mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-18 02:39:47 +00:00
109 lines
3.9 KiB
C++
109 lines
3.9 KiB
C++
#include "openvino/whisper-openvino-encoder.h"
|
|
#include "ggml.h"
|
|
#include <openvino/openvino.hpp>
|
|
#include <iostream>
|
|
|
|
struct whisper_openvino_context {
|
|
ov::InferRequest inferRequest;
|
|
};
|
|
|
|
struct whisper_openvino_context * whisper_openvino_init(const char* path_model,
|
|
const char* device,
|
|
const char* cache_dir)
|
|
{
|
|
if (!path_model || !device) {
|
|
fprintf(stderr, "%s: path_model and/or device is null\n", __func__);
|
|
return nullptr;
|
|
}
|
|
|
|
fprintf(stderr, "%s: path_model = %s, device = %s, cache_dir = %s\n",
|
|
__func__, path_model, device, cache_dir ? cache_dir : "(not set)");
|
|
|
|
whisper_openvino_context *context = new whisper_openvino_context;
|
|
try {
|
|
ov::Core core;
|
|
|
|
if (cache_dir) {
|
|
// enables caching of device-specific 'blobs' during core.compile_model
|
|
// routine. This speeds up calls to compile_model for successive runs.
|
|
core.set_property(ov::cache_dir(cache_dir));
|
|
}
|
|
|
|
//Read the OpenVINO encoder IR (.xml/.bin) from disk, producing an ov::Model object.
|
|
std::shared_ptr<ov::Model> model = core.read_model(path_model);
|
|
|
|
// Produce a compiled-model object, given the device ("CPU", "GPU", etc.)
|
|
auto compiledModel = core.compile_model(model, device);
|
|
|
|
// From the compiled model object, create an infer request. This is the thing that we
|
|
// we will use later on to trigger inference execution.
|
|
context->inferRequest = compiledModel.create_infer_request();
|
|
}
|
|
catch (const std::exception& error) {
|
|
std::cout << "in openvino encoder compile routine: exception: " << error.what() << std::endl;
|
|
delete context;
|
|
context = nullptr;
|
|
}
|
|
|
|
return context;
|
|
}
|
|
|
|
void whisper_openvino_free(struct whisper_openvino_context * ctx) {
|
|
if( ctx ) {
|
|
delete ctx;
|
|
}
|
|
}
|
|
|
|
int whisper_openvino_encode(
|
|
whisper_openvino_context* ctx,
|
|
ggml_tensor* mel,
|
|
ggml_tensor* out) {
|
|
|
|
if (!ctx || !mel || !out) {
|
|
fprintf(stderr, "%s: Error! ctx / mel / out is null\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
if (ggml_n_dims(mel) != 2) {
|
|
fprintf(stderr, "%s: Error! mel ggml_tensor expected to have n_dims=2, but it has n_dims=%d\n",
|
|
__func__, ggml_n_dims(mel));
|
|
return 0;
|
|
}
|
|
|
|
if (ggml_n_dims(out) != 2) {
|
|
fprintf(stderr, "%s: Error! out ggml_tensor expected to have n_dims=2, but it has n_dims=%d\n",
|
|
__func__, ggml_n_dims(out));
|
|
return 0;
|
|
}
|
|
|
|
try {
|
|
|
|
//wrap the passed-in mel ggml_tensor as an OpenVINO Tensor object, and set as input tensor to infer request
|
|
{
|
|
// note, we populate shape & stride dimensions in opposite order from how they are listed in ne / nb arrays
|
|
ov::Shape input_shape = { 1, (unsigned long long)mel->ne[1], (unsigned long long)mel->ne[0] };
|
|
ov::Strides input_strides = { mel->nb[2], mel->nb[1], mel->nb[0] };
|
|
ov::Tensor input_tensor(ov::element::f32, input_shape, mel->data, input_strides);
|
|
ctx->inferRequest.set_input_tensor(input_tensor);
|
|
}
|
|
|
|
//wrap the passed-in out ggml_tensor as an OpenVINO Tensor object, and set as output tensor to infer request
|
|
{
|
|
// note, we populate shape & stride dimensions in opposite order from how they are listed in ne / nb arrays
|
|
ov::Shape output_shape = { 1, (unsigned long long)out->ne[1], (unsigned long long)out->ne[0] };
|
|
ov::Strides output_strides = { out->nb[2], out->nb[1], out->nb[0] };
|
|
ov::Tensor out_tensor(ov::element::f32, output_shape, out->data, output_strides);
|
|
ctx->inferRequest.set_output_tensor(out_tensor);
|
|
}
|
|
|
|
//run inference
|
|
ctx->inferRequest.infer();
|
|
}
|
|
catch (const std::exception& error) {
|
|
std::cout << "in openvino encode inference execution routine: exception: " << error.what() << std::endl;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|