
* destination tensor `acl_dst`.
* The operation is defined as:
* \f[
* \text {acl_dst}=\text {acl_input@acl_weight}
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_input The input tensor for the matrix multiplication.
* @param acl_weight The weight tensor for the matrix multiplication.
* @param acl_dst The destination tensor where the result of the matrix
* multiplication will be stored.
*/
static void aclnn_mat_mul(ggml_backend_cann_context& ctx, aclTensor* acl_input,
aclTensor* acl_weight, aclTensor* acl_dst) {
int8_t cube_math_type = 1; // ALLOW_FP32_DOWN_PRECISION, when input is
// fp32, atlas a2 will transpose it to HFLOAT32.
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnMatmulGetWorkspaceSize(acl_input, acl_weight, acl_dst,
cube_math_type, &workspaceSize,
&executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnMatmul(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Performs matrix multiplication of two 2D tensors.
*
* This function computes the matrix multiplication of the input tensor
* `acl_input` and the weight tensor `acl_weight`, and stores the result in the
* destination tensor `acl_dst`.
* The operation is defined as:
* \f[
* \text {acl_dst}=\text {acl_input@acl_weight}
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_input The input tensor for the matrix multiplication.
* @param acl_weight The weight tensor for the matrix multiplication.
* @param acl_dst The destination tensor where the result of the matrix
* multiplication will be stored.
*/
static void aclnn_mat_mul_2d(ggml_backend_cann_context& ctx,
aclTensor* acl_input, aclTensor* acl_weight,
aclTensor* acl_dst) {
int8_t cube_math_type = 2;
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnMmGetWorkspaceSize(acl_input, acl_weight, acl_dst,
cube_math_type, &workspaceSize,
&executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnMm(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Performs matrix multiplication of two 3D tensors.
*
* This function computes the matrix multiplication of the input tensor
* `acl_input` and the weight tensor `acl_weight`, and stores the result in the
* destination tensor `acl_dst`.
* The operation is defined as:
* \f[
* \text {acl_dst}=\text {acl_input@acl_weight}
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_input The input tensor for the matrix multiplication.
* @param acl_weight The weight tensor for the matrix multiplication.
* @param acl_dst The destination tensor where the result of the matrix
* multiplication will be stored.
*/
static void aclnn_mat_mul_3d(ggml_backend_cann_context& ctx,
aclTensor* acl_input, aclTensor* acl_weight,
aclTensor* acl_dst) {
int8_t cube_math_type = 2;
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnBatchMatMulGetWorkspaceSize(acl_input, acl_weight, acl_dst,
cube_math_type, &workspaceSize,
&executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnBatchMatMul(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Performs matrix multiplication with floating-point precision on
* tensors using the CANN backend.
*
* This function performs matrix multiplication of the input tensor and the
* weight tensor, handling broadcasting and transposing as needed, and stores
* the result in the destination tensor `dst`.
*
* @param ctx The context for the CANN backend operations.
* @param dst The destination tensor where the result of the matrix
* multiplication will be stored.
*/
static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx,
ggml_tensor* dst) {
ggml_tensor* weight = dst->src[0]; // weight
ggml_tensor* input = dst->src[1]; // input
// when weight ne2 or ne3 is 1, aclnnMatmulGetWorkspaceSize will auto
// broadcast, when weight ne2 or ne3 is not 1, weight need repeat.
BCAST_MUL_MAT_SHAPE(input, weight, dst);
int64_t n_dims = bcast_dims;
if (bcast_input_ne[3] == bcast_weight_ne[3] && bcast_input_ne[3] == 1) {
if (bcast_input_ne[2] == 1 && bcast_weight_ne[2] == 1) {
n_dims = 2;
} else if (bcast_input_ne[2] == 1) {
n_dims = 3;
}
}
aclTensor* acl_input_tensor =
ggml_cann_create_tensor(input, bcast_input_ne, bcast_input_nb, n_dims);
int64_t transpose_ne[] = {bcast_weight_ne[1], bcast_weight_ne[0],
bcast_weight_ne[2], bcast_weight_ne[3],
bcast_weight_ne[4], bcast_weight_ne[5]};
size_t transpose_nb[] = {bcast_weight_nb[1], bcast_weight_nb[0],
bcast_weight_nb[2], bcast_weight_nb[3],
bcast_weight_nb[4], bcast_weight_nb[5]};
aclTensor* acl_weight_tensor =
ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, n_dims);
aclTensor* acl_dst =
ggml_cann_create_tensor(dst, bcast_dst_ne, bcast_dst_nb, n_dims);
switch (n_dims) {
case 2:
aclnn_mat_mul_2d(ctx, acl_input_tensor, acl_weight_tensor, acl_dst);
break;
case 3:
aclnn_mat_mul_3d(ctx, acl_input_tensor, acl_weight_tensor, acl_dst);
break;
default:
aclnn_mat_mul(ctx, acl_input_tensor, acl_weight_tensor, acl_dst);
break;
}
ACL_CHECK(aclDestroyTensor(acl_weight_tensor));
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Performs matrix multiplication with quantized weights and
* floating-point inputs using the CANN backend.
*
* This function performs matrix multiplication of the input tensor `src1` and
* the weight tensor `src0`, handling broadcasting, transposing, and
* quantization as needed, and stores the result in the destination tensor
* `dst`.
*
* @param ctx The context for the CANN backend operations.
* @param dst The destination tensor where the result of the matrix
* multiplication will be stored.
*/
static void ggml_cann_mul_mat_quant(ggml_backend_cann_context& ctx,
ggml_tensor* dst,
const enum ggml_type type) {
ggml_tensor* src0 = dst->src[0]; // weight
ggml_tensor* src1 = dst->src[1]; // input
// The shape of the weight is NCHW.
// Matrix multiplication uses HW dims.
// HC is regarded as batch.
// weight need transpose.
float weight_elem_size;
if (type == GGML_TYPE_Q4_0) {
weight_elem_size = float(sizeof(uint8_t)) / 2;
} else if (type == GGML_TYPE_Q8_0) {
weight_elem_size = float(sizeof(uint8_t));
} else {
GGML_ABORT("Only support Q4_0 and Q8_0 MUL_MAT");
}
float weight_nb[] = {src0->ne[0] * weight_elem_size, weight_elem_size};
size_t weight_stride = src0->ne[1] * src0->ne[0] * weight_elem_size;
size_t weight_size = weight_stride * src0->ne[2] * src0->ne[3];
// scale stored at the end of weight. Also need transpose.
size_t scale_elem_size = sizeof(uint16_t);
size_t scale_nb[] = {src0->ne[0] / QK8_0 * scale_elem_size,
scale_elem_size};
size_t scale_stride = src0->ne[1] * src0->ne[0] / QK8_0 * scale_elem_size;
char* scale_offset = (char*)src0->data + weight_size;
// input
size_t input_elem_size = sizeof(uint16_t);
int64_t input_ne[] = {src1->ne[0], src1->ne[1]};
size_t input_nb[] = {input_elem_size, input_ne[0] * input_elem_size};
size_t input_stride = input_ne[0] * input_ne[1] * input_elem_size;
ggml_cann_pool_alloc input_alloctor(ctx.pool());
void* input_buffer = src1->data;
// case in
if (src1->type != GGML_TYPE_F16) {
aclTensor* acl_src1_tensor = ggml_cann_create_tensor(src1);
input_buffer =
input_alloctor.alloc(ggml_nelements(src1) * input_elem_size);
int64_t* input_cast_ne = src1->ne;
size_t input_cast_nb[GGML_MAX_DIMS];
input_cast_nb[0] = sizeof(uint16_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
input_cast_nb[i] = input_cast_nb[i - 1] * input_cast_ne[i - 1];
}
aclTensor* acl_input_tensor = ggml_cann_create_tensor(
input_buffer, ACL_FLOAT16, input_elem_size, input_cast_ne,
input_cast_nb, GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src1_tensor, acl_input_tensor, ACL_FLOAT16);
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
ACL_CHECK(aclDestroyTensor(acl_src1_tensor));
}
// output
size_t output_elem_size = sizeof(uint16_t);
size_t output_nb[] = {output_elem_size, dst->ne[0] * output_elem_size};
ggml_cann_pool_alloc output_allocator(ctx.pool());
void* output_buffer =
output_allocator.alloc(ggml_nelements(dst) * output_elem_size);
size_t output_stride = dst->ne[0] * dst->ne[1] * output_elem_size;
// aclnn
int64_t max_elem_size = 65535;
int64_t split_size = (src0->ne[1] / max_elem_size) + 1;
ggml_cann_pool_alloc workspace_allocator(ctx.pool());
aclOpExecutor* executor = nullptr;
uint64_t workspaceSize = 0;
void* workspaceAddr = nullptr;
for (int64_t n1 = 0; n1 < src1->ne[3]; n1++) {
for (int64_t c1 = 0; c1 < src1->ne[2]; c1++) {
int64_t n0 = n1 / (src1->ne[3] / src0->ne[3]);
int64_t c0 = c1 / (src1->ne[2] / src0->ne[2]);
int64_t batch1 = (n1 * src1->ne[2]) + c1;
int64_t batch0 = (n0 * src0->ne[2]) + c0;
aclTensor* acl_input_tensor = ggml_cann_create_tensor(
(char*)input_buffer + batch1 * input_stride, ACL_FLOAT16,
input_elem_size, input_ne, input_nb, 2);
// first split
int64_t weight_ne_offset = 0;
int64_t weight_ne[2] = {
max_elem_size > src0->ne[1] ? src0->ne[1] : max_elem_size,
src0->ne[0]};
int64_t scale_ne_offset = 0;
int64_t scale_ne[2] = {weight_ne[0], weight_ne[1] / QK8_0};
int64_t output_ne_offset = 0;
int64_t output_ne[2] = {weight_ne[0], dst->ne[1]};
aclTensor* acl_weight_tensor = ggml_cann_create_tensor(
(char*)src0->data + batch0 * weight_stride,
ggml_cann_type_mapping(type), weight_elem_size, weight_ne,
weight_nb, 2, ACL_FORMAT_ND, weight_ne_offset);
aclTensor* acl_scale_tensor = ggml_cann_create_tensor(
scale_offset + batch0 * scale_stride, ACL_FLOAT16,
scale_elem_size, scale_ne, scale_nb, 2, ACL_FORMAT_ND,
scale_ne_offset);
aclTensor* acl_output_tensor = ggml_cann_create_tensor(
(char*)output_buffer + batch1 * output_stride, ACL_FLOAT16,
output_elem_size, output_ne, output_nb, 2, ACL_FORMAT_ND,
output_ne_offset);
ACL_CHECK(aclnnWeightQuantBatchMatmulV2GetWorkspaceSize(
acl_input_tensor, acl_weight_tensor, acl_scale_tensor, nullptr,
nullptr, nullptr, nullptr, QK8_0, acl_output_tensor,
&workspaceSize, &executor));
if (workspaceAddr == nullptr) {
workspaceAddr = workspace_allocator.alloc(workspaceSize);
}
ACL_CHECK(aclnnWeightQuantBatchMatmulV2(
workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_weight_tensor));
ACL_CHECK(aclDestroyTensor(acl_scale_tensor));
ACL_CHECK(aclDestroyTensor(acl_output_tensor));
// other splits
for (int64_t split = 1; split < split_size; split++) {
weight_ne_offset +=
weight_elem_size * weight_ne[0] * weight_ne[1];
weight_ne[0] = max_elem_size * (split + 1) > src0->ne[1]
? src0->ne[1] - (max_elem_size * split)
: max_elem_size;
scale_ne_offset += scale_elem_size * scale_ne[0] * scale_ne[1];
scale_ne[0] = weight_ne[0];
output_ne_offset +=
output_elem_size * output_ne[0] * output_ne[1];
output_ne[0] = weight_ne[0];
acl_weight_tensor = ggml_cann_create_tensor(
(char*)src0->data + batch0 * weight_stride,
ggml_cann_type_mapping(type), weight_elem_size, weight_ne,
weight_nb, 2, ACL_FORMAT_ND, weight_ne_offset);
acl_scale_tensor = ggml_cann_create_tensor(
scale_offset + batch0 * scale_stride, ACL_FLOAT16,
scale_elem_size, scale_ne, scale_nb, 2, ACL_FORMAT_ND,
scale_ne_offset);
acl_output_tensor = ggml_cann_create_tensor(
(char*)output_buffer + batch1 * output_stride, ACL_FLOAT16,
output_elem_size, output_ne, output_nb, 2, ACL_FORMAT_ND,
output_ne_offset);
ACL_CHECK(aclnnWeightQuantBatchMatmulV2GetWorkspaceSize(
acl_input_tensor, acl_weight_tensor, acl_scale_tensor,
nullptr, nullptr, nullptr, nullptr, QK8_0,
acl_output_tensor, &workspaceSize, &executor));
ACL_CHECK(aclnnWeightQuantBatchMatmulV2(
workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_weight_tensor));
ACL_CHECK(aclDestroyTensor(acl_scale_tensor));
ACL_CHECK(aclDestroyTensor(acl_output_tensor));
}
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
}
}
// cast out
if (dst->type != GGML_TYPE_F16) {
int64_t* output_cast_ne = dst->ne;
size_t output_cast_nb[GGML_MAX_DIMS];
output_cast_nb[0] = sizeof(uint16_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
output_cast_nb[i] = output_cast_nb[i - 1] * output_cast_ne[i - 1];
}
aclTensor* acl_output_tensor = ggml_cann_create_tensor(
output_buffer, ACL_FLOAT16, output_elem_size, output_cast_ne,
output_cast_nb, GGML_MAX_DIMS);
aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst);
aclnn_cast(ctx, acl_output_tensor, acl_dst_tensor,
ggml_cann_type_mapping(dst->type));
ACL_CHECK(aclDestroyTensor(acl_output_tensor));
ACL_CHECK(aclDestroyTensor(acl_dst_tensor));
}
}
void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
const enum ggml_type type = dst->src[0]->type;
switch (type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
ggml_cann_mat_mul_fp(ctx, dst);
break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q8_0:
ggml_cann_mul_mat_quant(ctx, dst, type);
break;
default:
GGML_ABORT("fatal error");
break;
}
}
/**
* @brief Rolls the elements of a tensor along a specified dimension.
*
* This function rolls the elements of the source tensor `acl_src` by the
* specified shifts `shifts` along the specified dimensions `dims`, and stores
* the result in the destination tensor `acl_dst`.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor whose elements will be rolled.
* @param acl_dst The destination tensor where the rolled elements will be
* stored.
* @param shifts An array specifying the number of positions by which elements
* are shifted.
* @param dims An array specifying the dimensions along which elements are
* shifted.
*/
static void aclnn_roll(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst, int64_t* shifts, int64_t* dims) {
aclIntArray* acl_shifts = aclCreateIntArray(shifts, 1);
aclIntArray* acl_dims = aclCreateIntArray(dims, 1);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnRollGetWorkspaceSize(acl_src, acl_shifts, acl_dims, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnRoll(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyIntArray(acl_shifts));
ACL_CHECK(aclDestroyIntArray(acl_dims));
}
/**
* @brief Fills specified positions of a tensor with a scalar value.
*
* This function fills the positions in the source tensor `acl_src` specified by
* `index` along the dimension `dim` with the scalar value `value`.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor where the positions will be filled.
* @param dim The dimension along which the positions are specified.
* @param index An array specifying the positions to be filled.
* @param index_num The number of positions specified in the index array.
* @param value The scalar value used to fill the specified positions.
*/
static void aclnn_index_fill_tensor(ggml_backend_cann_context& ctx,
aclTensor* acl_src, int64_t dim,
int64_t* index, int64_t index_num,
float value) {
aclIntArray* acl_index = aclCreateIntArray(index, index_num);
aclScalar* acl_value = aclCreateScalar(&value, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnInplaceIndexFillTensorGetWorkspaceSize(
acl_src, dim, acl_index, acl_value, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnInplaceIndexFillTensor(workspaceAddr, workspaceSize,
executor, ctx.stream()));
ACL_CHECK(aclDestroyIntArray(acl_index));
ACL_CHECK(aclDestroyScalar(acl_value));
}
static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
aclTensor* acl_cos_repeat_tensor,
aclTensor* acl_sin_repeat_tensor,
float theta_scale, float freq_scale,
float attn_factor, bool is_neox) {
// int sin/cos cache, cache has different repeat method depond on
// @param.is_neox
ggml_tensor* src0 = dst->src[0]; // input
ggml_tensor* src1 = dst->src[1]; // position
ggml_tensor* src2 = dst->src[2]; // freq_factors
// arange, [0,1,...,ne0/2]
int64_t arange_length = src0->ne[0] / 2;
ggml_cann_pool_alloc arange_allocator(ctx.pool(),
arange_length * sizeof(float_t));
void* arange_buffer = arange_allocator.get();
int64_t arange_ne[] = {arange_length, 1, 1, 1};
size_t arange_nb[] = {sizeof(float_t), sizeof(float_t), sizeof(float_t),
arange_length * sizeof(float_t)};
aclTensor* acl_arange_tensor =
ggml_cann_create_tensor(arange_buffer, ACL_FLOAT, sizeof(float_t),
arange_ne, arange_nb, GGML_MAX_DIMS);
float start = 0;
float step = 1;
float stop = src0->ne[0] / 2;
float n_elements = src0->ne[0] / 2;
aclnn_arange(ctx, acl_arange_tensor, start, stop, step, n_elements);
// power
// aclnnPowScalarTensor(): @param self is tensor which should be scalar, so
// use aclnn_pow_tensor_tensor() until fixed. aclScalar* acl_theta_scale =
// aclCreateScalar(&theta_scale, aclDataType::ACL_FLOAT);
// aclnn_power_scalar_tensor(ctx, acl_theta_scale, acl_arange_tensor,
// acl_power_tensor);
ggml_cann_pool_alloc theta_scale_allocator(ctx.pool(),
arange_length * sizeof(float_t));
void* theta_scale_buffer = theta_scale_allocator.get();
aclTensor* acl_theta_scale_tensor = aclnn_values(
ctx, theta_scale_buffer, arange_length * sizeof(float_t), arange_ne,
GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), theta_scale);
aclnn_pow_tensor_tensor(ctx, acl_theta_scale_tensor, acl_arange_tensor);
// freq_scale
if (freq_scale != 1) {
aclnn_muls(ctx, acl_theta_scale_tensor, freq_scale, nullptr, true);
}
// freq_factors
if (src2) {
aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor(
src2->data, ggml_cann_type_mapping(src2->type),
ggml_type_size(src2->type), arange_ne, arange_nb, GGML_MAX_DIMS);
aclnn_div_tensor(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor,
nullptr, true);
ACL_CHECK(aclDestroyTensor(acl_freq_factors_tensor));
}
// position
GGML_ASSERT(src1->type == GGML_TYPE_I32);
int64_t position_length = src1->ne[0];
int64_t position_ne[] = {1, position_length, 1, 1};
size_t position_nb[] = {sizeof(int32_t), sizeof(int32_t),
sizeof(int32_t) * position_length,
sizeof(int32_t) * position_length};
aclTensor* acl_position_tensor = ggml_cann_create_tensor(
src1->data, ggml_cann_type_mapping(src1->type),
ggml_type_size(src1->type), position_ne, position_nb, GGML_MAX_DIMS);
// power * position
int64_t theta_length = arange_length * position_length;
ggml_cann_pool_alloc theta_allocator(ctx.pool(),
theta_length * sizeof(float_t));
void* theta_buffer = theta_allocator.get();
int64_t theta_ne[] = {arange_length, position_length, 1, 1};
size_t theta_nb[GGML_MAX_DIMS];
theta_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1];
}
aclTensor* acl_theta_tensor =
ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float_t),
theta_ne, theta_nb, GGML_MAX_DIMS);
aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor,
acl_theta_tensor);
// permute: [0,1,2,3]->[0,2,1,3]
int64_t permute_ne[] = {arange_length, 1, position_length, 1};
size_t permute_nb[GGML_MAX_DIMS];
permute_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
permute_nb[i] = permute_nb[i - 1] * permute_ne[i - 1];
}
ggml_cann_pool_alloc permute_allocator(ctx.pool(),
theta_length * sizeof(float_t));
void* permute_buffer = permute_allocator.get();
aclTensor* acl_permute_tensor = ggml_cann_create_tensor(
permute_buffer, ACL_FLOAT, sizeof(float_t), permute_ne, permute_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
int64_t permute_dim[] = {0, 2, 1, 3};
int64_t num_dims = 4;
aclnn_permute(ctx, acl_theta_tensor, acl_permute_tensor, permute_dim,
num_dims);
// sin/cos
ggml_cann_pool_alloc sin_allocator(ctx.pool(),
theta_length * sizeof(float_t));
void* sin_buffer = sin_allocator.get();
aclTensor* acl_sin_tensor = ggml_cann_create_tensor(
sin_buffer, ACL_FLOAT, sizeof(float_t), permute_ne, permute_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_sin(ctx, acl_permute_tensor, acl_sin_tensor);
ggml_cann_pool_alloc cos_allocator(ctx.pool(),
theta_length * sizeof(float_t));
void* cos_buffer = cos_allocator.get();
aclTensor* acl_cos_tensor = ggml_cann_create_tensor(
cos_buffer, ACL_FLOAT, sizeof(float_t), permute_ne, permute_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_cos(ctx, acl_permute_tensor, acl_cos_tensor);
// attn_factor
if (attn_factor != 1) {
aclnn_muls(ctx, acl_sin_tensor, attn_factor, nullptr, true);
aclnn_muls(ctx, acl_cos_tensor, attn_factor, nullptr, true);
}
// repeat
if (is_neox) {
int64_t repeatsArray[] = {1, 1, 1, 2};
aclnn_repeat(ctx, acl_sin_tensor, acl_sin_repeat_tensor, repeatsArray);
aclnn_repeat(ctx, acl_cos_tensor, acl_cos_repeat_tensor, repeatsArray);
} else {
int64_t num_repeats = 2;
int64_t dim = 3;
int64_t output_size = arange_length * num_repeats;
aclnn_repeat_interleave(ctx, acl_sin_tensor, acl_sin_repeat_tensor, dim,
num_repeats, output_size);
aclnn_repeat_interleave(ctx, acl_cos_tensor, acl_cos_repeat_tensor, dim,
num_repeats, output_size);
}
// release
ACL_CHECK(aclDestroyTensor(acl_arange_tensor));
ACL_CHECK(aclDestroyTensor(acl_theta_scale_tensor));
ACL_CHECK(aclDestroyTensor(acl_position_tensor));
ACL_CHECK(aclDestroyTensor(acl_theta_tensor));
ACL_CHECK(aclDestroyTensor(acl_permute_tensor));
ACL_CHECK(aclDestroyTensor(acl_sin_tensor));
ACL_CHECK(aclDestroyTensor(acl_cos_tensor));
}
#ifdef __cplusplus
extern "C" {
#endif
aclnnStatus aclnnRotaryPositionEmbeddingGetWorkspaceSize(
const aclTensor* x, const aclTensor* cos, const aclTensor* sin,
int64_t mode, const aclTensor* yOut, uint64_t* workspaceSize,
aclOpExecutor** executor);
aclnnStatus aclnnRotaryPositionEmbedding(void* workspace,
uint64_t workspaceSize,
aclOpExecutor* executor,
aclrtStream stream);
#ifdef __cplusplus
}
#endif
void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
// TODO: use ascendc
// Only test with LLAMA model.
ggml_tensor* src0 = dst->src[0]; // input
ggml_tensor* src2 = dst->src[2]; // freq_factors
// param
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
// const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t*)dst->op_params)[1];
const int mode = ((int32_t*)dst->op_params)[2];
// const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_ctx_orig = ((int32_t*)dst->op_params)[4];
GGML_TENSOR_UNARY_OP_LOCALS
memcpy(&freq_base, (int32_t*)dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t*)dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t*)dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t*)dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t*)dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t*)dst->op_params + 10, sizeof(float));
// TODO: n_dims <= ne0
GGML_ASSERT(n_dims == ne0);
GGML_ASSERT(n_dims % 2 == 0);
// TODO: ext_factor != 0
GGML_ASSERT(ext_factor == 0);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast,
beta_slow, corr_dims);
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
// init cos/sin cache
ggml_cann_pool_alloc sin_allocator(
ctx.pool(), src0->ne[0] * src0->ne[2] * sizeof(float_t));
ggml_cann_pool_alloc cos_allocator(
ctx.pool(), src0->ne[0] * src0->ne[2] * sizeof(float_t));
void* sin_buffer = sin_allocator.get();
void* cos_buffer = cos_allocator.get();
int64_t sin_reshape_ne[4] = {src0->ne[0], 1, src0->ne[2], 1};
size_t sin_reshape_nb[GGML_MAX_DIMS];
sin_reshape_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1];
}
aclTensor* acl_sin_reshape_tensor =
ggml_cann_create_tensor(sin_buffer, ACL_FLOAT, sizeof(float_t),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
aclTensor* acl_cos_reshape_tensor =
ggml_cann_create_tensor(cos_buffer, ACL_FLOAT, sizeof(float_t),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
aclnn_cache_init(ctx, dst, acl_cos_reshape_tensor, acl_sin_reshape_tensor,
theta_scale, freq_scale, attn_factor, is_neox);
aclTensor* acl_src = ggml_cann_create_tensor(src0);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
#ifdef ASCEND_310P
// Special ROPE operation for 310P
// roll input
void* input_roll_buffer;
aclTensor* acl_minus_one_tensor;
void* minus_one_scale_buffer = nullptr;
ggml_cann_pool_alloc roll_allocator(ctx.pool(), ggml_nbytes(src0));
ggml_cann_pool_alloc minus_one_scale_allocator(
ctx.pool(), sizeof(float_t) * src0->ne[0]);
if (!is_neox) {
// roll input: [q0,q1,q2,q3,...] -> [q1,q0,q3,q2,...]
input_roll_buffer = roll_allocator.get();
int64_t input_roll_ne[4] = {2, src0->ne[1] * (src0->ne[0] / 2),
src0->ne[2], src0->ne[3]};
size_t input_roll_nb[GGML_MAX_DIMS];
input_roll_nb[0] = ggml_type_size(src0->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
input_roll_nb[i] = input_roll_nb[i - 1] * input_roll_ne[i - 1];
}
aclTensor* acl_input_roll_tensor = ggml_cann_create_tensor(
input_roll_buffer, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), input_roll_ne, input_roll_nb,
GGML_MAX_DIMS);
aclTensor* acl_input_tensor = ggml_cann_create_tensor(
src0->data, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), input_roll_ne, input_roll_nb,
GGML_MAX_DIMS);
int64_t shifts[] = {1};
int64_t dims[] = {3};
aclnn_roll(ctx, acl_input_tensor, acl_input_roll_tensor, shifts, dims);
ACL_CHECK(aclDestroyTensor(acl_input_roll_tensor));
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
// init [-1, 1, -1, 1, ...]
minus_one_scale_buffer = minus_one_scale_allocator.get();
int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1};
size_t minus_one_nb[GGML_MAX_DIMS];
minus_one_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1];
}
acl_minus_one_tensor = aclnn_values(
ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0],
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1);
int64_t dim = 3;
int64_t* index = new int64_t[src0->ne[0]];
for (int i = 0; i < src0->ne[0]; i++) {
index[i] = i / 2 * 2;
}
int64_t index_num = src0->ne[0];
float value = -1;
aclnn_index_fill_tensor(ctx, acl_minus_one_tensor, dim, index,
index_num, value);
} else {
// roll input: [q0,q1,q2,...] ->
// [q_half,q_half+1,...,q_end,q0,q1,...q_half-1]
input_roll_buffer = roll_allocator.get();
aclTensor* acl_input_roll_tensor = ggml_cann_create_tensor(
input_roll_buffer, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), src0->ne, src0->nb, GGML_MAX_DIMS);
aclTensor* acl_input_tensor = ggml_cann_create_tensor(src0);
int64_t shifts[] = {src0->ne[0] / 2};
int64_t dims[] = {3};
aclnn_roll(ctx, acl_input_tensor, acl_input_roll_tensor, shifts, dims);
ACL_CHECK(aclDestroyTensor(acl_input_roll_tensor));
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
// init [-1, -1, -1, 1, 11...]
minus_one_scale_buffer = minus_one_scale_allocator.get();
int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1};
size_t minus_one_nb[GGML_MAX_DIMS];
minus_one_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1];
}
acl_minus_one_tensor = aclnn_values(
ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0],
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1);
// -1 * first half
int64_t first_half_ne[4] = {src0->ne[0] / 2, 1, 1, 1};
size_t first_half_nb[GGML_MAX_DIMS];
first_half_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
first_half_nb[i] = first_half_nb[i - 1] * first_half_ne[i - 1];
}
aclTensor* acl_first_half_tensor = ggml_cann_create_tensor(
minus_one_scale_buffer, ACL_FLOAT, sizeof(float_t), first_half_ne,
first_half_nb, GGML_MAX_DIMS);
bool inplace = true;
float scale = -1;
aclnn_muls(ctx, acl_first_half_tensor, scale, nullptr, inplace);
ACL_CHECK(aclDestroyTensor(acl_first_half_tensor));
}
// TODO: n_dims < ne0
GGML_ASSERT(n_dims == src0->ne[0]);
// input * scale
ggml_cann_pool_alloc roll_mul_scale_allocator(ctx.pool(),
ggml_nbytes(src0));
void* input_roll_mul_scale_buffer = roll_mul_scale_allocator.get();
size_t input_nb[GGML_MAX_DIMS];
input_nb[0] = ggml_type_size(src0->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
input_nb[i] = input_nb[i - 1] * src0->ne[i - 1];
}
aclTensor* acl_input_roll_mul_scale_tensor = ggml_cann_create_tensor(
input_roll_mul_scale_buffer, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), src0->ne, input_nb, GGML_MAX_DIMS);
aclTensor* acl_input_roll_reshape_tensor = ggml_cann_create_tensor(
input_roll_buffer, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), src0->ne, input_nb, GGML_MAX_DIMS);
aclnn_mul(ctx, acl_input_roll_reshape_tensor, acl_minus_one_tensor,
acl_input_roll_mul_scale_tensor);
// output
void* output_fp32_buffer;
if (src0->type == GGML_TYPE_F32) {
aclnn_inplace_mul(ctx, acl_src, acl_cos_reshape_tensor);
aclnn_inplace_mul(ctx, acl_input_roll_mul_scale_tensor,
acl_sin_reshape_tensor);
aclnn_add(ctx, acl_src, acl_input_roll_mul_scale_tensor, acl_dst);
// TODO: ne0 != n_dims in mode2
} else if (src0->type == GGML_TYPE_F16) {
size_t input_fp32_nb[GGML_MAX_DIMS];
input_fp32_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
input_fp32_nb[i] = input_fp32_nb[i - 1] * dst->ne[i - 1];
}
ggml_cann_pool_alloc fp32_allocator1(
ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
void* input_fp32_buffer1 = fp32_allocator1.get();
aclTensor* input_fp32_tensor1 = ggml_cann_create_tensor(
input_fp32_buffer1, ACL_FLOAT, sizeof(float_t), dst->ne,
input_fp32_nb, GGML_MAX_DIMS);
ggml_cann_pool_alloc fp32_allocator2(
ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
void* input_fp32_buffer2 = fp32_allocator2.get();
aclTensor* input_fp32_tensor2 = ggml_cann_create_tensor(
input_fp32_buffer2, ACL_FLOAT, sizeof(float_t), dst->ne,
input_fp32_nb, GGML_MAX_DIMS);
ggml_cann_pool_alloc fp32_allocator(
ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
output_fp32_buffer = fp32_allocator.get();
aclTensor* output_fp32_tensor = ggml_cann_create_tensor(
output_fp32_buffer, ACL_FLOAT, sizeof(float_t), dst->ne,
input_fp32_nb, GGML_MAX_DIMS);
aclnn_mul(ctx, acl_src, acl_cos_reshape_tensor, input_fp32_tensor1);
aclnn_mul(ctx, acl_input_roll_mul_scale_tensor, acl_sin_reshape_tensor,
input_fp32_tensor2);
aclnn_add(ctx, input_fp32_tensor1, input_fp32_tensor2,
output_fp32_tensor);
aclnn_cast(ctx, output_fp32_tensor, acl_dst, ACL_FLOAT16);
ACL_CHECK(aclDestroyTensor(input_fp32_tensor1));
ACL_CHECK(aclDestroyTensor(input_fp32_tensor2));
ACL_CHECK(aclDestroyTensor(output_fp32_tensor));
ACL_CHECK(aclDestroyTensor(acl_sin_reshape_tensor));
ACL_CHECK(aclDestroyTensor(acl_minus_one_tensor));
ACL_CHECK(aclDestroyTensor(acl_input_roll_mul_scale_tensor));
ACL_CHECK(aclDestroyTensor(acl_input_roll_reshape_tensor));
ACL_CHECK(aclDestroyTensor(acl_src));
}
return;
#endif
// src0 == GGML_TYPE_F16
// TODO: optimization this `if` code
if (src0->type == GGML_TYPE_F16) {
ggml_cann_pool_alloc sin_final_allocator(
ctx.pool(), src0->ne[0] * src0->ne[2] * ggml_type_size(src0->type));
ggml_cann_pool_alloc cos_final_allocator(
ctx.pool(), src0->ne[0] * src0->ne[2] * ggml_type_size(src0->type));
void* sin_final_buffer = sin_final_allocator.get();
void* cos_final_buffer = cos_final_allocator.get();
int64_t sin_final_ne[4] = {src0->ne[0], 1, src0->ne[2], 1};
size_t sin_final_nb[GGML_MAX_DIMS];
sin_final_nb[0] = ggml_type_size(src0->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
sin_final_nb[i] = sin_final_nb[i - 1] * sin_final_ne[i - 1];
}
aclTensor* acl_sin_final_tensor = ggml_cann_create_tensor(
sin_final_buffer, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), sin_final_ne, sin_final_nb,
GGML_MAX_DIMS);
aclTensor* acl_cos_final_tensor = ggml_cann_create_tensor(
cos_final_buffer, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), sin_final_ne, sin_final_nb,
GGML_MAX_DIMS);
aclnn_cast(ctx, acl_sin_reshape_tensor, acl_sin_final_tensor,
ggml_cann_type_mapping(src0->type));
aclnn_cast(ctx, acl_cos_reshape_tensor, acl_cos_final_tensor,
ggml_cann_type_mapping(src0->type));
ACL_CHECK(aclDestroyTensor(acl_cos_reshape_tensor));
ACL_CHECK(aclDestroyTensor(acl_sin_reshape_tensor));
acl_sin_reshape_tensor = acl_sin_final_tensor;
acl_cos_reshape_tensor = acl_cos_final_tensor;
}
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
int acl_mode = mode;
if (mode == 0) {
acl_mode = 1;
}
ACL_CHECK(aclnnRotaryPositionEmbeddingGetWorkspaceSize(
acl_src, acl_cos_reshape_tensor, acl_sin_reshape_tensor, acl_mode,
acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnRotaryPositionEmbedding(workspaceAddr, workspaceSize,
executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_cos_reshape_tensor));
ACL_CHECK(aclDestroyTensor(acl_sin_reshape_tensor));
ACL_CHECK(aclDestroyTensor(acl_dst));
}