mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-11 15:32:49 +00:00
b29b3b2924
* whisper : use ggml-cuda in mel calc, set appropriate device * whisper : forbid cuda mel calc on devices with compute < 600, workaround for #2230
365 lines
13 KiB
Plaintext
365 lines
13 KiB
Plaintext
#define CUB_IGNORE_DEPRECATED_CPP_DIALECT
|
|
#include "whisper-mel-cuda.hpp"
|
|
#include "whisper.h"
|
|
|
|
#include <ggml-cuda/common.cuh>
|
|
#include <ggml-backend-impl.h>
|
|
|
|
#include <cuda.h>
|
|
#include <cuda_runtime.h>
|
|
#include <cufft.h>
|
|
#include <cublas_v2.h>
|
|
#include <cuComplex.h>
|
|
#include <cub/device/device_reduce.cuh>
|
|
#include <device_launch_parameters.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4324) // added padding
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
static const char* cufftGetErrorString(cufftResult_t res) {
|
|
switch (res) {
|
|
case CUFFT_SUCCESS: return "The cuFFT operation was successful";
|
|
case CUFFT_INVALID_PLAN: return "cuFFT was passed an invalid plan handle";
|
|
case CUFFT_ALLOC_FAILED: return "cuFFT failed to allocate GPU or CPU memory";
|
|
case CUFFT_INVALID_TYPE: return "No longer used";
|
|
case CUFFT_INVALID_VALUE: return "User specified an invalid pointer or parameter";
|
|
case CUFFT_INTERNAL_ERROR: return "Driver or internal cuFFT library error";
|
|
case CUFFT_EXEC_FAILED: return "Failed to execute an FFT on the GPU";
|
|
case CUFFT_SETUP_FAILED: return "The cuFFT library failed to initialize";
|
|
case CUFFT_INVALID_SIZE: return "User specified an invalid transform size";
|
|
case CUFFT_UNALIGNED_DATA: return "No longer used";
|
|
case CUFFT_INCOMPLETE_PARAMETER_LIST: return "Missing parameters in call";
|
|
case CUFFT_INVALID_DEVICE: return "Execution of a plan was on different GPU than plan creation";
|
|
case CUFFT_PARSE_ERROR: return "Internal plan database error";
|
|
case CUFFT_NO_WORKSPACE: return "No workspace has been provided prior to plan execution";
|
|
case CUFFT_NOT_IMPLEMENTED: return "Function does not implement functionality for parameters given.";
|
|
case CUFFT_LICENSE_ERROR: return "Used in previous versions.";
|
|
case CUFFT_NOT_SUPPORTED: return "Operation is not supported for parameters given.";
|
|
default: return "Unknown error";
|
|
}
|
|
}
|
|
|
|
#define CUFFT_CHECK(err) CUDA_CHECK_GEN(err, CUFFT_SUCCESS, cufftGetErrorString)
|
|
|
|
__global__ void k_fill_stft_input(
|
|
const float * padded_samples,
|
|
const int n_frames,
|
|
const float * hann_window,
|
|
float * stft_in
|
|
) {
|
|
auto y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
// if (y >= n_frames) return;
|
|
auto x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
// if (x >= WHISPER_N_FFT) return;
|
|
|
|
auto line = padded_samples + y * WHISPER_HOP_LENGTH;
|
|
auto outLine = stft_in + y * WHISPER_N_FFT;
|
|
|
|
outLine[x] = line[x] * hann_window[x];
|
|
}
|
|
|
|
__global__ void k_calc_magnitudes(
|
|
const cuComplex * stft_out,
|
|
const int n_frames,
|
|
float * magnitudes
|
|
) {
|
|
auto y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
// if (y >= n_frames) return;
|
|
auto x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
// if (x >= WHISPER_N_FFT_HALF) return;
|
|
|
|
auto idx = y * WHISPER_N_FFT_HALF + x;
|
|
|
|
auto r = stft_out[idx].x;
|
|
auto i = stft_out[idx].y;
|
|
magnitudes[idx] = r * r + i * i;
|
|
}
|
|
|
|
__global__ void k_calc_log_mel(
|
|
const float * mel_data,
|
|
const int n_mel,
|
|
const float * max_val,
|
|
float * log_mel
|
|
) {
|
|
auto x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (x >= n_mel) return;
|
|
|
|
float val = mel_data[x];
|
|
|
|
constexpr float e = 1e-10f;
|
|
if (val < e) val = e;
|
|
|
|
val = log10(val);
|
|
|
|
const float max = log10(*max_val) - 8.f;
|
|
if (val < max) val = max;
|
|
|
|
log_mel[x] = (val + 4) / 4;
|
|
}
|
|
|
|
void fill_stft_input(
|
|
const float * padded_samples,
|
|
int n_frames,
|
|
const float * hann_window,
|
|
float * stft_in,
|
|
cudaStream_t stream
|
|
) {
|
|
dim3 block(WHISPER_N_FFT, 1);
|
|
dim3 grid(1, n_frames);
|
|
|
|
k_fill_stft_input<<<grid, block, 0, stream>>>(padded_samples, n_frames, hann_window, stft_in);
|
|
}
|
|
|
|
void calc_magnitudes(
|
|
const cuComplex * stft_out,
|
|
int n_frames,
|
|
float * magnitudes,
|
|
cudaStream_t stream
|
|
) {
|
|
dim3 block(WHISPER_N_FFT_HALF, 1);
|
|
dim3 grid(1, n_frames);
|
|
k_calc_magnitudes<<<grid, block, 0, stream>>>(stft_out, n_frames, magnitudes);
|
|
}
|
|
|
|
constexpr auto LOG_MEL_PREFIX_SIZE = 256;
|
|
|
|
void calc_log_mel(
|
|
const float * mel_data,
|
|
int n_mel,
|
|
void * tempStorage,
|
|
int tempStorageSize,
|
|
float * log_mel,
|
|
cudaStream_t stream
|
|
) {
|
|
float * max_val = reinterpret_cast<float *>(tempStorage);
|
|
void * maxTemp = reinterpret_cast<char*>(tempStorage) + LOG_MEL_PREFIX_SIZE;
|
|
|
|
size_t nbytes = size_t(tempStorageSize - LOG_MEL_PREFIX_SIZE);
|
|
cub::DeviceReduce::Max(maxTemp, nbytes, mel_data, max_val, n_mel, stream);
|
|
|
|
int block = 256;
|
|
int grid = (n_mel + block - 1) / block;
|
|
|
|
k_calc_log_mel<<<grid, block, 0, stream>>>(mel_data, n_mel, max_val, log_mel);
|
|
}
|
|
|
|
class mel_calc_cuda : public whisper_mel_calc {
|
|
const int m_n_mel;
|
|
|
|
ggml_backend_t m_backend = nullptr;
|
|
int m_device = -1;
|
|
|
|
cudaStream_t m_stream = nullptr;
|
|
cublasHandle_t m_cublas_handle = nullptr;
|
|
|
|
float * m_hann_window = nullptr;
|
|
|
|
float * m_filters = nullptr;
|
|
|
|
// max samples for which we have allocated memory for the temp working areas below (cufft, log_mel)
|
|
int m_n_max_samples = 0;
|
|
|
|
size_t m_cufft_workspace_size = 0;
|
|
void * m_cufft_workspace = nullptr;
|
|
|
|
size_t m_log_mel_temp_storage_size = 0;
|
|
void * m_log_mel_temp_storage = nullptr;
|
|
public:
|
|
mel_calc_cuda(ggml_backend_t backend, const whisper_filters & filters)
|
|
: m_n_mel(filters.n_mel)
|
|
, m_backend(backend)
|
|
{
|
|
ggml_backend_cuda_context* cuda_ctx = (ggml_backend_cuda_context*)m_backend->context;
|
|
m_device = cuda_ctx->device;
|
|
|
|
if (ggml_cuda_info().devices[m_device].cc < 600) {
|
|
// we've only tesed on 6.0 and higher and we've had reports of crashes on 5.0:
|
|
// https://github.com/ggerganov/whisper.cpp/issues/2230
|
|
// to be safe forbid anything below 6.0
|
|
throw std::runtime_error("CUDA compute capability 6.0 or higher is required");
|
|
}
|
|
|
|
ggml_cuda_set_device(m_device);
|
|
|
|
if (filters.n_fft != WHISPER_N_FFT_HALF) {
|
|
throw std::invalid_argument("MelFilters n_frames must be WHISPER_N_FFT_HALF");
|
|
}
|
|
assert(filters.data.size() == filters.n_mel * WHISPER_N_FFT_HALF);
|
|
|
|
CUDA_CHECK(cudaStreamCreate(&m_stream));
|
|
CUBLAS_CHECK(cublasCreate(&m_cublas_handle));
|
|
CUBLAS_CHECK(cublasSetMathMode(m_cublas_handle, CUBLAS_TF32_TENSOR_OP_MATH));
|
|
CUBLAS_CHECK(cublasSetStream(m_cublas_handle, m_stream));
|
|
|
|
// create Hann window
|
|
{
|
|
auto hw = whisper_mel_calc::hann_window();
|
|
CUDA_CHECK(cudaMallocAsync(&m_hann_window, hw.len * sizeof(float), m_stream));
|
|
CUDA_CHECK(cudaMemcpyAsync(m_hann_window, hw.data, hw.len * sizeof(float), cudaMemcpyHostToDevice, m_stream));
|
|
}
|
|
|
|
// fill filters
|
|
{
|
|
auto& f = filters.data;
|
|
CUDA_CHECK(cudaMallocAsync(&m_filters, f.size() * sizeof(float), m_stream));
|
|
CUDA_CHECK(cudaMemcpyAsync(m_filters, f.data(), f.size() * sizeof(float), cudaMemcpyHostToDevice, m_stream));
|
|
}
|
|
|
|
// preallocate working areas enough for the most common cases (<= 30s)
|
|
ensure_working_areas(WHISPER_N_SAMPLES);
|
|
}
|
|
|
|
~mel_calc_cuda() {
|
|
ggml_cuda_set_device(m_device);
|
|
CUDA_CHECK(cudaStreamSynchronize(m_stream));
|
|
CUDA_CHECK(cudaStreamDestroy(m_stream));
|
|
CUDA_CHECK(cudaFree(m_hann_window));
|
|
CUDA_CHECK(cudaFree(m_cufft_workspace));
|
|
CUDA_CHECK(cudaFree(m_filters));
|
|
CUDA_CHECK(cudaFree(m_log_mel_temp_storage));
|
|
}
|
|
|
|
void ensure_working_areas(int n_samples) {
|
|
if (n_samples <= m_n_max_samples) {
|
|
return;
|
|
}
|
|
|
|
const auto max_padded_samples = n_samples + WHISPER_N_SAMPLES + WHISPER_N_FFT;
|
|
const auto max_frames = 1 + (max_padded_samples - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
|
|
|
|
// cufft workspace
|
|
{
|
|
if (m_cufft_workspace) {
|
|
CUDA_CHECK(cudaFree(m_cufft_workspace));
|
|
m_cufft_workspace_size = 0;
|
|
m_cufft_workspace = nullptr;
|
|
}
|
|
CUFFT_CHECK(cufftEstimate1d(WHISPER_N_FFT, CUFFT_R2C, max_frames, &m_cufft_workspace_size));
|
|
CUDA_CHECK(cudaMallocAsync(&m_cufft_workspace, m_cufft_workspace_size, m_stream));
|
|
}
|
|
|
|
// device reduce working area
|
|
{
|
|
if (m_log_mel_temp_storage) {
|
|
CUDA_CHECK(cudaFree(m_log_mel_temp_storage));
|
|
m_log_mel_temp_storage_size = 0;
|
|
m_log_mel_temp_storage = nullptr;
|
|
}
|
|
|
|
const auto max_mels = 160;
|
|
|
|
size_t nbytes = 0;
|
|
float* temp = nullptr;
|
|
cub::DeviceReduce::Max(nullptr, nbytes, temp, temp, max_frames * max_mels);
|
|
m_log_mel_temp_storage_size = nbytes + LOG_MEL_PREFIX_SIZE;
|
|
|
|
CUDA_CHECK(cudaMallocAsync(&m_log_mel_temp_storage, m_log_mel_temp_storage_size, m_stream));
|
|
}
|
|
|
|
m_n_max_samples = n_samples;
|
|
}
|
|
|
|
virtual whisper_mel calculate(whisper_span<const float> samples, int /*n_threads*/) override {
|
|
ggml_cuda_set_device(m_device);
|
|
ensure_working_areas(samples.len);
|
|
|
|
const size_t mirror_pad = WHISPER_N_FFT / 2;
|
|
const size_t padded_size = samples.len + WHISPER_N_SAMPLES + WHISPER_N_FFT;
|
|
|
|
// pad
|
|
std::vector<float> padded_samples(padded_size);
|
|
std::reverse_copy(samples.data + 1, samples.data + 1 + mirror_pad, padded_samples.begin()); // reflect
|
|
std::copy(samples.data, samples.data + samples.len, padded_samples.begin() + mirror_pad); // copy
|
|
|
|
// fill the rest of the data
|
|
// it should canonically be mirrored at the end as well,
|
|
// but we just assume the last MEL_FRAME_SIZE/2 samples are zeros
|
|
std::fill(padded_samples.begin() + mirror_pad + samples.len, padded_samples.end(), 0.f);
|
|
|
|
const auto n_frames = 1 + (padded_samples.size() - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
|
|
|
|
float * cu_padded_samples = nullptr;
|
|
CUDA_CHECK(cudaMallocAsync(&cu_padded_samples, padded_samples.size() * sizeof(float), m_stream));
|
|
CUDA_CHECK(cudaMemcpyAsync(cu_padded_samples, padded_samples.data(), padded_samples.size() * sizeof(float), cudaMemcpyHostToDevice, m_stream));
|
|
|
|
float * stft_in = nullptr; // contiguous buffer for stft input
|
|
CUDA_CHECK(cudaMallocAsync(&stft_in, n_frames * WHISPER_N_FFT * sizeof(float), m_stream));
|
|
|
|
fill_stft_input(cu_padded_samples, int(n_frames), m_hann_window, stft_in, m_stream);
|
|
|
|
cufftComplex* stft_out;
|
|
CUDA_CHECK(cudaMallocAsync(&stft_out, n_frames * WHISPER_N_FFT_HALF * sizeof(cufftComplex), m_stream));
|
|
|
|
cufftHandle plan;
|
|
CUFFT_CHECK(cufftCreate(&plan));
|
|
CUFFT_CHECK(cufftSetAutoAllocation(plan, 0));
|
|
{
|
|
size_t waSize;
|
|
CUFFT_CHECK(cufftMakePlan1d(plan, WHISPER_N_FFT, CUFFT_R2C, int(n_frames), &waSize));
|
|
assert(waSize <= m_cufft_workspace_size);
|
|
CUFFT_CHECK(cufftSetWorkArea(plan, m_cufft_workspace));
|
|
CUFFT_CHECK(cufftSetStream(plan, m_stream));
|
|
}
|
|
CUFFT_CHECK(cufftExecR2C(plan, stft_in, stft_out));
|
|
|
|
const auto n_mag_frames = n_frames - 1; // drop last frame
|
|
float * magnitudes;
|
|
CUDA_CHECK(cudaMallocAsync(&magnitudes, n_mag_frames * WHISPER_N_FFT_HALF * sizeof(float), m_stream));
|
|
calc_magnitudes(stft_out, int(n_mag_frames), magnitudes, m_stream);
|
|
|
|
float * mel_data = nullptr;
|
|
CUDA_CHECK(cudaMallocAsync(&mel_data, m_n_mel * n_mag_frames * sizeof(float), m_stream));
|
|
|
|
const float fone = 1.0f, fzero = 0.0f;
|
|
CUBLAS_CHECK(cublasSgemm(m_cublas_handle, CUBLAS_OP_T, CUBLAS_OP_N,
|
|
int(n_mag_frames), m_n_mel, WHISPER_N_FFT_HALF,
|
|
&fone,
|
|
magnitudes, WHISPER_N_FFT_HALF,
|
|
m_filters, WHISPER_N_FFT_HALF,
|
|
&fzero,
|
|
mel_data, int(n_mag_frames)));
|
|
|
|
whisper_mel ret;
|
|
// Calculate semi-padded sample length to ensure compatibility
|
|
int n_len_org = 1 + int(samples.len + mirror_pad - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
|
|
whisper_mel_init(ret, m_backend, int(n_mag_frames), n_len_org, m_n_mel);
|
|
assert(ggml_nbytes(ret.tensor) == m_n_mel * n_mag_frames * sizeof(float));
|
|
|
|
float* log_mels = reinterpret_cast<float*>(ret.tensor->data);
|
|
|
|
calc_log_mel(
|
|
mel_data, int(m_n_mel * n_mag_frames),
|
|
m_log_mel_temp_storage , int(m_log_mel_temp_storage_size),
|
|
log_mels, m_stream);
|
|
|
|
CUDA_CHECK(cudaStreamSynchronize(m_stream));
|
|
|
|
// cleanup
|
|
CUFFT_CHECK(cufftDestroy(plan));
|
|
CUDA_CHECK(cudaFreeAsync(mel_data, m_stream));
|
|
CUDA_CHECK(cudaFreeAsync(magnitudes, m_stream));
|
|
CUDA_CHECK(cudaFreeAsync(stft_out, m_stream));
|
|
CUDA_CHECK(cudaFreeAsync(stft_in, m_stream));
|
|
CUDA_CHECK(cudaFreeAsync(cu_padded_samples, m_stream));
|
|
|
|
return ret;
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
whisper_mel_calc * whisper_mel_calc_create_cuda(ggml_backend_t backend, const whisper_filters & filters) {
|
|
try {
|
|
return new mel_calc_cuda(backend, filters);
|
|
}
|
|
catch (...) {
|
|
// TODO: log error (but for this we would have to expose the log state to be accessible here)
|
|
return nullptr;
|
|
}
|
|
}
|