whisper.cpp/examples/server
Georgi Gerganov 7094ea5e75
whisper : use flash attention (#2152)
* whisper : use flash attention in the encoder

* whisper : add kv_pad

* whisper : remove extra backend instance (huh?)

* whisper : use FA for cross-attention

* whisper : use FA for self-attention

* whisper : simplify encoder FA

* whisper : add flash_attn runtime parameter

* scripts : add bench log

* scripts : add M1 Pro bench log
2024-05-15 09:38:19 +03:00
..
CMakeLists.txt examples : clean up common code (#1871) 2024-02-19 10:50:15 +02:00
httplib.h server : add a REST Whisper server example with OAI-like API (#1380) 2023-11-20 21:40:24 +02:00
README.md server : fix server temperature + add temperature_inc (#1729) 2024-01-07 13:35:14 +02:00
server.cpp whisper : use flash attention (#2152) 2024-05-15 09:38:19 +03:00

whisper.cpp http server

Simple http server. WAV Files are passed to the inference model via http requests.

https://github.com/ggerganov/whisper.cpp/assets/1991296/e983ee53-8741-4eb5-9048-afe5e4594b8f

Usage

./server -h

usage: ./bin/server [options]

options:
  -h,        --help              [default] show this help message and exit
  -t N,      --threads N         [4      ] number of threads to use during computation
  -p N,      --processors N      [1      ] number of processors to use during computation
  -ot N,     --offset-t N        [0      ] time offset in milliseconds
  -on N,     --offset-n N        [0      ] segment index offset
  -d  N,     --duration N        [0      ] duration of audio to process in milliseconds
  -mc N,     --max-context N     [-1     ] maximum number of text context tokens to store
  -ml N,     --max-len N         [0      ] maximum segment length in characters
  -sow,      --split-on-word     [false  ] split on word rather than on token
  -bo N,     --best-of N         [2      ] number of best candidates to keep
  -bs N,     --beam-size N       [-1     ] beam size for beam search
  -wt N,     --word-thold N      [0.01   ] word timestamp probability threshold
  -et N,     --entropy-thold N   [2.40   ] entropy threshold for decoder fail
  -lpt N,    --logprob-thold N   [-1.00  ] log probability threshold for decoder fail
  -debug,    --debug-mode        [false  ] enable debug mode (eg. dump log_mel)
  -tr,       --translate         [false  ] translate from source language to english
  -di,       --diarize           [false  ] stereo audio diarization
  -tdrz,     --tinydiarize       [false  ] enable tinydiarize (requires a tdrz model)
  -nf,       --no-fallback       [false  ] do not use temperature fallback while decoding
  -ps,       --print-special     [false  ] print special tokens
  -pc,       --print-colors      [false  ] print colors
  -pr,       --print-realtime    [false  ] print output in realtime
  -pp,       --print-progress    [false  ] print progress
  -nt,       --no-timestamps     [false  ] do not print timestamps
  -l LANG,   --language LANG     [en     ] spoken language ('auto' for auto-detect)
  -dl,       --detect-language   [false  ] exit after automatically detecting language
             --prompt PROMPT     [       ] initial prompt
  -m FNAME,  --model FNAME       [models/ggml-base.en.bin] model path
  -oved D,   --ov-e-device DNAME [CPU    ] the OpenVINO device used for encode inference
  --host HOST,                   [127.0.0.1] Hostname/ip-adress for the server
  --port PORT,                   [8080   ] Port number for the server
  --convert,                     [false  ] Convert audio to WAV, requires ffmpeg on the server

Warning

Do not run the server example with administrative privileges and ensure it's operated in a sandbox environment, especially since it involves risky operations like accepting user file uploads and using ffmpeg for format conversions. Always validate and sanitize inputs to guard against potential security threats.

request examples

/inference

curl 127.0.0.1:8080/inference \
-H "Content-Type: multipart/form-data" \
-F file="@<file-path>" \
-F temperature="0.0" \
-F temperature_inc="0.2" \
-F response_format="json"

/load

curl 127.0.0.1:8080/load \
-H "Content-Type: multipart/form-data" \
-F model="<path-to-model-file>"