mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-21 05:33:06 +00:00
c9541741e6
* ggml: new optimization interface remove test2.c, test3.c store adamw params in tensor move grads from tensor to graph * avoid segfault upon API misuse * add ggml-opt.h to public headers * remove dependence of ggml-opt.cpp on ggml-cpu.h
337 lines
18 KiB
C
337 lines
18 KiB
C
#pragma once
|
|
|
|
#include "ggml.h"
|
|
#include "ggml-alloc.h"
|
|
|
|
#ifdef GGML_BACKEND_SHARED
|
|
# if defined(_WIN32) && !defined(__MINGW32__)
|
|
# ifdef GGML_BACKEND_BUILD
|
|
# define GGML_BACKEND_API __declspec(dllexport) extern
|
|
# else
|
|
# define GGML_BACKEND_API __declspec(dllimport) extern
|
|
# endif
|
|
# else
|
|
# define GGML_BACKEND_API __attribute__ ((visibility ("default"))) extern
|
|
# endif
|
|
#else
|
|
# define GGML_BACKEND_API extern
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
|
|
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
|
|
typedef struct ggml_backend_event * ggml_backend_event_t;
|
|
typedef struct ggml_backend * ggml_backend_t;
|
|
typedef void * ggml_backend_graph_plan_t;
|
|
typedef struct ggml_backend_reg * ggml_backend_reg_t;
|
|
typedef struct ggml_backend_device * ggml_backend_dev_t;
|
|
|
|
|
|
//
|
|
// Backend buffer type
|
|
//
|
|
|
|
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
|
|
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
|
|
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
|
|
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
|
|
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
|
|
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
|
|
GGML_API ggml_backend_dev_t ggml_backend_buft_get_device (ggml_backend_buffer_type_t buft);
|
|
|
|
//
|
|
// Backend buffer
|
|
//
|
|
|
|
enum ggml_backend_buffer_usage {
|
|
GGML_BACKEND_BUFFER_USAGE_ANY = 0,
|
|
GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
|
|
GGML_BACKEND_BUFFER_USAGE_COMPUTE = 2,
|
|
};
|
|
|
|
GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
|
|
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
|
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
|
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
|
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
|
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
|
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
|
|
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
|
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
|
|
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
|
|
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
|
GGML_API enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage (ggml_backend_buffer_t buffer);
|
|
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
|
|
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
|
|
|
|
// tensor copy between different backends
|
|
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
|
|
|
|
//
|
|
// Backend (stream)
|
|
//
|
|
|
|
GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend);
|
|
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
|
|
GGML_API void ggml_backend_free(ggml_backend_t backend);
|
|
|
|
GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend);
|
|
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
|
|
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
|
|
GGML_API size_t ggml_backend_get_max_size(ggml_backend_t backend);
|
|
|
|
GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
|
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
|
|
|
// "offset" refers to the offset in tensor->data for setting/getting data
|
|
GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
|
GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
|
GGML_API void ggml_backend_tensor_memset( struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
|
|
|
|
GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
|
|
|
|
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
|
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
|
|
|
GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
|
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
|
GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
|
|
|
// NOTE: will be removed, use device version instead
|
|
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
|
GGML_API bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
|
|
GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
|
|
|
// asynchronous copy
|
|
// the copy is performed after all the currently queued operations in backend_src
|
|
// backend_dst will wait for the copy to complete before performing other operations
|
|
// automatic fallback to sync copy if async is not supported
|
|
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst);
|
|
|
|
GGML_API ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend);
|
|
|
|
//
|
|
// Events
|
|
//
|
|
|
|
GGML_API ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device);
|
|
GGML_API void ggml_backend_event_free(ggml_backend_event_t event);
|
|
GGML_API void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend);
|
|
GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event);
|
|
GGML_API void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event);
|
|
|
|
//
|
|
// Backend device
|
|
//
|
|
|
|
enum ggml_backend_dev_type {
|
|
// CPU device using system memory
|
|
GGML_BACKEND_DEVICE_TYPE_CPU,
|
|
// GPU device using dedicated memory
|
|
GGML_BACKEND_DEVICE_TYPE_GPU,
|
|
// accelerator devices intended to be used together with the CPU backend (e.g. BLAS or AMX)
|
|
GGML_BACKEND_DEVICE_TYPE_ACCEL
|
|
};
|
|
|
|
// functionality supported by the device
|
|
struct ggml_backend_dev_caps {
|
|
// asynchronous operations
|
|
bool async;
|
|
// pinned host buffer
|
|
bool host_buffer;
|
|
// creating buffers from host ptr
|
|
bool buffer_from_host_ptr;
|
|
// event synchronization
|
|
bool events;
|
|
};
|
|
|
|
// all the device properties
|
|
struct ggml_backend_dev_props {
|
|
const char * name;
|
|
const char * description;
|
|
size_t memory_free;
|
|
size_t memory_total;
|
|
enum ggml_backend_dev_type type;
|
|
struct ggml_backend_dev_caps caps;
|
|
};
|
|
|
|
GGML_API const char * ggml_backend_dev_name(ggml_backend_dev_t device);
|
|
GGML_API const char * ggml_backend_dev_description(ggml_backend_dev_t device);
|
|
GGML_API void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total);
|
|
GGML_API enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device);
|
|
GGML_API void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props);
|
|
GGML_API ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device);
|
|
GGML_API ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params);
|
|
GGML_API ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device);
|
|
GGML_API ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device);
|
|
GGML_API ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size);
|
|
|
|
GGML_API bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op);
|
|
GGML_API bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft);
|
|
GGML_API bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op);
|
|
|
|
//
|
|
// Backend (reg)
|
|
//
|
|
|
|
GGML_API const char * ggml_backend_reg_name(ggml_backend_reg_t reg);
|
|
GGML_API size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg);
|
|
GGML_API ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index);
|
|
GGML_API void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name);
|
|
|
|
// Common functions that may be obtained using ggml_backend_reg_get_proc_address
|
|
|
|
// Split buffer type for tensor parallelism
|
|
typedef ggml_backend_buffer_type_t (*ggml_backend_split_buffer_type_t)(int main_device, const float * tensor_split);
|
|
// Set the number of threads for the backend
|
|
typedef void (*ggml_backend_set_n_threads_t)(ggml_backend_t backend, int n_threads);
|
|
// Get additional buffer types provided by the device (returns a NULL-terminated array)
|
|
typedef ggml_backend_buffer_type_t * (*ggml_backend_dev_get_extra_bufts_t)(ggml_backend_dev_t device);
|
|
|
|
//
|
|
// Backend registry
|
|
//
|
|
|
|
// Backend (reg) enumeration
|
|
GGML_API size_t ggml_backend_reg_count(void);
|
|
GGML_API ggml_backend_reg_t ggml_backend_reg_get(size_t index);
|
|
GGML_API ggml_backend_reg_t ggml_backend_reg_by_name(const char * name);
|
|
|
|
// Device enumeration
|
|
GGML_API size_t ggml_backend_dev_count(void);
|
|
GGML_API ggml_backend_dev_t ggml_backend_dev_get(size_t index);
|
|
GGML_API ggml_backend_dev_t ggml_backend_dev_by_name(const char * name);
|
|
GGML_API ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type);
|
|
|
|
// Direct backend (stream) initialization
|
|
// = ggml_backend_dev_init(ggml_backend_dev_by_name(name), params)
|
|
GGML_API ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params);
|
|
// = ggml_backend_dev_init(ggml_backend_dev_by_type(type), params)
|
|
GGML_API ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params);
|
|
// = ggml_backend_dev_init(ggml_backend_dev_by_type(GPU) OR ggml_backend_dev_by_type(CPU), NULL)
|
|
GGML_API ggml_backend_t ggml_backend_init_best(void);
|
|
|
|
//
|
|
// Backend scheduler
|
|
//
|
|
|
|
// The backend scheduler allows for multiple backend devices to be used together
|
|
// Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
|
|
// The backends are selected based on:
|
|
// - the backend that supports the operation
|
|
// - the location of the pre-allocated tensors (e.g. the weights)
|
|
/*
|
|
Example usage:
|
|
|
|
// operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned
|
|
// preferrably to run on the same backend as the buffer
|
|
ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
|
|
|
|
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false);
|
|
|
|
// initialize buffers from a max size graph (optional)
|
|
reserve_graph = build_graph(sched, max_batch_size);
|
|
|
|
// manually assign nodes to a backend (optional, should not be needed in most cases)
|
|
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
|
|
ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu);
|
|
|
|
ggml_backend_sched_reserve(sched, reserve_graph);
|
|
|
|
// compute
|
|
graph = build_graph(sched); // the graph and its tensors are single-use in terms of allocation, multi-use in terms of computation
|
|
for (int i = 0; i < 10; ++i) {
|
|
ggml_backend_sched_graph_compute(sched, graph); // on the first iteration the graph is allocated automatically
|
|
}
|
|
|
|
// if there are graph inputs:
|
|
graph = build_graph(sched); // get a new graph that is not allocated (the metadata for the old graph is freed once ggml_free is called)
|
|
ggml_backend_sched_reset(sched); // clear the allocation of the previous graph
|
|
ggml_backend_sched_alloc_graph(sched, graph); // explicitly allocate the new graph but do not execute it
|
|
ggml_backend_tensor_set(input_tensor, ...); // copy data to the newly allocated graph tensors
|
|
ggml_backend_sched_graph_compute(sched, graph); // execute the graph
|
|
|
|
// as an alternative to the above it is also possible to assign the inputs to a dedicated context and
|
|
// allocate them statically via ggml_backend_alloc_ctx_tensors
|
|
}
|
|
*/
|
|
|
|
typedef struct ggml_backend_sched * ggml_backend_sched_t;
|
|
|
|
// Evaluation callback for each node in the graph (set with ggml_backend_sched_set_eval_callback)
|
|
// when ask == true, the scheduler wants to know if the user wants to observe this node
|
|
// this allows the scheduler to batch nodes together in order to evaluate them in a single call
|
|
//
|
|
// when ask == false, the scheduler is passing the node tensor to the user for observation
|
|
// if the user returns false, the scheduler will cancel the graph compute
|
|
//
|
|
typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
|
|
|
|
// Initialize a backend scheduler, backends with low index are given priority over backends with high index
|
|
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
|
|
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
|
|
|
|
// Initialize backend buffers from a measure graph
|
|
GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph); // returns success
|
|
|
|
GGML_API int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched);
|
|
GGML_API ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i);
|
|
|
|
// Get the number of splits of the last graph
|
|
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
|
|
GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);
|
|
|
|
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
|
|
|
|
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
|
|
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
|
|
|
|
// Allocate and compute graph on the backend scheduler
|
|
GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph); // returns success
|
|
GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
|
|
GGML_API enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
|
|
GGML_API void ggml_backend_sched_synchronize(ggml_backend_sched_t sched);
|
|
|
|
// Reset all assignments and allocators - must be called before changing the node backends or allocating a new graph.
|
|
// This in effect deallocates all tensors that were previously allocated and leaves them with dangling pointers.
|
|
// The correct way to use this API is to discard the deallocated tensors and create new ones.
|
|
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
|
|
|
|
// Set a callback to be called for each resulting node during graph compute
|
|
GGML_API void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data);
|
|
|
|
//
|
|
// Utils
|
|
//
|
|
|
|
struct ggml_backend_graph_copy {
|
|
ggml_backend_buffer_t buffer;
|
|
struct ggml_context * ctx_allocated;
|
|
struct ggml_context * ctx_unallocated;
|
|
struct ggml_cgraph * graph;
|
|
};
|
|
|
|
// Copy a graph to a different backend
|
|
GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph);
|
|
GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy);
|
|
|
|
typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
|
|
|
|
// Compare the output of two backends
|
|
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
|
|
|
|
// Tensor initialization
|
|
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
|
|
GGML_API void ggml_backend_view_init(struct ggml_tensor * tensor);
|
|
|
|
// CPU buffer types are always available
|
|
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
|
|
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|