mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-11 15:32:49 +00:00
c0329acde8
* examples/server: implement "verbose_json" format with token details. This is intended to mirror the format of openai's Python whisper.transcribe() return values. * server: don't write WAV to a temporary file if not converting * server: use std::lock_guard instead of manual lock/unlock
281 lines
8.4 KiB
C++
281 lines
8.4 KiB
C++
// Various helper functions and utilities
|
|
|
|
#pragma once
|
|
|
|
#include <string>
|
|
#include <map>
|
|
#include <vector>
|
|
#include <random>
|
|
#include <thread>
|
|
#include <ctime>
|
|
#include <fstream>
|
|
|
|
#define COMMON_SAMPLE_RATE 16000
|
|
|
|
//
|
|
// GPT CLI argument parsing
|
|
//
|
|
|
|
struct gpt_params {
|
|
int32_t seed = -1; // RNG seed
|
|
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
|
int32_t n_predict = 200; // new tokens to predict
|
|
int32_t n_parallel = 1; // number of parallel streams
|
|
int32_t n_batch = 8; // batch size for prompt processing
|
|
int32_t n_ctx = 2048; // context size (this is the KV cache max size)
|
|
int32_t n_gpu_layers = 0; // number of layers to offlload to the GPU
|
|
|
|
bool ignore_eos = false; // ignore EOS token when generating text
|
|
|
|
// sampling parameters
|
|
int32_t top_k = 40;
|
|
float top_p = 0.9f;
|
|
float temp = 0.9f;
|
|
int32_t repeat_last_n = 64;
|
|
float repeat_penalty = 1.00f;
|
|
|
|
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
|
|
std::string prompt = "";
|
|
std::string token_test = "";
|
|
|
|
bool interactive = false;
|
|
int32_t interactive_port = -1;
|
|
};
|
|
|
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
|
|
|
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
|
|
|
std::string gpt_random_prompt(std::mt19937 & rng);
|
|
|
|
//
|
|
// Vocab utils
|
|
//
|
|
|
|
std::string trim(const std::string & s);
|
|
|
|
std::string replace(
|
|
const std::string & s,
|
|
const std::string & from,
|
|
const std::string & to);
|
|
|
|
struct gpt_vocab {
|
|
using id = int32_t;
|
|
using token = std::string;
|
|
|
|
std::map<token, id> token_to_id;
|
|
std::map<id, token> id_to_token;
|
|
std::vector<std::string> special_tokens;
|
|
|
|
void add_special_token(const std::string & token);
|
|
};
|
|
|
|
// poor-man's JSON parsing
|
|
std::map<std::string, int32_t> json_parse(const std::string & fname);
|
|
|
|
std::string convert_to_utf8(const std::wstring & input);
|
|
|
|
std::wstring convert_to_wstring(const std::string & input);
|
|
|
|
void gpt_split_words(std::string str, std::vector<std::string>& words);
|
|
|
|
// split text into tokens
|
|
//
|
|
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
|
|
//
|
|
// Regex (Python):
|
|
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
|
|
//
|
|
// Regex (C++):
|
|
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
|
|
//
|
|
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
|
|
|
|
// test outputs of gpt_tokenize
|
|
//
|
|
// - compare with tokens generated by the huggingface tokenizer
|
|
// - test cases are chosen based on the model's main language (under 'prompt' directory)
|
|
// - if all sentences are tokenized identically, print 'All tests passed.'
|
|
// - otherwise, print sentence, huggingface tokens, ggml tokens
|
|
//
|
|
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test);
|
|
|
|
// load the tokens from encoder.json
|
|
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
|
|
|
|
// sample next token given probabilities for each embedding
|
|
//
|
|
// - consider only the top K tokens
|
|
// - from them, consider only the top tokens with cumulative probability > P
|
|
//
|
|
// TODO: not sure if this implementation is correct
|
|
// TODO: temperature is not implemented
|
|
//
|
|
gpt_vocab::id gpt_sample_top_k_top_p(
|
|
const gpt_vocab & vocab,
|
|
const float * logits,
|
|
int top_k,
|
|
double top_p,
|
|
double temp,
|
|
std::mt19937 & rng);
|
|
|
|
gpt_vocab::id gpt_sample_top_k_top_p_repeat(
|
|
const gpt_vocab & vocab,
|
|
const float * logits,
|
|
const int32_t * last_n_tokens_data,
|
|
size_t last_n_tokens_data_size,
|
|
int top_k,
|
|
double top_p,
|
|
double temp,
|
|
int repeat_last_n,
|
|
float repeat_penalty,
|
|
std::mt19937 & rng);
|
|
|
|
//
|
|
// Audio utils
|
|
//
|
|
|
|
// Read WAV audio file and store the PCM data into pcmf32
|
|
// fname can be a buffer of WAV data instead of a filename
|
|
// The sample rate of the audio must be equal to COMMON_SAMPLE_RATE
|
|
// If stereo flag is set and the audio has 2 channels, the pcmf32s will contain 2 channel PCM
|
|
bool read_wav(
|
|
const std::string & fname,
|
|
std::vector<float> & pcmf32,
|
|
std::vector<std::vector<float>> & pcmf32s,
|
|
bool stereo);
|
|
|
|
// Write PCM data into WAV audio file
|
|
class wav_writer {
|
|
private:
|
|
std::ofstream file;
|
|
uint32_t dataSize = 0;
|
|
std::string wav_filename;
|
|
|
|
bool write_header(const uint32_t sample_rate,
|
|
const uint16_t bits_per_sample,
|
|
const uint16_t channels) {
|
|
|
|
file.write("RIFF", 4);
|
|
file.write("\0\0\0\0", 4); // Placeholder for file size
|
|
file.write("WAVE", 4);
|
|
file.write("fmt ", 4);
|
|
|
|
const uint32_t sub_chunk_size = 16;
|
|
const uint16_t audio_format = 1; // PCM format
|
|
const uint32_t byte_rate = sample_rate * channels * bits_per_sample / 8;
|
|
const uint16_t block_align = channels * bits_per_sample / 8;
|
|
|
|
file.write(reinterpret_cast<const char *>(&sub_chunk_size), 4);
|
|
file.write(reinterpret_cast<const char *>(&audio_format), 2);
|
|
file.write(reinterpret_cast<const char *>(&channels), 2);
|
|
file.write(reinterpret_cast<const char *>(&sample_rate), 4);
|
|
file.write(reinterpret_cast<const char *>(&byte_rate), 4);
|
|
file.write(reinterpret_cast<const char *>(&block_align), 2);
|
|
file.write(reinterpret_cast<const char *>(&bits_per_sample), 2);
|
|
file.write("data", 4);
|
|
file.write("\0\0\0\0", 4); // Placeholder for data size
|
|
|
|
return true;
|
|
}
|
|
|
|
// It is assumed that PCM data is normalized to a range from -1 to 1
|
|
bool write_audio(const float * data, size_t length) {
|
|
for (size_t i = 0; i < length; ++i) {
|
|
const int16_t intSample = data[i] * 32767;
|
|
file.write(reinterpret_cast<const char *>(&intSample), sizeof(int16_t));
|
|
dataSize += sizeof(int16_t);
|
|
}
|
|
if (file.is_open()) {
|
|
file.seekp(4, std::ios::beg);
|
|
uint32_t fileSize = 36 + dataSize;
|
|
file.write(reinterpret_cast<char *>(&fileSize), 4);
|
|
file.seekp(40, std::ios::beg);
|
|
file.write(reinterpret_cast<char *>(&dataSize), 4);
|
|
file.seekp(0, std::ios::end);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool open_wav(const std::string & filename) {
|
|
if (filename != wav_filename) {
|
|
if (file.is_open()) {
|
|
file.close();
|
|
}
|
|
}
|
|
if (!file.is_open()) {
|
|
file.open(filename, std::ios::binary);
|
|
wav_filename = filename;
|
|
dataSize = 0;
|
|
}
|
|
return file.is_open();
|
|
}
|
|
|
|
public:
|
|
bool open(const std::string & filename,
|
|
const uint32_t sample_rate,
|
|
const uint16_t bits_per_sample,
|
|
const uint16_t channels) {
|
|
|
|
if (open_wav(filename)) {
|
|
write_header(sample_rate, bits_per_sample, channels);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool close() {
|
|
file.close();
|
|
return true;
|
|
}
|
|
|
|
bool write(const float * data, size_t length) {
|
|
return write_audio(data, length);
|
|
}
|
|
|
|
~wav_writer() {
|
|
if (file.is_open()) {
|
|
file.close();
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
// Apply a high-pass frequency filter to PCM audio
|
|
// Suppresses frequencies below cutoff Hz
|
|
void high_pass_filter(
|
|
std::vector<float> & data,
|
|
float cutoff,
|
|
float sample_rate);
|
|
|
|
// Basic voice activity detection (VAD) using audio energy adaptive threshold
|
|
bool vad_simple(
|
|
std::vector<float> & pcmf32,
|
|
int sample_rate,
|
|
int last_ms,
|
|
float vad_thold,
|
|
float freq_thold,
|
|
bool verbose);
|
|
|
|
// compute similarity between two strings using Levenshtein distance
|
|
float similarity(const std::string & s0, const std::string & s1);
|
|
|
|
//
|
|
// SAM argument parsing
|
|
//
|
|
|
|
struct sam_params {
|
|
int32_t seed = -1; // RNG seed
|
|
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
|
|
|
std::string model = "models/sam-vit-b/ggml-model-f16.bin"; // model path
|
|
std::string fname_inp = "img.jpg";
|
|
std::string fname_out = "img.out";
|
|
};
|
|
|
|
bool sam_params_parse(int argc, char ** argv, sam_params & params);
|
|
|
|
void sam_print_usage(int argc, char ** argv, const sam_params & params);
|