mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-12 16:03:41 +00:00
247 lines
8.5 KiB
C++
247 lines
8.5 KiB
C++
#include "common-ggml.h"
|
|
|
|
#include <regex>
|
|
#include <map>
|
|
|
|
static const std::map<std::string, enum ggml_ftype> GGML_FTYPE_MAP = {
|
|
{"q4_0", GGML_FTYPE_MOSTLY_Q4_0},
|
|
{"q4_1", GGML_FTYPE_MOSTLY_Q4_1},
|
|
{"q5_0", GGML_FTYPE_MOSTLY_Q5_0},
|
|
{"q5_1", GGML_FTYPE_MOSTLY_Q5_1},
|
|
{"q8_0", GGML_FTYPE_MOSTLY_Q8_0},
|
|
};
|
|
|
|
void ggml_print_ftypes(FILE * fp) {
|
|
for (auto it = GGML_FTYPE_MAP.begin(); it != GGML_FTYPE_MAP.end(); it++) {
|
|
fprintf(fp, " type = \"%s\" or %d\n", it->first.c_str(), it->second);
|
|
}
|
|
}
|
|
|
|
enum ggml_ftype ggml_parse_ftype(const char * str) {
|
|
enum ggml_ftype ftype;
|
|
if (str[0] == 'q') {
|
|
const auto it = GGML_FTYPE_MAP.find(str);
|
|
if (it == GGML_FTYPE_MAP.end()) {
|
|
fprintf(stderr, "%s: unknown ftype '%s'\n", __func__, str);
|
|
return GGML_FTYPE_UNKNOWN;
|
|
}
|
|
ftype = it->second;
|
|
} else {
|
|
ftype = (enum ggml_ftype) atoi(str);
|
|
}
|
|
|
|
return ftype;
|
|
}
|
|
|
|
bool ggml_common_quantize_0(
|
|
std::ifstream & finp,
|
|
std::ofstream & fout,
|
|
const ggml_ftype ftype,
|
|
const std::vector<std::string> & to_quant,
|
|
const std::vector<std::string> & to_skip) {
|
|
|
|
ggml_type qtype = GGML_TYPE_F32;
|
|
|
|
switch (ftype) {
|
|
case GGML_FTYPE_MOSTLY_Q4_0: qtype = GGML_TYPE_Q4_0; break;
|
|
case GGML_FTYPE_MOSTLY_Q4_1: qtype = GGML_TYPE_Q4_1; break;
|
|
case GGML_FTYPE_MOSTLY_Q5_0: qtype = GGML_TYPE_Q5_0; break;
|
|
case GGML_FTYPE_MOSTLY_Q5_1: qtype = GGML_TYPE_Q5_1; break;
|
|
case GGML_FTYPE_MOSTLY_Q8_0: qtype = GGML_TYPE_Q8_0; break;
|
|
case GGML_FTYPE_UNKNOWN:
|
|
case GGML_FTYPE_ALL_F32:
|
|
case GGML_FTYPE_MOSTLY_F16:
|
|
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16:
|
|
case GGML_FTYPE_MOSTLY_Q2_K:
|
|
case GGML_FTYPE_MOSTLY_Q3_K:
|
|
case GGML_FTYPE_MOSTLY_Q4_K:
|
|
case GGML_FTYPE_MOSTLY_Q5_K:
|
|
case GGML_FTYPE_MOSTLY_Q6_K:
|
|
{
|
|
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
|
|
return false;
|
|
}
|
|
};
|
|
|
|
if (!ggml_is_quantized(qtype)) {
|
|
fprintf(stderr, "%s: invalid quantization type %d (%s)\n", __func__, qtype, ggml_type_name(qtype));
|
|
return false;
|
|
}
|
|
|
|
size_t total_size_org = 0;
|
|
size_t total_size_new = 0;
|
|
|
|
std::vector<float> work;
|
|
|
|
std::vector<uint8_t> data_u8;
|
|
std::vector<ggml_fp16_t> data_f16;
|
|
std::vector<float> data_f32;
|
|
|
|
std::vector<int64_t> hist_all(1 << 4, 0);
|
|
|
|
while (true) {
|
|
int32_t n_dims;
|
|
int32_t length;
|
|
int32_t ttype;
|
|
|
|
finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
|
finp.read(reinterpret_cast<char *>(&length), sizeof(length));
|
|
finp.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
|
|
|
|
if (finp.eof()) {
|
|
break;
|
|
}
|
|
|
|
int32_t nelements = 1;
|
|
int32_t ne[4] = { 1, 1, 1, 1 };
|
|
for (int i = 0; i < n_dims; ++i) {
|
|
finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
|
nelements *= ne[i];
|
|
}
|
|
|
|
std::string name(length, 0);
|
|
finp.read (&name[0], length);
|
|
|
|
printf("%64s - [%5d, %5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ne[2], ggml_type_name((ggml_type) ttype));
|
|
|
|
bool quantize = false;
|
|
|
|
// check if we should quantize this tensor
|
|
for (const auto & s : to_quant) {
|
|
if (std::regex_match(name, std::regex(s))) {
|
|
quantize = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// check if we should skip this tensor
|
|
for (const auto & s : to_skip) {
|
|
if (std::regex_match(name, std::regex(s))) {
|
|
quantize = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// quantize only 2D tensors
|
|
quantize &= (n_dims == 2);
|
|
|
|
if (quantize) {
|
|
if (ttype != GGML_TYPE_F32 && ttype != GGML_TYPE_F16) {
|
|
fprintf(stderr, "%s: unsupported ttype %d (%s) for integer quantization\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
|
|
return false;
|
|
}
|
|
|
|
if (ttype == GGML_TYPE_F16) {
|
|
data_f16.resize(nelements);
|
|
finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
|
|
data_f32.resize(nelements);
|
|
for (int i = 0; i < nelements; ++i) {
|
|
data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
|
|
}
|
|
} else {
|
|
data_f32.resize(nelements);
|
|
finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
|
|
}
|
|
|
|
ttype = qtype;
|
|
} else {
|
|
const int bpe = (ttype == 0) ? sizeof(float) : sizeof(uint16_t);
|
|
|
|
data_u8.resize(nelements*bpe);
|
|
finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bpe);
|
|
}
|
|
|
|
fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
|
fout.write(reinterpret_cast<char *>(&length), sizeof(length));
|
|
fout.write(reinterpret_cast<char *>(&ttype), sizeof(ttype));
|
|
for (int i = 0; i < n_dims; ++i) {
|
|
fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
|
}
|
|
fout.write(&name[0], length);
|
|
|
|
if (quantize) {
|
|
work.resize(nelements); // for quantization
|
|
|
|
size_t cur_size = 0;
|
|
std::vector<int64_t> hist_cur(1 << 4, 0);
|
|
|
|
switch ((ggml_type) ttype) {
|
|
case GGML_TYPE_Q4_0:
|
|
{
|
|
cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
|
} break;
|
|
case GGML_TYPE_Q4_1:
|
|
{
|
|
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
|
} break;
|
|
case GGML_TYPE_Q5_0:
|
|
{
|
|
cur_size = ggml_quantize_q5_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
|
} break;
|
|
case GGML_TYPE_Q5_1:
|
|
{
|
|
cur_size = ggml_quantize_q5_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
|
} break;
|
|
case GGML_TYPE_Q8_0:
|
|
{
|
|
cur_size = ggml_quantize_q8_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_I8:
|
|
case GGML_TYPE_I16:
|
|
case GGML_TYPE_I32:
|
|
case GGML_TYPE_Q8_1:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
case GGML_TYPE_Q8_K:
|
|
case GGML_TYPE_COUNT:
|
|
{
|
|
fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
fout.write(reinterpret_cast<char *>(work.data()), cur_size);
|
|
total_size_new += cur_size;
|
|
|
|
printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
|
|
for (int i = 0; i < (int) hist_cur.size(); ++i) {
|
|
hist_all[i] += hist_cur[i];
|
|
}
|
|
|
|
for (int i = 0; i < (int) hist_cur.size(); ++i) {
|
|
printf("%5.3f ", hist_cur[i] / (float)nelements);
|
|
}
|
|
printf("\n");
|
|
} else {
|
|
printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
|
|
fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
|
|
total_size_new += data_u8.size();
|
|
}
|
|
|
|
total_size_org += nelements * sizeof(float);
|
|
}
|
|
|
|
printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
|
|
printf("%s: quant size = %8.2f MB | ftype = %d (%s)\n", __func__, total_size_new/1024.0/1024.0, ftype, ggml_type_name(qtype));
|
|
|
|
{
|
|
int64_t sum_all = 0;
|
|
for (int i = 0; i < (int) hist_all.size(); ++i) {
|
|
sum_all += hist_all[i];
|
|
}
|
|
|
|
printf("%s: hist: ", __func__);
|
|
for (int i = 0; i < (int) hist_all.size(); ++i) {
|
|
printf("%5.3f ", hist_all[i] / (float)sum_all);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
return true;
|
|
}
|