f18738f247
* talk-llama: pass file instead of arg it is too hard to quote text in a portable way * talk-llama: pass heard_ok as a file * talk-llama: let eleven-labs.py accept options Options: -v voice, -s savefile, -p (--play) * talk-llama: check installed commands in "speak" Pass "-q" to eleven-labs.py to skip checking whether elevenlabs is installed * talk-llama: pass voice_id again in order to sync talk with talk-llama * talk: sync with talk-llama Passing text_to_speak as a file is safer and more portable cf. https://stackoverflow.com/a/59036879/45375 * talk and talk-llama: get all installed voices in speak.ps1 * talk and talk-llama: get voices from api * talk and talk-llama: add more options to eleven-labs.py and remove DEFAULT_VOICE because it is deprecated (https://www.reddit.com/r/ElevenLabs/comments/1830abt/what_happened_to_bella/) ``` usage: eleven-labs.py [-q] [-l] [-h] [-n NAME | -v NUMBER] [-f KEY=VAL] [-s FILE | -p] [TEXTFILE] options: -q, --quick skip checking the required library action: TEXTFILE read the text file (default: stdin) -l, --list show the list of voices and exit -h, --help show this help and exit voice selection: -n NAME, --name NAME get a voice object by name (default: Arnold) -v NUMBER, --voice NUMBER get a voice object by number (see --list) -f KEY=VAL, --filter KEY=VAL filter voices by labels (default: "use case=narration") this option can be used multiple times filtering will be disabled if the first -f has no "=" (e.g. -f "any") output: -s FILE, --save FILE save the TTS to a file (default: audio.mp3) -p, --play play the TTS with ffplay ``` * examples: add speak_with_file() as suggested in the review * talk and talk-llama: ignore to_speak.txt |
||
---|---|---|
.. | ||
prompts | ||
.gitignore | ||
CMakeLists.txt | ||
eleven-labs.py | ||
llama.cpp | ||
llama.h | ||
README.md | ||
speak | ||
speak.bat | ||
speak.ps1 | ||
talk-llama.cpp | ||
unicode.h |
talk-llama
Talk with an LLaMA AI in your terminal
Latest perf as of 2 Nov 2023 using Whisper Medium + LLaMA v2 13B Q8_0 on M2 Ultra:
https://github.com/ggerganov/whisper.cpp/assets/1991296/d97a3788-bf2a-4756-9a43-60c6b391649e
Previous demo running on CPUs
Building
The talk-llama
tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
# Install SDL2 on Linux
sudo apt-get install libsdl2-dev
# Install SDL2 on Mac OS
brew install sdl2
# Build the "talk-llama" executable
make talk-llama
# Run it
./talk-llama -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/llama-13b/ggml-model-q4_0.gguf -p "Georgi" -t 8
- The
-mw
argument specifies the Whisper model that you would like to use. Recommendedbase
orsmall
for real-time experience - The
-ml
argument specifies the LLaMA model that you would like to use. Read the instructions in https://github.com/ggerganov/llama.cpp for information about how to obtain aggml
compatible LLaMA model
Session
The talk-llama
tool supports session management to enable more coherent and continuous conversations. By maintaining context from previous interactions, it can better understand and respond to user requests in a more natural way.
To enable session support, use the --session FILE
command line option when running the program. The talk-llama
model state will be saved to the specified file after each interaction. If the file does not exist, it will be created. If the file exists, the model state will be loaded from it, allowing you to resume a previous session.
This feature is especially helpful for maintaining context in long conversations or when interacting with the AI assistant across multiple sessions. It ensures that the assistant remembers the previous interactions and can provide more relevant and contextual responses.
Example usage:
./talk-llama --session ./my-session-file -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/llama-13b/ggml-model-q4_0.gguf -p "Georgi" -t 8
TTS
For best experience, this example needs a TTS tool to convert the generated text responses to voice.
You can use any TTS engine that you would like - simply edit the speak script to your needs.
By default, it is configured to use MacOS's say
or Windows SpeechSynthesizer, but you can use whatever you wish.
Discussion
If you have any feedback, please let "us" know in the following discussion: https://github.com/ggerganov/whisper.cpp/discussions/672?converting=1