* Don't generate documentation on test * Move .startup to TestBase class * Extract new_segment_callback as a function * Extract progress_callback as a function * Extract abort_callback as a function * Extract register_callbacks as a function * Call callbacks in Whiser::Context#full and #full_parallel * Fix README * Care about the cases content-size is nil and TTY is not available * Add tests for no_speech_prob * Add Whisper::Context#full_get_segment_no_speech_prob and Whisper::Segment#no_speech_prob
whispercpp
Ruby bindings for whisper.cpp, an interface of automatic speech recognition model.
Installation
Install the gem and add to the application's Gemfile by executing:
$ bundle add whispercpp
If bundler is not being used to manage dependencies, install the gem by executing:
$ gem install whispercpp
Usage
require "whisper"
whisper = Whisper::Context.new("base")
params = Whisper::Params.new
params.language = "en"
params.offset = 10_000
params.duration = 60_000
params.max_text_tokens = 300
params.translate = true
params.print_timestamps = false
params.initial_prompt = "Initial prompt here."
whisper.transcribe("path/to/audio.wav", params) do |whole_text|
puts whole_text
end
Preparing model
Some models are prepared up-front:
base_en = Whisper::Model.pre_converted_models["base.en"]
whisper = Whisper::Context.new(base_en)
At first time you use a model, it is downloaded automatically. After that, downloaded cached file is used. To clear cache, call #clear_cache
:
Whisper::Model.pre_converted_models["base"].clear_cache
You also can use shorthand for pre-converted models:
whisper = Whisper::Context.new("base.en")
You can see the list of prepared model names by Whisper::Model.preconverted_models.keys
:
puts Whisper::Model.preconverted_models.keys
# tiny
# tiny.en
# tiny-q5_1
# tiny.en-q5_1
# tiny-q8_0
# base
# base.en
# base-q5_1
# base.en-q5_1
# base-q8_0
# :
# :
You can also use local model files you prepared:
whisper = Whisper::Context.new("path/to/your/model.bin")
Or, you can download model files:
model_uri = Whisper::Model::URI.new("http://example.net/uri/of/your/model.bin")
whisper = Whisper::Context.new(model_uri)
See models page for details.
Preparing audio file
Currently, whisper.cpp accepts only 16-bit WAV files.
API
Segments
Once Whisper::Context#transcribe
called, you can retrieve segments by #each_segment
:
def format_time(time_ms)
sec, decimal_part = time_ms.divmod(1000)
min, sec = sec.divmod(60)
hour, min = min.divmod(60)
"%02d:%02d:%02d.%03d" % [hour, min, sec, decimal_part]
end
whisper.transcribe("path/to/audio.wav", params)
whisper.each_segment.with_index do |segment, index|
line = "[%{nth}: %{st} --> %{ed}] %{text}" % {
nth: index + 1,
st: format_time(segment.start_time),
ed: format_time(segment.end_time),
text: segment.text
}
line << " (speaker turned)" if segment.speaker_next_turn?
puts line
end
You can also add hook to params called on new segment:
# Add hook before calling #transcribe
params.on_new_segment do |segment|
line = "[%{st} --> %{ed}] %{text}" % {
st: format_time(segment.start_time),
ed: format_time(segment.end_time),
text: segment.text
}
line << " (speaker turned)" if segment.speaker_next_turn?
puts line
end
whisper.transcribe("path/to/audio.wav", params)
Models
You can see model information:
whisper = Whisper::Context.new("base")
model = whisper.model
model.n_vocab # => 51864
model.n_audio_ctx # => 1500
model.n_audio_state # => 512
model.n_audio_head # => 8
model.n_audio_layer # => 6
model.n_text_ctx # => 448
model.n_text_state # => 512
model.n_text_head # => 8
model.n_text_layer # => 6
model.n_mels # => 80
model.ftype # => 1
model.type # => "base"
Logging
You can set log callback:
prefix = "[MyApp] "
log_callback = ->(level, buffer, user_data) {
case level
when Whisper::LOG_LEVEL_NONE
puts "#{user_data}none: #{buffer}"
when Whisper::LOG_LEVEL_INFO
puts "#{user_data}info: #{buffer}"
when Whisper::LOG_LEVEL_WARN
puts "#{user_data}warn: #{buffer}"
when Whisper::LOG_LEVEL_ERROR
puts "#{user_data}error: #{buffer}"
when Whisper::LOG_LEVEL_DEBUG
puts "#{user_data}debug: #{buffer}"
when Whisper::LOG_LEVEL_CONT
puts "#{user_data}same to previous: #{buffer}"
end
}
Whisper.log_set log_callback, prefix
Using this feature, you are also able to suppress log:
Whisper.log_set ->(level, buffer, user_data) {
# do nothing
}, nil
Whisper::Context.new("base")
Low-level API to transcribe
You can also call Whisper::Context#full
and #full_parallel
with a Ruby array as samples. Although #transcribe
with audio file path is recommended because it extracts PCM samples in C++ and is fast, #full
and #full_parallel
give you flexibility.
require "whisper"
require "wavefile"
reader = WaveFile::Reader.new("path/to/audio.wav", WaveFile::Format.new(:mono, :float, 16000))
samples = reader.enum_for(:each_buffer).map(&:samples).flatten
whisper = Whisper::Context.new("base")
whisper.full(Whisper::Params.new, samples)
whisper.each_segment do |segment|
puts segment.text
end
The second argument samples
may be an array, an object with length
and each
method, or a MemoryView. If you can prepare audio data as C array and export it as a MemoryView, whispercpp accepts and works with it with zero copy.
License
The same to whisper.cpp.