mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-20 21:23:06 +00:00
2724 lines
100 KiB
Plaintext
2724 lines
100 KiB
Plaintext
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <atomic>
|
|
#include <assert.h>
|
|
|
|
#include <cuda_runtime.h>
|
|
#include <cublas_v2.h>
|
|
#include <cuda_fp16.h>
|
|
|
|
#include "ggml-cuda.h"
|
|
#include "ggml.h"
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
|
|
|
#define CUDA_CHECK(err) \
|
|
do { \
|
|
cudaError_t err_ = (err); \
|
|
if (err_ != cudaSuccess) { \
|
|
fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
|
|
cudaGetErrorString(err_)); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
|
|
#if CUDART_VERSION >= 12000
|
|
#define CUBLAS_CHECK(err) \
|
|
do { \
|
|
cublasStatus_t err_ = (err); \
|
|
if (err_ != CUBLAS_STATUS_SUCCESS) { \
|
|
fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \
|
|
err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define CUBLAS_CHECK(err) \
|
|
do { \
|
|
cublasStatus_t err_ = (err); \
|
|
if (err_ != CUBLAS_STATUS_SUCCESS) { \
|
|
fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
#endif // CUDART_VERSION >= 11
|
|
|
|
#ifdef GGML_CUDA_DMMV_F16
|
|
typedef half dfloat; // dequantize float
|
|
typedef half2 dfloat2;
|
|
#else
|
|
typedef float dfloat; // dequantize float
|
|
typedef float2 dfloat2;
|
|
#endif //GGML_CUDA_DMMV_F16
|
|
|
|
typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
|
|
typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
|
|
typedef void (*dot_kernel_k_t)(const void * vx, const int ib, const int iqs, const float * y, float & v);
|
|
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
|
|
typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
|
|
typedef void (*ggml_cuda_op_t)(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i,
|
|
float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main);
|
|
|
|
// QK = number of values after dequantization
|
|
// QR = QK / number of values before dequantization
|
|
|
|
#define QK4_0 32
|
|
#define QR4_0 2
|
|
typedef struct {
|
|
half d; // delta
|
|
uint8_t qs[QK4_0 / 2]; // nibbles / quants
|
|
} block_q4_0;
|
|
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
|
|
|
|
#define QK4_1 32
|
|
#define QR4_1 2
|
|
typedef struct {
|
|
half d; // delta
|
|
half m; // min
|
|
uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
|
} block_q4_1;
|
|
static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
|
|
|
|
#define QK5_0 32
|
|
#define QR5_0 2
|
|
typedef struct {
|
|
half d; // delta
|
|
uint8_t qh[4]; // 5-th bit of quants
|
|
uint8_t qs[QK5_0 / 2]; // nibbles / quants
|
|
} block_q5_0;
|
|
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
|
|
|
|
#define QK5_1 32
|
|
#define QR5_1 2
|
|
typedef struct {
|
|
half d; // delta
|
|
half m; // min
|
|
uint8_t qh[4]; // 5-th bit of quants
|
|
uint8_t qs[QK5_1 / 2]; // nibbles / quants
|
|
} block_q5_1;
|
|
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
|
|
|
|
#define QK8_0 32
|
|
#define QR8_0 1
|
|
typedef struct {
|
|
half d; // delta
|
|
int8_t qs[QK8_0]; // quants
|
|
} block_q8_0;
|
|
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
|
|
|
|
//================================= k-quants
|
|
|
|
#define QK_K 256
|
|
|
|
typedef struct {
|
|
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
|
|
uint8_t qs[QK_K/4]; // quants
|
|
half d; // super-block scale for quantized scales
|
|
half dmin; // super-block scale for quantized mins
|
|
} block_q2_K;
|
|
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
|
|
|
|
typedef struct {
|
|
uint8_t hmask[QK_K/8];
|
|
uint8_t qs[QK_K/4]; // nibbles / quants
|
|
uint8_t scales[3*QK_K/64];
|
|
half d;
|
|
} block_q3_K;
|
|
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + 11 * QK_K / 64, "wrong q3_K block size/padding");
|
|
|
|
typedef struct {
|
|
half d; // super-block scale for quantized scales
|
|
half dmin; // super-block scale for quantized mins
|
|
uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
|
|
uint8_t qs[QK_K/2]; // 4--bit quants
|
|
} block_q4_K;
|
|
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
|
|
|
|
typedef struct {
|
|
half d; // super-block scale for quantized scales
|
|
half dmin; // super-block scale for quantized mins
|
|
uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
|
|
uint8_t qh[QK_K/8]; // quants, high bit
|
|
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
|
} block_q5_K;
|
|
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
|
|
|
|
typedef struct {
|
|
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
|
uint8_t qh[QK_K/4]; // quants, upper 2 bits
|
|
int8_t scales[QK_K/16]; // scales
|
|
half d; // delta
|
|
} block_q6_K;
|
|
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
|
|
|
|
#define WARP_SIZE 32
|
|
|
|
#define CUDA_ADD_BLOCK_SIZE 256
|
|
#define CUDA_MUL_BLOCK_SIZE 256
|
|
#define CUDA_SILU_BLOCK_SIZE 256
|
|
#define CUDA_CPY_BLOCK_SIZE 32
|
|
#define CUDA_SCALE_BLOCK_SIZE 256
|
|
#define CUDA_ROPE_BLOCK_SIZE 256
|
|
#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
|
|
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
|
|
|
|
// dmmv = dequantize_mul_mat_vec
|
|
#ifndef GGML_CUDA_DMMV_X
|
|
#define GGML_CUDA_DMMV_X 32
|
|
#endif
|
|
#ifndef GGML_CUDA_DMMV_Y
|
|
#define GGML_CUDA_DMMV_Y 1
|
|
#endif
|
|
|
|
#ifndef K_QUANTS_PER_ITERATION
|
|
#define K_QUANTS_PER_ITERATION 2
|
|
#else
|
|
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
|
|
#endif
|
|
|
|
static __global__ void add_f32(const float * x, const float * y, float * dst, const int k) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = x[i] + y[i];
|
|
}
|
|
|
|
static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= kx) {
|
|
return;
|
|
}
|
|
dst[i] = x[i] * y[i%ky];
|
|
}
|
|
|
|
static __global__ void silu_f32(const float * x, float * dst, const int k) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = x[i] / (1.0f + expf(-x[i]));
|
|
}
|
|
|
|
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols) {
|
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
|
const int tid = threadIdx.x;
|
|
|
|
const float eps = 1e-6;
|
|
|
|
float tmp = 0.0f; // partial sum for thread in warp
|
|
|
|
for (int i = 0; i < ncols; i += WARP_SIZE) {
|
|
const int col = i + tid;
|
|
const float xi = x[row*ncols + col];
|
|
tmp += xi * xi;
|
|
}
|
|
|
|
// sum up partial sums
|
|
__syncthreads();
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
const float mean = tmp / ncols;
|
|
const float scale = 1.0f / sqrtf(mean + eps);
|
|
|
|
for (int i = 0; i < ncols; i += WARP_SIZE) {
|
|
const int col = i + tid;
|
|
dst[row*ncols + col] = scale * x[row*ncols + col];
|
|
}
|
|
}
|
|
|
|
static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
const block_q4_0 * x = (const block_q4_0 *) vx;
|
|
|
|
const dfloat d = x[ib].d;
|
|
|
|
const int vui = x[ib].qs[iqs];
|
|
|
|
v.x = vui & 0xF;
|
|
v.y = vui >> 4;
|
|
|
|
#ifdef GGML_CUDA_DMMV_F16
|
|
v = __hsub2(v, {8.0f, 8.0f});
|
|
v = __hmul2(v, {d, d});
|
|
#else
|
|
v.x = (v.x - 8.0f) * d;
|
|
v.y = (v.y - 8.0f) * d;
|
|
#endif // GGML_CUDA_DMMV_F16
|
|
}
|
|
|
|
static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
const block_q4_1 * x = (const block_q4_1 *) vx;
|
|
|
|
const dfloat d = x[ib].d;
|
|
const dfloat m = x[ib].m;
|
|
|
|
const int vui = x[ib].qs[iqs];
|
|
|
|
v.x = vui & 0xF;
|
|
v.y = vui >> 4;
|
|
|
|
#ifdef GGML_CUDA_DMMV_F16
|
|
v = __hmul2(v, {d, d});
|
|
v = __hadd2(v, {m, m});
|
|
#else
|
|
v.x = (v.x * d) + m;
|
|
v.y = (v.y * d) + m;
|
|
#endif // GGML_CUDA_DMMV_F16
|
|
}
|
|
|
|
static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
const block_q5_0 * x = (const block_q5_0 *) vx;
|
|
|
|
const dfloat d = x[ib].d;
|
|
|
|
uint32_t qh;
|
|
memcpy(&qh, x[ib].qh, sizeof(qh));
|
|
|
|
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
|
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
|
|
|
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
|
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
|
|
|
|
#ifdef GGML_CUDA_DMMV_F16
|
|
v = __hsub2(v, {16.0f, 16.0f});
|
|
v = __hmul2(v, {d, d});
|
|
#else
|
|
v.x = (v.x - 16.0f) * d;
|
|
v.y = (v.y - 16.0f) * d;
|
|
#endif // GGML_CUDA_DMMV_F16
|
|
}
|
|
|
|
static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
const block_q5_1 * x = (const block_q5_1 *) vx;
|
|
|
|
const dfloat d = x[ib].d;
|
|
const dfloat m = x[ib].m;
|
|
|
|
uint32_t qh;
|
|
memcpy(&qh, x[ib].qh, sizeof(qh));
|
|
|
|
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
|
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
|
|
|
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
|
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
|
|
|
|
#ifdef GGML_CUDA_DMMV_F16
|
|
v = __hmul2(v, {d, d});
|
|
v = __hadd2(v, {m, m});
|
|
#else
|
|
v.x = (v.x * d) + m;
|
|
v.y = (v.y * d) + m;
|
|
#endif // GGML_CUDA_DMMV_F16
|
|
}
|
|
|
|
static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
const block_q8_0 * x = (const block_q8_0 *) vx;
|
|
|
|
const dfloat d = x[ib].d;
|
|
|
|
v.x = x[ib].qs[iqs + 0];
|
|
v.y = x[ib].qs[iqs + 1];
|
|
|
|
#ifdef GGML_CUDA_DMMV_F16
|
|
v = __hmul2(v, {d, d});
|
|
#else
|
|
v.x *= d;
|
|
v.y *= d;
|
|
#endif // GGML_CUDA_DMMV_F16
|
|
}
|
|
|
|
//================================== k-quants
|
|
|
|
static __global__ void dequantize_block_q2_K(const void * vx, float * yy) {
|
|
|
|
const int i = blockIdx.x;
|
|
const int tid = threadIdx.x;
|
|
const int n = tid/32;
|
|
const int l = tid - 32*n;
|
|
const int is = 8*n + l/16;
|
|
|
|
const block_q2_K * x = (const block_q2_K *) vx;
|
|
|
|
const uint8_t q = x[i].qs[32*n + l];
|
|
float * y = yy + i*QK_K + 128*n;
|
|
|
|
float dall = x[i].d;
|
|
float dmin = x[i].dmin;
|
|
y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
|
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
|
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
|
|
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
|
|
|
|
}
|
|
|
|
static __global__ void dequantize_block_q3_K(const void * vx, float * yy) {
|
|
|
|
int r = threadIdx.x/4;
|
|
int i = blockIdx.x;
|
|
int tid = r/2;
|
|
int is0 = r%2;
|
|
int l0 = 16*is0 + 4*(threadIdx.x%4);
|
|
int n = tid / 4;
|
|
int j = tid - 4*n;
|
|
|
|
const block_q3_K * x = (const block_q3_K *) vx;
|
|
|
|
uint8_t m = 1 << (4*n + j);
|
|
int is = 8*n + 2*j + is0;
|
|
int shift = 2*j;
|
|
|
|
int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
|
|
is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
|
|
is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
|
|
(x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
|
|
float d_all = x[i].d;
|
|
float dl = d_all * (us - 32);
|
|
|
|
float * y = yy + i*QK_K + 128*n + 32*j;
|
|
const uint8_t * q = x[i].qs + 32*n;
|
|
const uint8_t * hm = x[i].hmask;
|
|
|
|
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
|
|
|
|
}
|
|
|
|
static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
|
|
if (j < 4) {
|
|
d = q[j] & 63; m = q[j + 4] & 63;
|
|
} else {
|
|
d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
|
|
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
|
}
|
|
}
|
|
|
|
static __global__ void dequantize_block_q4_K(const void * vx, float * yy) {
|
|
const block_q4_K * x = (const block_q4_K *) vx;
|
|
|
|
const int i = blockIdx.x;
|
|
|
|
//// assume 64 threads - this is very slightly better than the one below
|
|
//const int tid = threadIdx.x;
|
|
//const int il = tid/16;
|
|
//const int ir = tid%16;
|
|
//const int is = 2*il;
|
|
//const int n = 2;
|
|
|
|
// assume 32 threads
|
|
const int tid = threadIdx.x;
|
|
const int il = tid/8;
|
|
const int ir = tid%8;
|
|
const int is = 2*il;
|
|
const int n = 4;
|
|
|
|
float * y = yy + i*QK_K + 64*il + n*ir;
|
|
|
|
const float dall = x[i].d;
|
|
const float dmin = x[i].dmin;
|
|
|
|
const uint8_t * q = x[i].qs + 32*il + n*ir;
|
|
|
|
uint8_t sc, m;
|
|
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
|
const float d1 = dall * sc; const float m1 = dmin * m;
|
|
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
|
const float d2 = dall * sc; const float m2 = dmin * m;
|
|
for (int l = 0; l < n; ++l) {
|
|
y[l + 0] = d1 * (q[l] & 0xF) - m1;
|
|
y[l +32] = d2 * (q[l] >> 4) - m2;
|
|
}
|
|
}
|
|
|
|
static __global__ void dequantize_block_q5_K(const void * vx, float * yy) {
|
|
const block_q5_K * x = (const block_q5_K *) vx;
|
|
|
|
const int i = blockIdx.x;
|
|
|
|
// assume 64 threads - this is very slightly better than the one below
|
|
const int tid = threadIdx.x;
|
|
const int il = tid/16; // il is in 0...3
|
|
const int ir = tid%16; // ir is in 0...15
|
|
const int is = 2*il; // is is in 0...6
|
|
|
|
float * y = yy + i*QK_K + 64*il + 2*ir;
|
|
|
|
const float dall = x[i].d;
|
|
const float dmin = x[i].dmin;
|
|
|
|
const uint8_t * ql = x[i].qs + 32*il + 2*ir;
|
|
const uint8_t * qh = x[i].qh + 2*ir;
|
|
|
|
uint8_t sc, m;
|
|
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
|
const float d1 = dall * sc; const float m1 = dmin * m;
|
|
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
|
const float d2 = dall * sc; const float m2 = dmin * m;
|
|
|
|
uint8_t hm = 1 << (2*il);
|
|
y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
|
|
y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
|
|
hm <<= 1;
|
|
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
|
|
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
|
|
}
|
|
|
|
static __global__ void dequantize_block_q6_K(const void * vx, float * yy) {
|
|
const block_q6_K * x = (const block_q6_K *) vx;
|
|
|
|
const int i = blockIdx.x;
|
|
|
|
// assume 64 threads - this is very slightly better than the one below
|
|
const int tid = threadIdx.x;
|
|
const int ip = tid/32; // ip is 0 or 1
|
|
const int il = tid - 32*ip; // 0...32
|
|
const int is = 8*ip + il/16;
|
|
|
|
float * y = yy + i*QK_K + 128*ip + il;
|
|
|
|
const float d = x[i].d;
|
|
|
|
const uint8_t * ql = x[i].ql + 64*ip + il;
|
|
const uint8_t qh = x[i].qh[32*ip + il];
|
|
const int8_t * sc = x[i].scales + is;
|
|
|
|
y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
|
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
|
|
y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
|
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
|
|
}
|
|
|
|
static __global__ void dequantize_mul_mat_vec_q2_k(const void * vx, const float * yy, float * dst, const int ncols, int nrows) {
|
|
|
|
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
|
|
|
const int row = blockIdx.y*blockDim.y + threadIdx.y;
|
|
if (row > nrows) return;
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q2_K * x = (const block_q2_K *)vx + ib0;
|
|
|
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
|
const int step = 16/K_QUANTS_PER_ITERATION;
|
|
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0...15 or 0...7
|
|
|
|
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
|
|
const int q_offset = 32*im + l0;
|
|
const int s_offset = 8*im;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
uint32_t aux[4];
|
|
const uint8_t * d = (const uint8_t *)aux;
|
|
const uint8_t * m = (const uint8_t *)(aux + 2);
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + y_offset;
|
|
const uint8_t * q = x[i].qs + q_offset;
|
|
|
|
const float dall = x[i].d;
|
|
const float dmin = x[i].dmin;
|
|
|
|
const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
|
|
aux[0] = a[0] & 0x0f0f0f0f;
|
|
aux[1] = a[1] & 0x0f0f0f0f;
|
|
aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
|
|
aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
|
|
|
|
float sum1 = 0, sum2 = 0;
|
|
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
|
sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
|
|
+ y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
|
|
+ y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
|
|
+ y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
|
|
+ y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
|
|
+ y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
|
|
+ y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
|
|
+y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
|
|
sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
|
|
+ y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
|
|
|
|
}
|
|
tmp += dall * sum1 - dmin * sum2;
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
__syncthreads();
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (tid == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
static __global__ void dequantize_mul_mat_vec_q3_k(const void * vx, const float * yy, float * dst, const int ncols, int nrows) {
|
|
|
|
const uint16_t kmask1 = 0x0303;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
|
|
const int row = blockIdx.y*blockDim.y + threadIdx.y;
|
|
if (row > nrows) return;
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q3_K * x = (const block_q3_K *)vx + ib0;
|
|
|
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
|
const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
|
|
const int step = 16/K_QUANTS_PER_ITERATION;
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0....15 or 0...7
|
|
|
|
const uint8_t m = 1 << (4*im);
|
|
|
|
const int l0 = n*in; // 0...15 or 0...14 in steps of 2
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
uint16_t utmp[4];
|
|
const int8_t * s = (const int8_t *)utmp;
|
|
|
|
const uint16_t s_shift = 4*im;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + y_offset;
|
|
const uint8_t * q = x[i].qs + q_offset;
|
|
const uint8_t * h = x[i].hmask + l0;
|
|
|
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
|
|
utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
|
|
utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
|
|
utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
|
|
|
|
const float d = x[i].d;
|
|
|
|
float sum = 0;
|
|
for (int l = 0; l < n; ++l) {
|
|
sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
|
|
+ y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
|
|
+ y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
|
|
+ y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
|
|
sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
|
|
+ y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
|
|
+ y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
|
|
+ y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
|
|
}
|
|
tmp += d * sum;
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
__syncthreads();
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (tid == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
static __global__ void dequantize_mul_mat_vec_q4_k(const void * vx, const float * yy, float * dst, const int ncols, int nrows) {
|
|
|
|
const uint16_t kmask1 = 0x3f3f;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
const uint16_t kmask3 = 0xc0c0;
|
|
|
|
const int row = blockIdx.y*blockDim.y + threadIdx.y;
|
|
if (row > nrows) return;
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
|
const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
|
|
|
|
const int il = tid/step; // 0...3
|
|
const int ir = tid - step*il; // 0...7 or 0...3
|
|
const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
|
|
|
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
|
const int in = il%2;
|
|
|
|
const int l0 = n*(2*ir + in);
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 64*im + l0;
|
|
|
|
uint16_t aux[4];
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
|
|
const block_q4_K * x = (const block_q4_K *)vx + ib0;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
const uint8_t * q1 = x[i].qs + q_offset;
|
|
const uint8_t * q2 = q1 + 64;
|
|
const float * y1 = yy + i*QK_K + y_offset;
|
|
const float * y2 = y1 + 128;
|
|
|
|
const float dall = x[i].d;
|
|
const float dmin = x[i].dmin;
|
|
|
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
aux[0] = a[im+0] & kmask1;
|
|
aux[1] = a[im+2] & kmask1;
|
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
|
|
|
float4 s = {0.f, 0.f, 0.f, 0.f};
|
|
float smin = 0;
|
|
for (int l = 0; l < n; ++l) {
|
|
s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4);
|
|
s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4);
|
|
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
|
}
|
|
tmp += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin;
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
__syncthreads();
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (tid == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
static __global__ void dequantize_mul_mat_vec_q5_k(const void * vx, const float * yy, float * dst, const int ncols) {
|
|
|
|
const uint16_t kmask1 = 0x3f3f;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
const uint16_t kmask3 = 0xc0c0;
|
|
|
|
//const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
|
const int row = blockIdx.x;
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const int tid = threadIdx.x/2; // 0...15
|
|
const int ix = threadIdx.x%2;
|
|
|
|
const int il = tid/4; // 0...3
|
|
const int ir = tid - 4*il;// 0...3
|
|
const int n = 2;
|
|
|
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
|
const int in = il%2;
|
|
|
|
const int l0 = n*(2*ir + in);
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 64*im + l0;
|
|
|
|
const uint8_t hm1 = 1 << (2*im);
|
|
const uint8_t hm2 = hm1 << 4;
|
|
|
|
uint16_t aux[4];
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
|
|
const block_q5_K * x = (const block_q5_K *)vx + ib0;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += 2) {
|
|
|
|
const uint8_t * ql1 = x[i].qs + q_offset;
|
|
const uint8_t * ql2 = ql1 + 64;
|
|
const uint8_t * qh = x[i].qh + l0;
|
|
const float * y1 = yy + i*QK_K + y_offset;
|
|
const float * y2 = y1 + 128;
|
|
|
|
const float dall = x[i].d;
|
|
const float dmin = x[i].dmin;
|
|
|
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
aux[0] = a[im+0] & kmask1;
|
|
aux[1] = a[im+2] & kmask1;
|
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
|
|
|
float4 sum = {0.f, 0.f, 0.f, 0.f};
|
|
float smin = 0;
|
|
for (int l = 0; l < n; ++l) {
|
|
sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
|
|
+ y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0));
|
|
sum.y += y1[l+32] * ((ql1[l+ 0] >> 4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
|
|
+ y1[l+48] * ((ql1[l+16] >> 4) + (qh[l+16] & (hm1 << 1) ? 16 : 0));
|
|
sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
|
|
+ y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0));
|
|
sum.w += y2[l+32] * ((ql2[l+ 0] >> 4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
|
|
+ y2[l+48] * ((ql2[l+16] >> 4) + (qh[l+16] & (hm2 << 1) ? 16 : 0));
|
|
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
|
|
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
|
|
}
|
|
tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
__syncthreads();
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (tid == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
static __global__ void dequantize_mul_mat_vec_q6_k(const void * vx, const float * yy, float * dst, const int ncols, int nrows) {
|
|
|
|
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
|
|
|
const int row = blockIdx.y*blockDim.y + threadIdx.y;
|
|
if (row > nrows) return;
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q6_K * x = (const block_q6_K *)vx + ib0;
|
|
|
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
|
|
|
|
const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
|
|
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0...15 or 0...7
|
|
|
|
#if K_QUANTS_PER_ITERATION == 1
|
|
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
|
|
const int is = 0;
|
|
#else
|
|
const int l0 = 4 * in; // 0, 4, 8, ..., 28
|
|
const int is = in / 4;
|
|
#endif
|
|
const int ql_offset = 64*im + l0;
|
|
const int qh_offset = 32*im + l0;
|
|
const int s_offset = 8*im + is;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + y_offset;
|
|
const uint8_t * ql = x[i].ql + ql_offset;
|
|
const uint8_t * qh = x[i].qh + qh_offset;
|
|
const int8_t * s = x[i].scales + s_offset;
|
|
|
|
const float d = x[i].d;
|
|
|
|
#if K_QUANTS_PER_ITERATION == 1
|
|
float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
|
|
+ y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
|
|
+ y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
|
|
+ y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
|
|
+ y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
|
|
+ y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
|
|
+ y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
|
|
+y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
|
|
tmp += sum;
|
|
#else
|
|
float sum = 0;
|
|
for (int l = 0; l < 4; ++l) {
|
|
sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
|
|
+ y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
|
|
+ y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
|
|
+ y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
|
|
}
|
|
tmp += sum;
|
|
#endif
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
__syncthreads();
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (tid == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
const half * x = (const half *) vx;
|
|
|
|
// automatic half -> float type cast if dfloat == float
|
|
v.x = x[ib + iqs + 0];
|
|
v.y = x[ib + iqs + 1];
|
|
}
|
|
|
|
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
|
|
static __global__ void dequantize_block(const void * vx, float * y, const int k) {
|
|
const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
|
|
const int ib = i/qk; // block index
|
|
const int iqs = (i%qk)/qr; // quant index
|
|
const int iybs = i - i%qk; // y block start index
|
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
|
|
|
// dequantize
|
|
dfloat2 v;
|
|
dequantize_kernel(vx, ib, iqs, v);
|
|
|
|
y[iybs + iqs + 0] = v.x;
|
|
y[iybs + iqs + y_offset] = v.y;
|
|
}
|
|
|
|
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
|
|
static __global__ void dequantize_mul_mat_vec(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows) {
|
|
// qk = quantized weights per x block
|
|
// qr = number of quantized weights per data value in x block
|
|
const int row = blockIdx.y*blockDim.y + threadIdx.y;
|
|
|
|
if (row >= nrows) {
|
|
return;
|
|
}
|
|
|
|
const int tid = threadIdx.x;
|
|
|
|
const int iter_stride = 2*GGML_CUDA_DMMV_X;
|
|
const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
|
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
|
|
|
// partial sum for each thread
|
|
#ifdef GGML_CUDA_DMMV_F16
|
|
half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
|
|
#else
|
|
float tmp = 0.0f;
|
|
#endif // GGML_CUDA_DMMV_F16
|
|
|
|
for (int i = 0; i < ncols; i += iter_stride) {
|
|
const int col = i + vals_per_iter*tid;
|
|
const int ib = (row*ncols + col)/qk; // x block index
|
|
const int iqs = (col%qk)/qr; // x quant index
|
|
const int iybs = col - col%qk; // y block start index
|
|
|
|
// processing >2 values per i iter is faster for fast GPUs
|
|
#pragma unroll
|
|
for (int j = 0; j < vals_per_iter; j += 2) {
|
|
// process 2 vals per j iter
|
|
|
|
// dequantize
|
|
// for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
|
|
dfloat2 v;
|
|
dequantize_kernel(vx, ib, iqs + j/qr, v);
|
|
|
|
// matrix multiplication
|
|
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
|
|
#ifdef GGML_CUDA_DMMV_F16
|
|
tmp += __hmul2(v, {
|
|
y[iybs + iqs + j/qr + 0],
|
|
y[iybs + iqs + j/qr + y_offset]
|
|
});
|
|
#else
|
|
tmp += v.x * y[iybs + iqs + j/qr + 0];
|
|
tmp += v.y * y[iybs + iqs + j/qr + y_offset];
|
|
#endif // GGML_CUDA_DMMV_F16
|
|
}
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
__syncthreads();
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (tid == 0) {
|
|
#ifdef GGML_CUDA_DMMV_F16
|
|
dst[row] = tmp.x + tmp.y;
|
|
#else
|
|
dst[row] = tmp;
|
|
#endif // GGML_CUDA_DMMV_F16
|
|
}
|
|
}
|
|
|
|
static __global__ void mul_mat_p021_f16_f32(const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nchannels_x) {
|
|
const half * x = (half *) vx;
|
|
|
|
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
|
|
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
|
|
|
|
const int nrows_y = ncols_x;
|
|
const int nrows_dst = nrows_x;
|
|
const int row_dst = row_x;
|
|
|
|
float tmp = 0.0f;
|
|
|
|
for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
|
|
const int col_x = col_x0 + threadIdx.x;
|
|
|
|
if (col_x >= ncols_x) {
|
|
break;
|
|
}
|
|
|
|
// x is transposed and permuted
|
|
const int ix = row_x*nchannels_x*ncols_x + channel*ncols_x + col_x;
|
|
const float xi = __half2float(x[ix]);
|
|
|
|
const int row_y = col_x;
|
|
|
|
|
|
// y is not transposed but permuted
|
|
const int iy = channel*nrows_y + row_y;
|
|
|
|
tmp += xi * y[iy];
|
|
}
|
|
|
|
// dst is not transposed and not permuted
|
|
const int idst = channel*nrows_dst + row_dst;
|
|
|
|
// sum up partial sums and write back result
|
|
__syncthreads();
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (threadIdx.x == 0) {
|
|
dst[idst] = tmp;
|
|
}
|
|
}
|
|
|
|
static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
|
|
const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
|
|
const int row_stride_x, const int nchannels_x, const int channel_stride_x) {
|
|
|
|
const half * x = (half *) vx;
|
|
|
|
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
|
|
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
|
|
|
|
const int nrows_y = ncols_x;
|
|
const int nrows_dst = nrows_x;
|
|
const int row_dst = row_x;
|
|
|
|
const int idst = channel*nrows_dst + row_dst;
|
|
|
|
float tmp = 0.0f;
|
|
|
|
for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
|
|
const int col_x = col_x0 + threadIdx.x;
|
|
|
|
if (col_x >= ncols_x) {
|
|
break;
|
|
}
|
|
|
|
const int ix = channel*channel_stride_x + row_x*row_stride_x + col_x;
|
|
const float xi = __half2float(x[ix]);
|
|
|
|
const int row_y = col_x;
|
|
|
|
const int iy = channel*nrows_y + row_y;
|
|
|
|
tmp += xi * y[iy];
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
__syncthreads();
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (threadIdx.x == 0) {
|
|
dst[idst] = tmp;
|
|
}
|
|
}
|
|
|
|
static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
|
|
const float * xi = (float *) cxi;
|
|
float * dsti = (float *) cdsti;
|
|
|
|
*dsti = *xi;
|
|
}
|
|
|
|
static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
|
|
const float * xi = (float *) cxi;
|
|
half * dsti = (half *) cdsti;
|
|
|
|
*dsti = __float2half(*xi);
|
|
}
|
|
|
|
template <cpy_kernel_t cpy_1>
|
|
static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
|
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= ne) {
|
|
return;
|
|
}
|
|
|
|
// determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
|
|
// then combine those indices with the corresponding byte offsets to get the total offsets
|
|
const int i02 = i / (ne00*ne01);
|
|
const int i01 = (i - i02*ne01*ne00) / ne00;
|
|
const int i00 = i - i02*ne01*ne00 - i01*ne00;
|
|
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
|
|
|
|
const int i12 = i / (ne10*ne11);
|
|
const int i11 = (i - i12*ne10*ne11) / ne10;
|
|
const int i10 = i - i12*ne10*ne11 - i11*ne10;
|
|
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
|
|
|
|
cpy_1(cx + x_offset, cdst + dst_offset);
|
|
}
|
|
|
|
// rope == RoPE == rotary positional embedding
|
|
static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p, const float theta_scale) {
|
|
const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x);
|
|
|
|
if (col >= ncols) {
|
|
return;
|
|
}
|
|
|
|
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
|
const int i = row*ncols + col;
|
|
|
|
const float theta = p*powf(theta_scale, col/2);
|
|
const float sin_theta = sinf(theta);
|
|
const float cos_theta = cosf(theta);
|
|
|
|
const float x0 = x[i + 0];
|
|
const float x1 = x[i + 1];
|
|
|
|
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
|
dst[i + 1] = x0*sin_theta + x1*cos_theta;
|
|
}
|
|
|
|
static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
|
|
const int col = blockDim.x*blockIdx.x + threadIdx.x;
|
|
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
|
|
|
if (col >= ncols) {
|
|
return;
|
|
}
|
|
|
|
const int i = row*ncols + col;
|
|
// dst[i] = col > n_past + row ? -INFINITY : x[i];
|
|
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
|
|
}
|
|
|
|
// the CUDA soft max implementation differs from the CPU implementation
|
|
// instead of doubles floats are used
|
|
// values are also not normalized to the maximum value by subtracting it in the exponential function
|
|
// theoretically these changes could cause problems with rounding error and arithmetic overflow but for LLaMa it seems to be fine
|
|
static __global__ void soft_max_f32(const float * x, float * dst, const int ncols) {
|
|
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
|
const int block_size = blockDim.x;
|
|
const int tid = threadIdx.x;
|
|
|
|
float tmp = 0.0;
|
|
|
|
for (int block_start = 0; block_start < ncols; block_start += block_size) {
|
|
const int col = block_start + tid;
|
|
|
|
if (col >= ncols) {
|
|
break;
|
|
}
|
|
|
|
const int i = row*ncols + col;
|
|
const float val = expf(x[i]);
|
|
tmp += val;
|
|
dst[i] = val;
|
|
}
|
|
|
|
// sum up partial sums
|
|
__syncthreads();
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
for (int block_start = 0; block_start < ncols; block_start += block_size) {
|
|
const int col = block_start + tid;
|
|
|
|
if (col >= ncols) {
|
|
break;
|
|
}
|
|
|
|
const int i = row*ncols + col;
|
|
dst[i] /= tmp;
|
|
}
|
|
}
|
|
|
|
static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
|
|
dst[i] = scale * x[i];
|
|
}
|
|
|
|
static void add_f32_cuda(const float * x, const float * y, float * dst, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
|
|
add_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
|
|
}
|
|
|
|
static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
|
|
const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
|
|
mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
|
|
}
|
|
|
|
static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
|
|
silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
|
}
|
|
|
|
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
|
|
}
|
|
|
|
static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
static void dequantize_row_q2_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int nb = k / QK_K;
|
|
dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
|
|
}
|
|
|
|
static void dequantize_row_q3_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int nb = k / QK_K;
|
|
dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
|
|
}
|
|
|
|
static void dequantize_row_q4_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int nb = k / QK_K;
|
|
dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
|
|
}
|
|
|
|
static void dequantize_row_q5_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int nb = k / QK_K;
|
|
dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
|
|
}
|
|
|
|
static void dequantize_row_q6_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int nb = k / QK_K;
|
|
dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
|
|
dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
|
|
dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
|
|
dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
|
|
dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
|
|
dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(32, ny, 1);
|
|
dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(32, ny, 1);
|
|
dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(32, ny, 1);
|
|
dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const dim3 block_dims(32, 1, 1);
|
|
dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(32, ny, 1);
|
|
dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<1, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
|
|
dequantize_mul_mat_vec<1, 1, convert_f16>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
|
|
switch (type) {
|
|
case GGML_TYPE_Q4_0:
|
|
return dequantize_row_q4_0_cuda;
|
|
case GGML_TYPE_Q4_1:
|
|
return dequantize_row_q4_1_cuda;
|
|
case GGML_TYPE_Q5_0:
|
|
return dequantize_row_q5_0_cuda;
|
|
case GGML_TYPE_Q5_1:
|
|
return dequantize_row_q5_1_cuda;
|
|
case GGML_TYPE_Q8_0:
|
|
return dequantize_row_q8_0_cuda;
|
|
case GGML_TYPE_Q2_K:
|
|
return dequantize_row_q2_K_cuda;
|
|
case GGML_TYPE_Q3_K:
|
|
return dequantize_row_q3_K_cuda;
|
|
case GGML_TYPE_Q4_K:
|
|
return dequantize_row_q4_K_cuda;
|
|
case GGML_TYPE_Q5_K:
|
|
return dequantize_row_q5_K_cuda;
|
|
case GGML_TYPE_Q6_K:
|
|
return dequantize_row_q6_K_cuda;
|
|
case GGML_TYPE_F16:
|
|
return convert_fp16_to_fp32_cuda;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
static void ggml_mul_mat_p021_f16_f32_cuda(const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nchannels_x, cudaStream_t stream) {
|
|
const dim3 block_nums(1, nrows_x, nchannels_x);
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x);
|
|
}
|
|
|
|
static void ggml_mul_mat_vec_nc_f16_f32_cuda(
|
|
const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
|
|
const int nchannels_x, const int channel_stride_x, cudaStream_t stream) {
|
|
|
|
const dim3 block_nums(1, nrows_x, nchannels_x);
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
|
|
(vx, y, dst, ncols_x, nrows_x, row_stride_x, nchannels_x, channel_stride_x);
|
|
}
|
|
|
|
static void ggml_cpy_f32_f32_cuda(
|
|
const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
|
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
|
|
|
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
|
cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
|
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
|
}
|
|
|
|
static void ggml_cpy_f32_f16_cuda(
|
|
const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
|
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
|
|
|
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
|
cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
|
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
|
}
|
|
|
|
static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
|
|
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
|
|
}
|
|
|
|
static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float theta_scale, cudaStream_t stream) {
|
|
GGML_ASSERT(nrows % 2 == 0);
|
|
const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
|
|
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
|
const dim3 block_nums(num_blocks_x, nrows, 1);
|
|
rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, theta_scale);
|
|
}
|
|
|
|
static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
|
|
const dim3 block_dims(CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1, 1);
|
|
const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
|
|
const dim3 block_nums(block_num_x, nrows_x, 1);
|
|
diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
|
|
}
|
|
|
|
static void soft_max_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, cudaStream_t stream) {
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
const dim3 block_nums(1, nrows_x, 1);
|
|
soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x);
|
|
}
|
|
|
|
// buffer pool for cuda
|
|
#define MAX_CUDA_BUFFERS 256
|
|
|
|
struct scoped_spin_lock {
|
|
std::atomic_flag& lock;
|
|
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
|
|
while (lock.test_and_set(std::memory_order_acquire)) {
|
|
; // spin
|
|
}
|
|
}
|
|
~scoped_spin_lock() {
|
|
lock.clear(std::memory_order_release);
|
|
}
|
|
scoped_spin_lock(const scoped_spin_lock&) = delete;
|
|
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
|
|
};
|
|
|
|
struct cuda_buffer {
|
|
void * ptr = nullptr;
|
|
size_t size = 0;
|
|
};
|
|
|
|
static cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS];
|
|
static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
|
|
|
|
static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
|
|
scoped_spin_lock lock(g_cuda_pool_lock);
|
|
int id;
|
|
CUDA_CHECK(cudaGetDevice(&id));
|
|
|
|
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
|
|
cuda_buffer& b = g_cuda_buffer_pool[id][i];
|
|
if (b.size >= size && b.ptr != nullptr) {
|
|
void * ptr = b.ptr;
|
|
*actual_size = b.size;
|
|
b.ptr = nullptr;
|
|
b.size = 0;
|
|
return ptr;
|
|
}
|
|
}
|
|
void * ptr;
|
|
CUDA_CHECK(cudaMalloc((void **) &ptr, size));
|
|
*actual_size = size;
|
|
return ptr;
|
|
}
|
|
|
|
static void ggml_cuda_pool_free(void * ptr, size_t size) {
|
|
scoped_spin_lock lock(g_cuda_pool_lock);
|
|
int id;
|
|
CUDA_CHECK(cudaGetDevice(&id));
|
|
|
|
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
|
|
cuda_buffer& b = g_cuda_buffer_pool[id][i];
|
|
if (b.ptr == nullptr) {
|
|
b.ptr = ptr;
|
|
b.size = size;
|
|
return;
|
|
}
|
|
}
|
|
fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
|
|
CUDA_CHECK(cudaFree(ptr));
|
|
}
|
|
|
|
|
|
static void * g_scratch_buffer = nullptr;
|
|
static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default
|
|
static size_t g_scratch_offset = 0;
|
|
|
|
static int g_device_count = -1;
|
|
static int g_main_device = 0;
|
|
static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
|
|
|
|
static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
|
|
|
|
static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES] = { nullptr };
|
|
|
|
void ggml_init_cublas() {
|
|
static bool initialized = false;
|
|
|
|
if (!initialized) {
|
|
CUDA_CHECK(cudaGetDeviceCount(&g_device_count));
|
|
GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
|
|
int64_t total_vram = 0;
|
|
fprintf(stderr, "%s: found %d CUDA devices:\n", __func__, g_device_count);
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
cudaDeviceProp prop;
|
|
CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
|
|
fprintf(stderr, " Device %d: %s\n", id, prop.name);
|
|
g_tensor_split[id] = total_vram;
|
|
total_vram += prop.totalGlobalMem;
|
|
}
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
g_tensor_split[id] /= total_vram;
|
|
}
|
|
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
CUDA_CHECK(cudaSetDevice(id));
|
|
|
|
// create main stream
|
|
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_main[id], cudaStreamNonBlocking));
|
|
|
|
// create cublas handle
|
|
CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
|
|
CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH));
|
|
}
|
|
|
|
// configure logging to stdout
|
|
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
|
|
|
|
initialized = true;
|
|
}
|
|
}
|
|
|
|
void ggml_cuda_set_tensor_split(const float * tensor_split) {
|
|
bool all_zero = true;
|
|
for (int i = 0; i < g_device_count; ++i) {
|
|
if (tensor_split[i] != 0.0f) {
|
|
all_zero = false;
|
|
break;
|
|
}
|
|
}
|
|
if (all_zero) {
|
|
return;
|
|
}
|
|
float split_sum = 0.0f;
|
|
for (int i = 0; i < g_device_count; ++i) {
|
|
g_tensor_split[i] = split_sum;
|
|
split_sum += tensor_split[i];
|
|
}
|
|
for (int i = 0; i < g_device_count; ++i) {
|
|
g_tensor_split[i] /= split_sum;
|
|
}
|
|
}
|
|
|
|
void * ggml_cuda_host_malloc(size_t size) {
|
|
if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
void * ptr = nullptr;
|
|
cudaError_t err = cudaMallocHost((void **) &ptr, size);
|
|
if (err != cudaSuccess) {
|
|
// The allocation error can be bypassed. A null ptr will assigned out of this function.
|
|
// This can fixed the OOM error in WSL.
|
|
cudaGetLastError();
|
|
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
|
|
size/1024.0/1024.0, cudaGetErrorString(err));
|
|
return nullptr;
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
void ggml_cuda_host_free(void * ptr) {
|
|
CUDA_CHECK(cudaFreeHost(ptr));
|
|
}
|
|
|
|
static cudaError_t ggml_cuda_cpy_tensor_2d(
|
|
void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
|
|
|
|
cudaMemcpyKind kind;
|
|
char * src_ptr;
|
|
if (src->backend == GGML_BACKEND_CPU) {
|
|
kind = cudaMemcpyHostToDevice;
|
|
src_ptr = (char *) src->data;
|
|
} else if (src->backend == GGML_BACKEND_GPU) {
|
|
kind = cudaMemcpyDeviceToDevice;
|
|
struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
|
|
int id;
|
|
CUDA_CHECK(cudaGetDevice(&id));
|
|
src_ptr = (char *) extra->data_device[id];
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
char * dst_ptr = (char *) dst;
|
|
|
|
const int64_t ne0 = src->ne[0];
|
|
const int64_t nb0 = src->nb[0];
|
|
const int64_t nb1 = src->nb[1];
|
|
const int64_t nb2 = src->nb[2];
|
|
const int64_t nb3 = src->nb[3];
|
|
const enum ggml_type type = src->type;
|
|
const int64_t ts = ggml_type_size(type);
|
|
const int64_t bs = ggml_blck_size(type);
|
|
int64_t i1_diff = i1_high - i1_low;
|
|
|
|
const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
|
|
if (nb0 == ts && nb1 == ts*ne0/bs) {
|
|
return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream);
|
|
} else if (nb0 == ts) {
|
|
return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
|
|
} else {
|
|
for (int64_t i1 = 0; i1 < i1_diff; i1++) {
|
|
const void * rx = (const void *) ((const char *) x + i1*nb1);
|
|
void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
|
|
// pretend the row is a matrix with cols=1
|
|
cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
|
|
if (r != cudaSuccess) return r;
|
|
}
|
|
return cudaSuccess;
|
|
}
|
|
}
|
|
|
|
inline void ggml_cuda_op_add(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(src1_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne0 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
// compute
|
|
add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne0*i01_diff, cudaStream_main);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_mul(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(src1_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
|
|
for (int64_t i01 = i01_low; i01 < i01_high; i01++) {
|
|
const int64_t i11 = i1*ne11 + i01%ne11; // broadcast src1 across src0
|
|
|
|
float * src0_ddf_i01 = src0_ddf_i + i01*ne00;
|
|
float * src1_ddf_i01 = src1_ddf_i + i11*ne10;
|
|
float * dst_ddf_i01 = dst_ddf_i + i01*ne00;
|
|
|
|
// compute
|
|
mul_f32_cuda(src0_ddf_i01, src1_ddf_i01, dst_ddf_i01, ne00, ne10, cudaStream_main);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
}
|
|
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) i02;
|
|
}
|
|
|
|
inline void ggml_cuda_op_silu(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
// compute
|
|
silu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) src1_ddf_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_rms_norm(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
// compute
|
|
rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) src1_ddf_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_dequantize_mul_mat_vec(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddq_i != nullptr);
|
|
GGML_ASSERT(src1_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t nrows = i01_high - i01_low;
|
|
|
|
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
|
|
#ifdef GGML_CUDA_DMMV_F16
|
|
size_t ash;
|
|
dfloat * src1_dfloat = nullptr; // dfloat == half
|
|
|
|
bool src1_convert_f16 = src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
|
|
src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
|
|
src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
|
|
|
|
if (src1_convert_f16) {
|
|
src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash);
|
|
ggml_cpy_f32_f16_cuda((char *) src1_ddf_i, (char *) src1_dfloat, ne00,
|
|
ne00, 1, sizeof(float), 0, 0,
|
|
ne00, 1, sizeof(half), 0, 0, cudaStream_main);
|
|
}
|
|
#else
|
|
dfloat * src1_dfloat = src1_ddf_i; // dfloat == float, no conversion
|
|
#endif // GGML_CUDA_DMMV_F16
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q4_1:
|
|
dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q5_0:
|
|
dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q5_1:
|
|
dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q8_0:
|
|
dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q2_K:
|
|
dequantize_mul_mat_vec_q2_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q3_K:
|
|
dequantize_mul_mat_vec_q3_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q4_K:
|
|
dequantize_mul_mat_vec_q4_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q5_K:
|
|
dequantize_mul_mat_vec_q5_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q6_K:
|
|
dequantize_mul_mat_vec_q6_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_F16:
|
|
convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
#ifdef GGML_CUDA_DMMV_F16
|
|
if (src1_convert_f16) {
|
|
ggml_cuda_pool_free(src1_dfloat, ash);
|
|
}
|
|
#endif // GGML_CUDA_DMMV_F16
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src0_ddf_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_mul_mat_cublas(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(src1_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const float alpha = 1.0f;
|
|
const float beta = 0.0f;
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
int id;
|
|
CUDA_CHECK(cudaGetDevice(&id));
|
|
|
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
|
// ldc == nrows of the matrix that cuBLAS writes into
|
|
int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff;
|
|
|
|
CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], cudaStream_main));
|
|
CUBLAS_CHECK(
|
|
cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
|
|
i01_diff, ne11, ne10,
|
|
&alpha, src0_ddf_i, ne00,
|
|
src1_ddf_i, ne10,
|
|
&beta, dst_ddf_i, ldc));
|
|
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_rope(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
const int n_past = ((int32_t *) src1->data)[0];
|
|
const int n_dims = ((int32_t *) src1->data)[1];
|
|
const int mode = ((int32_t *) src1->data)[2];
|
|
GGML_ASSERT(mode == 0);
|
|
|
|
const float theta_scale = powf(10000.0, -2.0f/n_dims);
|
|
const float p = ((mode & 1) == 0 ? n_past + i02 : i02);
|
|
|
|
// compute
|
|
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) src1_ddf_i;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_diag_mask_inf(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
const int n_past = ((int32_t *) src1->data)[0];
|
|
|
|
// compute
|
|
diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) src1_ddf_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_soft_max(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
// compute
|
|
soft_max_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) src1_ddf_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
inline void ggml_cuda_op_scale(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
|
|
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t & cudaStream_main){
|
|
|
|
GGML_ASSERT(src0_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
|
|
|
const float scale = ((float *) src1->data)[0];
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
// compute
|
|
scale_f32_cuda(src0_ddf_i, dst_ddf_i, scale, ne00*i01_diff, cudaStream_main);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src0_ddq_i;
|
|
(void) src1_ddf_i;
|
|
(void) i02;
|
|
(void) i1;
|
|
}
|
|
|
|
static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
|
ggml_cuda_op_t op, bool src0_needs_f32, bool flatten_rows) {
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
const int64_t nrows0 = ggml_nrows(src0);
|
|
|
|
const bool use_src1 = src1 != nullptr;
|
|
const int64_t ne10 = use_src1 ? src1->ne[0] : 1;
|
|
const int64_t ne11 = use_src1 ? src1->ne[1] : 1;
|
|
const int64_t ne12 = use_src1 ? src1->ne[2] : 1;
|
|
const int64_t ne13 = use_src1 ? src1->ne[3] : 1;
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
|
|
GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
|
|
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
|
|
|
|
// strides for iteration over dims 3 and 2
|
|
const int64_t num_iters = flatten_rows ? 1 : ne02 * ne03;
|
|
const int64_t stride_mod = flatten_rows ? ne02 * ne03 : 1;
|
|
const int64_t src0_stride = ne00 * ne01 * stride_mod;
|
|
const int64_t src1_stride = ne10 * ne11 * stride_mod;
|
|
const int64_t dst_stride = ne0 * ne1 * stride_mod;
|
|
|
|
const size_t src0_ts = ggml_type_size(src0->type);
|
|
const size_t src0_bs = ggml_blck_size(src0->type);
|
|
|
|
struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
|
struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
|
struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
|
|
|
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
|
|
const bool src0_is_contiguous = ggml_is_contiguous(src0);
|
|
const bool src0_is_f32 = src0->type == GGML_TYPE_F32;
|
|
|
|
const bool src1_is_contiguous = use_src1 && ggml_is_contiguous(src1);
|
|
const bool src1_stays_on_host = use_src1 && (
|
|
dst->op == GGML_OP_SCALE || dst->op == GGML_OP_DIAG_MASK_INF || dst->op == GGML_OP_ROPE);
|
|
|
|
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
|
|
|
|
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
|
|
|
|
// dd = data device
|
|
char * src0_ddq[GGML_CUDA_MAX_DEVICES] = {nullptr}; // quantized
|
|
float * src0_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // float
|
|
float * src1_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};
|
|
float * dst_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};
|
|
|
|
// asq = actual size quantized, asf = actual size float
|
|
size_t src0_asq[GGML_CUDA_MAX_DEVICES] = {0};
|
|
size_t src0_asf[GGML_CUDA_MAX_DEVICES] = {0};
|
|
size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0};
|
|
size_t dst_asf[GGML_CUDA_MAX_DEVICES] = {0};
|
|
|
|
// if multiple GPUs are used they need to wait for the main GPU to finish
|
|
if (split && g_device_count > 1) {
|
|
CUDA_CHECK(cudaSetDevice(g_main_device));
|
|
CUDA_CHECK(cudaDeviceSynchronize());
|
|
}
|
|
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
if (!split && id != g_main_device) {
|
|
continue;
|
|
}
|
|
|
|
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU && id == g_main_device;
|
|
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
|
|
|
|
int64_t row_low, row_high;
|
|
if (split) {
|
|
row_low = id == 0 ? 0 : nrows0*g_tensor_split[id];
|
|
row_high = id == g_device_count - 1 ? nrows0 : nrows0*g_tensor_split[id + 1];
|
|
} else {
|
|
row_low = 0;
|
|
row_high = nrows0;
|
|
}
|
|
if (row_low == row_high) {
|
|
continue;
|
|
}
|
|
|
|
int64_t row_diff = row_high - row_low;
|
|
|
|
cudaSetDevice(id);
|
|
|
|
if (src0_on_device && src0_is_contiguous) {
|
|
if (src0_is_f32) {
|
|
src0_ddf[id] = (float *) src0_extra->data_device[id];
|
|
} else {
|
|
src0_ddq[id] = (char *) src0_extra->data_device[id];
|
|
}
|
|
} else {
|
|
if (src0_is_f32) {
|
|
src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
|
|
} else {
|
|
src0_ddq[id] = (char *) ggml_cuda_pool_malloc(row_diff*ne00 * src0_ts/src0_bs, &src0_asq[id]);
|
|
}
|
|
}
|
|
|
|
if (src0_needs_f32 && !src0_is_f32) {
|
|
src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
|
|
}
|
|
|
|
if (use_src1 && !src1_stays_on_host) {
|
|
if (src1_on_device && src1_is_contiguous) {
|
|
src1_ddf[id] = (float *) src1_extra->data_device[id];
|
|
} else {
|
|
src1_ddf[id] = (float *) ggml_cuda_pool_malloc(num_iters*src1_stride * sizeof(float), &src1_asf[id]);
|
|
}
|
|
}
|
|
if (dst_on_device) {
|
|
dst_ddf[id] = (float *) dst_extra->data_device[id];
|
|
} else {
|
|
size_t size_dst_ddf = split ? row_diff*ne1 * sizeof(float) : num_iters*dst_stride * sizeof(float);
|
|
dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]);
|
|
}
|
|
|
|
const int64_t i03_max = flatten_rows ? 1 : ne03;
|
|
const int64_t i02_max = flatten_rows ? 1 : ne02;
|
|
const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01;
|
|
|
|
for (int64_t i03 = 0; i03 < i03_max; i03++) {
|
|
const int64_t i13 = i03 % ne13;
|
|
for (int64_t i02 = 0; i02 < i02_max; i02++) {
|
|
const int64_t i12 = i02 % ne12;
|
|
|
|
const int64_t i0 = i03*ne02 + i02;
|
|
|
|
// i0 values that contain the lower/upper rows for a split tensor when using multiple GPUs
|
|
const int64_t i0_offset_low = row_low/rows_per_iter;
|
|
const int64_t i0_offset_high = row_high/rows_per_iter;
|
|
|
|
int64_t i01_low = 0;
|
|
int64_t i01_high = rows_per_iter;
|
|
if (split) {
|
|
if (i0 < i0_offset_low || i0 > i0_offset_high) {
|
|
continue;
|
|
}
|
|
if (i0 == i0_offset_low) {
|
|
i01_low = row_low % rows_per_iter;
|
|
}
|
|
if (i0 == i0_offset_high) {
|
|
i01_high = row_high % rows_per_iter;
|
|
}
|
|
}
|
|
|
|
// There is possibly a bug in the Windows nvcc compiler regarding instruction reordering or optimizing out local variables.
|
|
// Removing the first assert or changing the order of the arguments causes the second assert to fail.
|
|
// Removing both asserts results in i01_high becoming 0 which in turn results in garbage output.
|
|
// The root cause seems to be a problem with i0_offset_high becoming 0 when it should always be >0 (for single GPU).
|
|
GGML_ASSERT(i01_low == 0 || g_device_count > 1);
|
|
GGML_ASSERT(i01_high == rows_per_iter || g_device_count > 1);
|
|
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
if (i01_diff == 0) {
|
|
continue;
|
|
}
|
|
const int64_t i11 = i13*ne12 + i12;
|
|
|
|
cudaStream_t cudaStream_main = g_cudaStreams_main[id];
|
|
|
|
// for split tensors the data begins at i0 == i0_offset_low
|
|
char * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs;
|
|
float * src0_ddf_i = src0_ddf[id] + (i0 - i0_offset_low)*src0_stride;
|
|
float * src1_ddf_i = src1_ddf[id] + i11*src1_stride;
|
|
float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride;
|
|
|
|
// for split tensors the data pointer needs to be rounded down
|
|
// to the bin edge for i03, i02 bins beyond the first
|
|
if (i0 - i0_offset_low > 0) {
|
|
GGML_ASSERT(!flatten_rows);
|
|
src0_ddq_i -= (row_low % ne01)*ne00 * src0_ts/src0_bs;
|
|
src0_ddf_i -= (row_low % ne01)*ne00;
|
|
dst_ddf_i -= (row_low % ne0)*ne1;
|
|
}
|
|
|
|
// the main device memory buffer can be on VRAM scratch, with space for all partial results
|
|
// in that case an offset on dst_ddf_i is needed
|
|
if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) {
|
|
dst_ddf_i += i01_low; // offset is 0 if no tensor split
|
|
}
|
|
|
|
// copy src0, src1 to device if necessary
|
|
if (use_src1 && !src1_stays_on_host) {
|
|
if (src1->backend == GGML_BACKEND_CPU) {
|
|
GGML_ASSERT(!flatten_rows || nrows0 == ggml_nrows(src1));
|
|
int64_t nrows1 = flatten_rows ? nrows0 : ne11;
|
|
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, nrows1, cudaStream_main));
|
|
} else if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
|
|
if (id != g_main_device) {
|
|
GGML_ASSERT(!flatten_rows);
|
|
float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device];
|
|
src1_ddf_i_source += i11*src1_stride;
|
|
CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_stride*sizeof(float),
|
|
cudaMemcpyDeviceToDevice, cudaStream_main));
|
|
}
|
|
} else if (src1_on_device && !src1_is_contiguous) {
|
|
GGML_ASSERT(!split);
|
|
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, ne11, cudaStream_main));
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
if (!src0_on_device || !src0_is_contiguous) {
|
|
if (src0_is_f32) {
|
|
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02, i01_low, i01_high, cudaStream_main));
|
|
} else {
|
|
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02, i01_low, i01_high, cudaStream_main));
|
|
}
|
|
}
|
|
|
|
// convert src0 to f32 if it is necessary for the ggml_cuda_op
|
|
if (src0_needs_f32 && !src0_is_f32) {
|
|
to_fp32_cuda(src0_ddq_i, src0_ddf_i, i01_diff*ne00, cudaStream_main);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
}
|
|
|
|
// do the computation
|
|
op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main);
|
|
|
|
// copy dst to host or other device if necessary
|
|
if (!dst_on_device) {
|
|
void * dst_off_device;
|
|
cudaMemcpyKind kind;
|
|
if (dst->backend == GGML_BACKEND_CPU) {
|
|
dst_off_device = dst->data;
|
|
kind = cudaMemcpyDeviceToHost;
|
|
} else if (dst->backend == GGML_BACKEND_GPU) {
|
|
dst_off_device = dst_extra->data_device[g_main_device];
|
|
kind = cudaMemcpyDeviceToDevice;
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
if (split) {
|
|
// src0 = weight matrix is saved as a transposed matrix for better memory layout.
|
|
// dst is NOT transposed.
|
|
// The outputs of cuBLAS matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
|
|
// Instead they need to be copied to the correct slice in ne0 = dst row index.
|
|
// If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
|
|
for (int64_t j = 0; j < ne1; ++j) {
|
|
float * dhf_dst_i = (float *) ((char *) dst_off_device + (j*ne0 + i01_low)*sizeof(float) + i02*nb2 + i03*nb3);
|
|
CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i + j*i01_diff, i01_diff*sizeof(float), kind, cudaStream_main));
|
|
}
|
|
} else {
|
|
float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
|
|
CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, dst_stride*sizeof(float), kind, cudaStream_main));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// wait until each device is finished, then free their buffers
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
if (src0_asq[id] == 0 && src0_asf[id] == 0 && src1_asf[id] == 0 && dst_asf[id] == 0) {
|
|
continue;
|
|
}
|
|
|
|
CUDA_CHECK(cudaSetDevice(id));
|
|
CUDA_CHECK(cudaDeviceSynchronize());
|
|
|
|
if (src0_asq[id] > 0) {
|
|
ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]);
|
|
}
|
|
if (src0_asf[id] > 0) {
|
|
ggml_cuda_pool_free(src0_ddf[id], src0_asf[id]);
|
|
}
|
|
if (src1_asf[id] > 0) {
|
|
ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]);
|
|
}
|
|
if (dst_asf[id] > 0) {
|
|
ggml_cuda_pool_free(dst_ddf[id], dst_asf[id]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, true, true);
|
|
}
|
|
|
|
void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul, true, false); // TODO ggml_cuda_op needs modification for flatten
|
|
}
|
|
|
|
void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_silu, true, true);
|
|
}
|
|
|
|
void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rms_norm, true, true);
|
|
}
|
|
|
|
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
|
const int64_t ne10 = src1->ne[0];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
|
|
// TODO: find the optimal values for these
|
|
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
|
src1->type == GGML_TYPE_F32 &&
|
|
dst->type == GGML_TYPE_F32 &&
|
|
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
|
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
|
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
|
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
|
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
|
|
CUDA_CHECK(cudaSetDevice(g_main_device));
|
|
cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
|
|
|
|
struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
|
void * src0_ddq = src0_extra->data_device[g_main_device];
|
|
|
|
struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
|
float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
|
|
|
|
struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
|
float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
|
|
|
|
ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, cudaStream_main);
|
|
}
|
|
|
|
void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
|
GGML_ASSERT(!ggml_is_contiguous(src0) && ggml_is_contiguous(src1));
|
|
GGML_ASSERT(!ggml_is_permuted(src0));
|
|
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
|
|
const int64_t nb01 = src0->nb[1];
|
|
const int64_t nb02 = src0->nb[2];
|
|
|
|
CUDA_CHECK(cudaSetDevice(g_main_device));
|
|
cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
|
|
|
|
struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
|
void * src0_ddq = src0_extra->data_device[g_main_device];
|
|
|
|
struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
|
float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
|
|
|
|
struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
|
float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
|
|
|
|
const int row_stride_x = nb01 / sizeof(half);
|
|
const int channel_stride_x = nb02 / sizeof(half);
|
|
|
|
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, channel_stride_x, cudaStream_main);
|
|
}
|
|
|
|
void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
|
|
src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU;
|
|
|
|
if (all_on_device && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
|
|
ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
|
|
} else if (all_on_device && !ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src1->ne[1] == 1) {
|
|
ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
|
|
}else if (src0->type == GGML_TYPE_F32) {
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
|
|
} else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
|
|
if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src0->ne[1] % GGML_CUDA_DMMV_Y == 0) {
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false, false);
|
|
} else {
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
|
|
}
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_scale, true, true);
|
|
}
|
|
|
|
void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
const int64_t ne = ggml_nelements(src0);
|
|
GGML_ASSERT(ne == ggml_nelements(src1));
|
|
|
|
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
|
|
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
|
|
|
|
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
|
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
GGML_ASSERT(src0->ne[3] == 1);
|
|
|
|
const int64_t nb00 = src0->nb[0];
|
|
const int64_t nb01 = src0->nb[1];
|
|
const int64_t nb02 = src0->nb[2];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
GGML_ASSERT(src1->ne[3] == 1);
|
|
|
|
const int64_t nb10 = src1->nb[0];
|
|
const int64_t nb11 = src1->nb[1];
|
|
const int64_t nb12 = src1->nb[2];
|
|
|
|
CUDA_CHECK(cudaSetDevice(g_main_device));
|
|
cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
|
|
|
|
const struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
|
const struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
|
|
|
char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
|
|
char * src1_ddc = (char *) src1_extra->data_device[g_main_device];
|
|
|
|
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
|
ggml_cpy_f32_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
|
|
ne10, ne11, nb10, nb11, nb12, cudaStream_main);
|
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
|
ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
|
|
ne10, ne11, nb10, nb11, nb12, cudaStream_main);
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
(void) dst;
|
|
}
|
|
|
|
void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_diag_mask_inf, true, true);
|
|
}
|
|
|
|
void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_soft_max, true, true);
|
|
}
|
|
|
|
void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, false); // FIXME flatten changes results
|
|
}
|
|
|
|
void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
(void) src0;
|
|
(void) src1;
|
|
(void) dst;
|
|
}
|
|
|
|
void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
|
|
int nrows = ggml_nrows(tensor);
|
|
const size_t nb1 = tensor->nb[1];
|
|
ggml_backend backend = tensor->backend;
|
|
struct ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu;
|
|
memset(extra, 0, sizeof(*extra));
|
|
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
if (backend == GGML_BACKEND_GPU && id != g_main_device) {
|
|
continue;
|
|
}
|
|
|
|
cudaSetDevice(id);
|
|
|
|
int row_low, row_high;
|
|
if (backend == GGML_BACKEND_GPU) {
|
|
row_low = 0;
|
|
row_high = nrows;
|
|
} else if (backend == GGML_BACKEND_GPU_SPLIT) {
|
|
row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
|
|
row_high = id == g_device_count - 1 ? nrows : nrows*g_tensor_split[id + 1];
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
if (row_low == row_high) {
|
|
continue;
|
|
}
|
|
|
|
int64_t nrows_split = row_high - row_low;
|
|
|
|
const size_t offset_split = row_low*nb1;
|
|
const size_t size = ggml_nbytes_split(tensor, nrows_split);
|
|
|
|
void * buf;
|
|
CUDA_CHECK(cudaMalloc(&buf, size));
|
|
void * buf_host = (char*)data + offset_split;
|
|
|
|
cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
|
|
|
|
extra->data_device[id] = buf;
|
|
}
|
|
|
|
tensor->extra = extra;
|
|
}
|
|
|
|
void ggml_cuda_free_data(struct ggml_tensor * tensor) {
|
|
if (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) {
|
|
return;
|
|
}
|
|
|
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
|
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
if (extra->data_device[id] == nullptr) {
|
|
continue;
|
|
}
|
|
|
|
CUDA_CHECK(cudaSetDevice(id));
|
|
CUDA_CHECK(cudaFree(extra->data_device[id]));
|
|
}
|
|
|
|
delete extra;
|
|
}
|
|
|
|
void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch) {
|
|
if (scratch && g_scratch_size == 0) {
|
|
return;
|
|
}
|
|
|
|
// recursively assign CUDA buffers until a compute tensor is found
|
|
if (tensor->src0 != nullptr && tensor->src0->backend == GGML_BACKEND_CPU) {
|
|
const ggml_op src0_op = tensor->src0->op;
|
|
if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW) {
|
|
ggml_cuda_assign_buffers_impl(tensor->src0, scratch);
|
|
}
|
|
}
|
|
if (tensor->op == GGML_OP_CPY && tensor->src1->backend == GGML_BACKEND_CPU) {
|
|
ggml_cuda_assign_buffers_impl(tensor->src1, scratch);
|
|
}
|
|
|
|
tensor->backend = GGML_BACKEND_GPU;
|
|
struct ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu;
|
|
|
|
const bool inplace = (tensor->src0 != nullptr && tensor->src0->data == tensor->data) ||
|
|
tensor->op == GGML_OP_VIEW;
|
|
const size_t size = ggml_nbytes(tensor);
|
|
|
|
CUDA_CHECK(cudaSetDevice(g_main_device));
|
|
if (inplace && tensor->src0->backend == GGML_BACKEND_GPU) {
|
|
struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src0->extra;
|
|
char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
|
|
size_t offset = 0;
|
|
if (tensor->op == GGML_OP_VIEW) {
|
|
memcpy(&offset, tensor->opt[0]->data, sizeof(size_t));
|
|
}
|
|
extra->data_device[g_main_device] = src0_ddc + offset;
|
|
} else if (tensor->op == GGML_OP_CPY) {
|
|
struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src1->extra;
|
|
void * src1_ddv = src1_extra->data_device[g_main_device];
|
|
extra->data_device[g_main_device] = src1_ddv;
|
|
} else if (scratch) {
|
|
GGML_ASSERT(size <= g_scratch_size);
|
|
if (g_scratch_offset + size > g_scratch_size) {
|
|
g_scratch_offset = 0;
|
|
}
|
|
|
|
char * data = (char *) g_scratch_buffer;
|
|
if (data == nullptr) {
|
|
CUDA_CHECK(cudaMalloc(&data, g_scratch_size));
|
|
g_scratch_buffer = data;
|
|
}
|
|
extra->data_device[g_main_device] = data + g_scratch_offset;
|
|
|
|
g_scratch_offset += size;
|
|
|
|
GGML_ASSERT(g_scratch_offset <= g_scratch_size);
|
|
} else { // allocate new buffers outside of scratch
|
|
void * data;
|
|
CUDA_CHECK(cudaMalloc(&data, size));
|
|
CUDA_CHECK(cudaMemset(data, 0, size));
|
|
extra->data_device[g_main_device] = data;
|
|
}
|
|
|
|
tensor->extra = extra;
|
|
}
|
|
|
|
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) {
|
|
ggml_cuda_assign_buffers_impl(tensor, true);
|
|
}
|
|
|
|
void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor) {
|
|
ggml_cuda_assign_buffers_impl(tensor, false);
|
|
}
|
|
|
|
void ggml_cuda_set_main_device(int main_device) {
|
|
if (main_device >= g_device_count) {
|
|
fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
|
|
main_device, g_device_count, g_main_device);
|
|
return;
|
|
}
|
|
g_main_device = main_device;
|
|
if (g_device_count > 1) {
|
|
cudaDeviceProp prop;
|
|
CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device));
|
|
fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name);
|
|
}
|
|
}
|
|
|
|
void ggml_cuda_set_scratch_size(size_t scratch_size) {
|
|
g_scratch_size = scratch_size;
|
|
}
|
|
|
|
void ggml_cuda_free_scratch() {
|
|
if (g_scratch_buffer == nullptr) {
|
|
return;
|
|
}
|
|
|
|
CUDA_CHECK(cudaFree(g_scratch_buffer));
|
|
g_scratch_buffer = nullptr;
|
|
}
|
|
|
|
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor){
|
|
ggml_cuda_func_t func;
|
|
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|
|
|| tensor->src0->backend == GGML_BACKEND_GPU || tensor->src0->backend == GGML_BACKEND_GPU_SPLIT
|
|
|| (tensor->src1 != nullptr && tensor->src1->backend == GGML_BACKEND_GPU);
|
|
|
|
switch (tensor->op) {
|
|
case GGML_OP_ADD:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_add;
|
|
break;
|
|
case GGML_OP_MUL:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_mul;
|
|
break;
|
|
case GGML_OP_SILU:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_silu;
|
|
break;
|
|
case GGML_OP_RMS_NORM:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_rms_norm;
|
|
break;
|
|
case GGML_OP_MUL_MAT:
|
|
if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src0, tensor->src1, tensor)) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_mul_mat;
|
|
break;
|
|
case GGML_OP_SCALE:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_scale;
|
|
break;
|
|
case GGML_OP_CPY:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_cpy;
|
|
break;
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_TRANSPOSE:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_nop;
|
|
break;
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_diag_mask_inf;
|
|
break;
|
|
case GGML_OP_SOFT_MAX:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_soft_max;
|
|
break;
|
|
case GGML_OP_ROPE:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cuda_rope;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if (params->ith != 0) {
|
|
return true;
|
|
}
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return true;
|
|
}
|
|
func(tensor->src0, tensor->src1, tensor);
|
|
return true;
|
|
}
|