whisper.cpp/ggml-rpc.cpp
2024-06-16 18:19:48 +03:00

1174 lines
43 KiB
C++

#include "ggml-rpc.h"
#include "ggml.h"
#include "ggml-backend-impl.h"
#include <cinttypes>
#include <string>
#include <vector>
#include <memory>
#include <mutex>
#include <unordered_map>
#include <unordered_set>
#ifdef _WIN32
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
# include <winsock2.h>
#else
# include <arpa/inet.h>
# include <sys/socket.h>
# include <sys/types.h>
# include <netinet/in.h>
# include <netinet/tcp.h>
# include <netdb.h>
# include <unistd.h>
#endif
#include <string.h>
#define UNUSED GGML_UNUSED
#define GGML_DEBUG 0
#if (GGML_DEBUG >= 1)
#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG(...)
#endif
#ifdef _WIN32
typedef SOCKET sockfd_t;
using ssize_t = __int64;
#else
typedef int sockfd_t;
#endif
// cross-platform socket
struct socket_t {
sockfd_t fd;
socket_t(sockfd_t fd) : fd(fd) {}
~socket_t() {
GGML_PRINT_DEBUG("[%s] closing socket %d\n", __func__, this->fd);
#ifdef _WIN32
closesocket(this->fd);
#else
close(this->fd);
#endif
}
};
// ggml_tensor is serialized into rpc_tensor
#pragma pack(push, 1)
struct rpc_tensor {
uint64_t id;
uint32_t type;
uint64_t buffer;
uint32_t ne[GGML_MAX_DIMS];
uint32_t nb[GGML_MAX_DIMS];
uint32_t op;
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
int32_t flags;
uint64_t src[GGML_MAX_SRC];
uint64_t view_src;
uint64_t view_offs;
uint64_t data;
char name[GGML_MAX_NAME];
};
#pragma pack(pop)
// RPC commands
enum rpc_cmd {
ALLOC_BUFFER = 0,
GET_ALIGNMENT,
GET_MAX_SIZE,
BUFFER_GET_BASE,
FREE_BUFFER,
BUFFER_CLEAR,
SET_TENSOR,
GET_TENSOR,
COPY_TENSOR,
GRAPH_COMPUTE,
GET_DEVICE_MEMORY,
};
// RPC data structures
static ggml_guid_t ggml_backend_rpc_guid() {
static ggml_guid guid = {0x99, 0x68, 0x5b, 0x6c, 0xd2, 0x83, 0x3d, 0x24, 0x25, 0x36, 0x72, 0xe1, 0x5b, 0x0e, 0x14, 0x03};
return &guid;
}
struct ggml_backend_rpc_buffer_type_context {
std::string endpoint;
std::string name;
size_t alignment;
size_t max_size;
};
struct ggml_backend_rpc_context {
std::string endpoint;
std::string name;
};
struct ggml_backend_rpc_buffer_context {
std::shared_ptr<socket_t> sock;
std::unordered_map<ggml_backend_buffer_t, void *> base_cache;
uint64_t remote_ptr;
std::string name;
};
// RPC helper functions
static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
#ifdef _WIN32
if (fd == INVALID_SOCKET) {
return nullptr;
}
#else
if (fd < 0) {
return nullptr;
}
#endif
return std::make_shared<socket_t>(fd);
}
static bool set_no_delay(sockfd_t sockfd) {
int flag = 1;
// set TCP_NODELAY to disable Nagle's algorithm
int ret = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int));
return ret == 0;
}
static bool set_reuse_addr(sockfd_t sockfd) {
int flag = 1;
int ret = setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (char *)&flag, sizeof(int));
return ret == 0;
}
static std::shared_ptr<socket_t> socket_connect(const char * host, int port) {
struct sockaddr_in addr;
auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
auto sock_ptr = make_socket(sockfd);
if (sock_ptr == nullptr) {
return nullptr;
}
if (!set_no_delay(sockfd)) {
fprintf(stderr, "Failed to set TCP_NODELAY\n");
return nullptr;
}
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
struct hostent * server = gethostbyname(host);
if (server == NULL) {
fprintf(stderr, "Cannot resolve host '%s'\n", host);
return nullptr;
}
memcpy(&addr.sin_addr.s_addr, server->h_addr, server->h_length);
if (connect(sock_ptr->fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
return nullptr;
}
return sock_ptr;
}
static std::shared_ptr<socket_t> socket_accept(sockfd_t srv_sockfd) {
auto client_socket_fd = accept(srv_sockfd, NULL, NULL);
auto client_socket = make_socket(client_socket_fd);
if (client_socket == nullptr) {
return nullptr;
}
if (!set_no_delay(client_socket_fd)) {
fprintf(stderr, "Failed to set TCP_NODELAY\n");
return nullptr;
}
return client_socket;
}
static std::shared_ptr<socket_t> create_server_socket(const char * host, int port) {
auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
auto sock = make_socket(sockfd);
if (sock == nullptr) {
return nullptr;
}
if (!set_reuse_addr(sockfd)) {
fprintf(stderr, "Failed to set SO_REUSEADDR\n");
return nullptr;
}
struct sockaddr_in serv_addr;
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = inet_addr(host);
serv_addr.sin_port = htons(port);
if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {
return nullptr;
}
if (listen(sockfd, 1) < 0) {
return nullptr;
}
return sock;
}
static bool send_data(sockfd_t sockfd, const void * data, size_t size) {
size_t bytes_sent = 0;
while (bytes_sent < size) {
ssize_t n = send(sockfd, (const char *)data + bytes_sent, size - bytes_sent, 0);
if (n < 0) {
return false;
}
bytes_sent += n;
}
return true;
}
static bool recv_data(sockfd_t sockfd, void * data, size_t size) {
size_t bytes_recv = 0;
while (bytes_recv < size) {
ssize_t n = recv(sockfd, (char *)data + bytes_recv, size - bytes_recv, 0);
if (n <= 0) {
return false;
}
bytes_recv += n;
}
return true;
}
static bool parse_endpoint(const std::string & endpoint, std::string & host, int & port) {
size_t pos = endpoint.find(':');
if (pos == std::string::npos) {
return false;
}
host = endpoint.substr(0, pos);
port = std::stoi(endpoint.substr(pos + 1));
return true;
}
// RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
// RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
uint8_t cmd_byte = cmd;
if (!send_data(sock->fd, &cmd_byte, sizeof(cmd_byte))) {
return false;
}
uint64_t input_size = input.size();
if (!send_data(sock->fd, &input_size, sizeof(input_size))) {
return false;
}
if (!send_data(sock->fd, input.data(), input.size())) {
return false;
}
uint64_t output_size;
if (!recv_data(sock->fd, &output_size, sizeof(output_size))) {
return false;
}
if (output_size == 0) {
output.clear();
return true;
}
output.resize(output_size);
if (!recv_data(sock->fd, output.data(), output_size)) {
return false;
}
return true;
}
// RPC client-side implementation
static std::shared_ptr<socket_t> get_socket(const std::string & endpoint) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static std::unordered_map<std::string, std::weak_ptr<socket_t>> sockets;
static bool initialized = false;
auto it = sockets.find(endpoint);
if (it != sockets.end()) {
if (auto sock = it->second.lock()) {
return sock;
}
}
std::string host;
int port;
if (!parse_endpoint(endpoint, host, port)) {
return nullptr;
}
#ifdef _WIN32
if (!initialized) {
WSADATA wsaData;
int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
if (res != 0) {
return nullptr;
}
initialized = true;
}
#else
UNUSED(initialized);
#endif
auto sock = socket_connect(host.c_str(), port);
if (sock == nullptr) {
return nullptr;
}
GGML_PRINT_DEBUG("[%s] connected to %s, sockfd=%d\n", __func__, endpoint.c_str(), sock->fd);
sockets[endpoint] = sock;
return sock;
}
GGML_CALL static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
return ctx->name.c_str();
}
GGML_CALL static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | remote_ptr (8 bytes) |
std::vector<uint8_t> input(sizeof(uint64_t), 0);
uint64_t remote_ptr = ctx->remote_ptr;
memcpy(input.data(), &remote_ptr, sizeof(remote_ptr));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, FREE_BUFFER, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.empty());
delete ctx;
}
GGML_CALL static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
if (ctx->base_cache.find(buffer) != ctx->base_cache.end()) {
return ctx->base_cache[buffer];
}
// input serialization format: | remote_ptr (8 bytes) |
std::vector<uint8_t> input(sizeof(uint64_t), 0);
uint64_t remote_ptr = ctx->remote_ptr;
memcpy(input.data(), &remote_ptr, sizeof(remote_ptr));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, BUFFER_GET_BASE, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == sizeof(uint64_t));
// output serialization format: | base_ptr (8 bytes) |
uint64_t base_ptr;
memcpy(&base_ptr, output.data(), sizeof(base_ptr));
void * base = reinterpret_cast<void *>(base_ptr);
ctx->base_cache[buffer] = base;
return base;
}
static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
rpc_tensor result;
result.id = reinterpret_cast<uint64_t>(tensor);
result.type = tensor->type;
if (tensor->buffer) {
ggml_backend_buffer_t buffer = tensor->buffer;
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
result.buffer = ctx->remote_ptr;
} else {
result.buffer = 0;
}
for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
result.ne[i] = tensor->ne[i];
result.nb[i] = tensor->nb[i];
}
result.op = tensor->op;
for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
result.op_params[i] = tensor->op_params[i];
}
result.flags = tensor->flags;
for (uint32_t i = 0; i < GGML_MAX_SRC; i++) {
result.src[i] = reinterpret_cast<uint64_t>(tensor->src[i]);
}
result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
result.view_offs = tensor->view_offs;
result.data = reinterpret_cast<uint64_t>(tensor->data);
snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
return result;
}
GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
UNUSED(buffer);
if (ggml_is_quantized(tensor->type)) {
// TODO: this check is due to MATRIX_ROW_PADDING in CUDA and should be generalized
GGML_ASSERT(tensor->ne[0] % 512 == 0 && "unsupported quantized tensor");
}
}
GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
std::vector<uint8_t> input(input_size, 0);
rpc_tensor rpc_tensor = serialize_tensor(tensor);
memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, SET_TENSOR, input, output);
GGML_ASSERT(status);
}
GGML_CALL static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
int input_size = sizeof(rpc_tensor) + 2*sizeof(uint64_t);
std::vector<uint8_t> input(input_size, 0);
rpc_tensor rpc_tensor = serialize_tensor(tensor);
memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), &size, sizeof(size));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, GET_TENSOR, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == size);
// output serialization format: | data (size bytes) |
memcpy(data, output.data(), size);
}
GGML_CALL static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
// check if src and dst are on the same server
ggml_backend_buffer_t src_buffer = src->buffer;
ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
ggml_backend_buffer_t dst_buffer = dst->buffer;
ggml_backend_rpc_buffer_context * dst_ctx = (ggml_backend_rpc_buffer_context *)dst_buffer->context;
if (src_ctx->sock != dst_ctx->sock) {
return false;
}
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | rpc_tensor src | rpc_tensor dst |
int input_size = 2*sizeof(rpc_tensor);
std::vector<uint8_t> input(input_size, 0);
rpc_tensor rpc_src = serialize_tensor(src);
rpc_tensor rpc_dst = serialize_tensor(dst);
memcpy(input.data(), &rpc_src, sizeof(rpc_src));
memcpy(input.data() + sizeof(rpc_src), &rpc_dst, sizeof(rpc_dst));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, COPY_TENSOR, input, output);
GGML_ASSERT(status);
// output serialization format: | result (1 byte) |
GGML_ASSERT(output.size() == 1);
return output[0];
}
GGML_CALL static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// serialization format: | bufptr (8 bytes) | value (1 byte) |
int input_size = sizeof(uint64_t) + sizeof(uint8_t);
std::vector<uint8_t> input(input_size, 0);
memcpy(input.data(), &ctx->remote_ptr, sizeof(ctx->remote_ptr));
memcpy(input.data() + sizeof(ctx->remote_ptr), &value, sizeof(value));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, BUFFER_CLEAR, input, output);
GGML_ASSERT(status);
}
static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
/* .get_name = */ ggml_backend_rpc_buffer_get_name,
/* .free_buffer = */ ggml_backend_rpc_buffer_free_buffer,
/* .get_base = */ ggml_backend_rpc_buffer_get_base,
/* .init_tensor = */ ggml_backend_rpc_buffer_init_tensor,
/* .set_tensor = */ ggml_backend_rpc_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_rpc_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_rpc_buffer_cpy_tensor,
/* .clear = */ ggml_backend_rpc_buffer_clear,
/* .reset = */ NULL,
};
GGML_CALL static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
return buft_ctx->name.c_str();
}
GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
// input serialization format: | size (8 bytes) |
int input_size = sizeof(uint64_t);
std::vector<uint8_t> input(input_size, 0);
memcpy(input.data(), &size, sizeof(size));
std::vector<uint8_t> output;
auto sock = get_socket(buft_ctx->endpoint);
bool status = send_rpc_cmd(sock, ALLOC_BUFFER, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == 2*sizeof(uint64_t));
// output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
uint64_t remote_ptr;
memcpy(&remote_ptr, output.data(), sizeof(remote_ptr));
size_t remote_size;
memcpy(&remote_size, output.data() + sizeof(uint64_t), sizeof(remote_size));
if (remote_ptr != 0) {
ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
ggml_backend_rpc_buffer_interface,
new ggml_backend_rpc_buffer_context{sock, {}, remote_ptr, "RPC[" + std::string(buft_ctx->endpoint) + "]"},
remote_size);
return buffer;
} else {
return nullptr;
}
}
static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
// input serialization format: | 0 bytes |
std::vector<uint8_t> input;
std::vector<uint8_t> output;
bool status = send_rpc_cmd(sock, GET_ALIGNMENT, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == sizeof(uint64_t));
// output serialization format: | alignment (8 bytes) |
uint64_t alignment;
memcpy(&alignment, output.data(), sizeof(alignment));
return alignment;
}
GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
return buft_ctx->alignment;
}
static size_t get_max_size(const std::shared_ptr<socket_t> & sock) {
// input serialization format: | 0 bytes |
std::vector<uint8_t> input;
std::vector<uint8_t> output;
bool status = send_rpc_cmd(sock, GET_MAX_SIZE, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == sizeof(uint64_t));
// output serialization format: | max_size (8 bytes) |
uint64_t max_size;
memcpy(&max_size, output.data(), sizeof(max_size));
return max_size;
}
GGML_CALL static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
return buft_ctx->max_size;
}
GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
UNUSED(buft);
return ggml_nbytes(tensor);
}
static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
/* .get_name = */ ggml_backend_rpc_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_rpc_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_rpc_buffer_type_get_alignment,
/* .get_max_size = */ ggml_backend_rpc_get_max_size,
/* .get_alloc_size = */ ggml_backend_rpc_buffer_type_get_alloc_size,
/* .is_host = */ NULL,
};
GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
return rpc_ctx->name.c_str();
}
GGML_CALL static void ggml_backend_rpc_free(ggml_backend_t backend) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
delete rpc_ctx;
delete backend;
}
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
}
GGML_CALL static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
UNUSED(backend);
// this is no-op because we don't have any async operations
}
static void add_tensor(ggml_tensor * tensor, std::vector<rpc_tensor> & tensors, std::unordered_set<ggml_tensor*> & visited) {
if (tensor == nullptr) {
return;
}
if (visited.find(tensor) != visited.end()) {
return;
}
visited.insert(tensor);
for (int i = 0; i < GGML_MAX_SRC; i++) {
add_tensor(tensor->src[i], tensors, visited);
}
add_tensor(tensor->view_src, tensors, visited);
tensors.push_back(serialize_tensor(tensor));
}
static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
uint32_t n_nodes = cgraph->n_nodes;
std::vector<rpc_tensor> tensors;
std::unordered_set<ggml_tensor*> visited;
for (uint32_t i = 0; i < n_nodes; i++) {
add_tensor(cgraph->nodes[i], tensors, visited);
}
// serialization format:
// | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
uint32_t n_tensors = tensors.size();
int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
output.resize(output_size, 0);
memcpy(output.data(), &n_nodes, sizeof(n_nodes));
uint64_t * out_nodes = (uint64_t *)(output.data() + sizeof(n_nodes));
for (uint32_t i = 0; i < n_nodes; i++) {
out_nodes[i] = reinterpret_cast<uint64_t>(cgraph->nodes[i]);
}
uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
*out_ntensors = n_tensors;
rpc_tensor * out_tensors = (rpc_tensor *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t));
memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
}
GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
std::vector<uint8_t> input;
serialize_graph(cgraph, input);
std::vector<uint8_t> output;
auto sock = get_socket(rpc_ctx->endpoint);
bool status = send_rpc_cmd(sock, GRAPH_COMPUTE, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == 1);
return (enum ggml_status)output[0];
}
GGML_CALL static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
UNUSED(backend);
UNUSED(op);
//TODO: call the remote backend and cache the results
return true;
}
GGML_CALL static bool ggml_backend_rpc_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
if (buft->iface.get_name != ggml_backend_rpc_buffer_type_name) {
return false;
}
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
return buft_ctx->endpoint == rpc_ctx->endpoint;
}
static ggml_backend_i ggml_backend_rpc_interface = {
/* .get_name = */ ggml_backend_rpc_name,
/* .free = */ ggml_backend_rpc_free,
/* .get_default_buffer_type = */ ggml_backend_rpc_get_default_buffer_type,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ ggml_backend_rpc_synchronize,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_rpc_graph_compute,
/* .supports_op = */ ggml_backend_rpc_supports_op,
/* .supports_buft = */ ggml_backend_rpc_supports_buft,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .event_synchronize = */ NULL,
};
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
// NOTE: buffer types are allocated and never freed; this is by design
static std::unordered_map<std::string, ggml_backend_buffer_type_t> buft_map;
auto it = buft_map.find(endpoint);
if (it != buft_map.end()) {
return it->second;
}
auto sock = get_socket(endpoint);
if (sock == nullptr) {
return nullptr;
}
size_t alignment = get_alignment(sock);
size_t max_size = get_max_size(sock);
ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
/* .endpoint = */ endpoint,
/* .name = */ "RPC[" + std::string(endpoint) + "]",
/* .alignment = */ alignment,
/* .max_size = */ max_size
};
ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
/* .iface = */ ggml_backend_rpc_buffer_type_interface,
/* .context = */ buft_ctx
};
buft_map[endpoint] = buft;
return buft;
}
GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
/* .endpoint = */ endpoint,
/* .name = */ "RPC[" + std::string(endpoint) + "]",
};
ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_rpc_guid(),
/* .interface = */ ggml_backend_rpc_interface,
/* .context = */ ctx
};
return backend;
}
GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
}
static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * free, size_t * total) {
// input serialization format: | 0 bytes |
std::vector<uint8_t> input;
std::vector<uint8_t> output;
bool status = send_rpc_cmd(sock, GET_DEVICE_MEMORY, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == 2*sizeof(uint64_t));
// output serialization format: | free (8 bytes) | total (8 bytes) |
uint64_t free_mem;
memcpy(&free_mem, output.data(), sizeof(free_mem));
uint64_t total_mem;
memcpy(&total_mem, output.data() + sizeof(uint64_t), sizeof(total_mem));
*free = free_mem;
*total = total_mem;
}
GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
auto sock = get_socket(endpoint);
if (sock == nullptr) {
*free = 0;
*total = 0;
return;
}
get_device_memory(sock, free, total);
}
// RPC server-side implementation
class rpc_server {
public:
rpc_server(ggml_backend_t backend) : backend(backend) {}
~rpc_server();
bool alloc_buffer(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
void get_alignment(std::vector<uint8_t> & output);
void get_max_size(std::vector<uint8_t> & output);
bool buffer_get_base(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
bool free_buffer(const std::vector<uint8_t> & input);
bool buffer_clear(const std::vector<uint8_t> & input);
bool set_tensor(const std::vector<uint8_t> & input);
bool get_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
bool copy_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
bool graph_compute(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
private:
ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor);
ggml_tensor * create_node(uint64_t id,
struct ggml_context * ctx,
const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map);
ggml_backend_t backend;
std::unordered_set<ggml_backend_buffer_t> buffers;
};
bool rpc_server::alloc_buffer(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
// input serialization format: | size (8 bytes) |
if (input.size() != sizeof(uint64_t)) {
return false;
}
uint64_t size;
memcpy(&size, input.data(), sizeof(size));
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
uint64_t remote_ptr = 0;
uint64_t remote_size = 0;
if (buffer != nullptr) {
remote_ptr = reinterpret_cast<uint64_t>(buffer);
remote_size = buffer->size;
GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, size, remote_ptr, remote_size);
buffers.insert(buffer);
} else {
GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> failed\n", __func__, size);
}
// output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
output.resize(2*sizeof(uint64_t), 0);
memcpy(output.data(), &remote_ptr, sizeof(remote_ptr));
memcpy(output.data() + sizeof(uint64_t), &remote_size, sizeof(remote_size));
return true;
}
void rpc_server::get_alignment(std::vector<uint8_t> & output) {
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
size_t alignment = ggml_backend_buft_get_alignment(buft);
GGML_PRINT_DEBUG("[%s] alignment: %lu\n", __func__, alignment);
// output serialization format: | alignment (8 bytes) |
output.resize(sizeof(uint64_t), 0);
memcpy(output.data(), &alignment, sizeof(alignment));
}
void rpc_server::get_max_size(std::vector<uint8_t> & output) {
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
size_t max_size = ggml_backend_buft_get_max_size(buft);
GGML_PRINT_DEBUG("[%s] max_size: %lu\n", __func__, max_size);
// output serialization format: | max_size (8 bytes) |
output.resize(sizeof(uint64_t), 0);
memcpy(output.data(), &max_size, sizeof(max_size));
}
bool rpc_server::buffer_get_base(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
// input serialization format: | remote_ptr (8 bytes) |
if (input.size() != sizeof(uint64_t)) {
return false;
}
uint64_t remote_ptr;
memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr);
ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
if (buffers.find(buffer) == buffers.end()) {
GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
return false;
}
void * base = ggml_backend_buffer_get_base(buffer);
// output serialization format: | base_ptr (8 bytes) |
uint64_t base_ptr = reinterpret_cast<uint64_t>(base);
output.resize(sizeof(uint64_t), 0);
memcpy(output.data(), &base_ptr, sizeof(base_ptr));
return true;
}
bool rpc_server::free_buffer(const std::vector<uint8_t> & input) {
// input serialization format: | remote_ptr (8 bytes) |
if (input.size() != sizeof(uint64_t)) {
return false;
}
uint64_t remote_ptr;
memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr);
ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
if (buffers.find(buffer) == buffers.end()) {
GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
return false;
}
ggml_backend_buffer_free(buffer);
buffers.erase(buffer);
return true;
}
bool rpc_server::buffer_clear(const std::vector<uint8_t> & input) {
// input serialization format: | remote_ptr (8 bytes) | value (1 byte) |
if (input.size() != sizeof(uint64_t) + sizeof(uint8_t)) {
return false;
}
uint64_t remote_ptr;
memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
uint8_t value;
memcpy(&value, input.data() + sizeof(uint64_t), sizeof(value));
GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, remote_ptr, value);
ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
if (buffers.find(buffer) == buffers.end()) {
GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
return false;
}
ggml_backend_buffer_clear(buffer, value);
return true;
}
ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
result->nb[i] = tensor->nb[i];
}
result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer);
if (result->buffer && buffers.find(result->buffer) == buffers.end()) {
return nullptr;
}
result->op = (ggml_op) tensor->op;
for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
result->op_params[i] = tensor->op_params[i];
}
result->flags = tensor->flags;
result->data = reinterpret_cast<void *>(tensor->data);
ggml_set_name(result, tensor->name);
return result;
}
bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
// serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
if (input.size() < sizeof(rpc_tensor) + sizeof(uint64_t)) {
return false;
}
const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
uint64_t offset;
memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset);
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
struct ggml_context * ctx = ggml_init(params);
ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
if (tensor == nullptr) {
GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__);
ggml_free(ctx);
return false;
}
GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
ggml_backend_tensor_set(tensor, data, offset, size);
ggml_free(ctx);
return true;
}
bool rpc_server::get_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
// serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
if (input.size() != sizeof(rpc_tensor) + 2*sizeof(uint64_t)) {
return false;
}
const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
uint64_t offset;
memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
uint64_t size;
memcpy(&size, input.data() + sizeof(rpc_tensor) + sizeof(offset), sizeof(size));
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
struct ggml_context * ctx = ggml_init(params);
ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
if (tensor == nullptr) {
GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__);
ggml_free(ctx);
return false;
}
GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
// output serialization format: | data (size bytes) |
output.resize(size, 0);
ggml_backend_tensor_get(tensor, output.data(), offset, size);
ggml_free(ctx);
return true;
}
bool rpc_server::copy_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
// serialization format: | rpc_tensor src | rpc_tensor dst |
if (input.size() != 2*sizeof(rpc_tensor)) {
return false;
}
const rpc_tensor * rpc_src = (const rpc_tensor *)input.data();
const rpc_tensor * rpc_dst = (const rpc_tensor *)(input.data() + sizeof(rpc_src));
struct ggml_init_params params {
/*.mem_size =*/ 2*ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
struct ggml_context * ctx = ggml_init(params);
ggml_tensor * src = deserialize_tensor(ctx, rpc_src);
ggml_tensor * dst = deserialize_tensor(ctx, rpc_dst);
if (src == nullptr || dst == nullptr) {
GGML_PRINT_DEBUG("[%s] error deserializing tensors\n", __func__);
ggml_free(ctx);
return false;
}
GGML_PRINT_DEBUG("[%s] src->buffer: %p, dst->buffer: %p\n", __func__, (void*)src->buffer, (void*)dst->buffer);
bool result = ggml_backend_buffer_copy_tensor(src, dst);
// output serialization format: | result (1 byte) |
output.resize(1, 0);
output[0] = result;
ggml_free(ctx);
return true;
}
ggml_tensor * rpc_server::create_node(uint64_t id,
struct ggml_context * ctx,
const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
if (id == 0) {
return nullptr;
}
if (tensor_map.find(id) != tensor_map.end()) {
return tensor_map[id];
}
const rpc_tensor * tensor = tensor_ptrs.at(id);
struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
if (result == nullptr) {
return nullptr;
}
tensor_map[id] = result;
for (int i = 0; i < GGML_MAX_SRC; i++) {
result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
}
result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
result->view_offs = tensor->view_offs;
return result;
}
bool rpc_server::graph_compute(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
// serialization format:
// | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
if (input.size() < sizeof(uint32_t)) {
return false;
}
uint32_t n_nodes;
memcpy(&n_nodes, input.data(), sizeof(n_nodes));
if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) {
return false;
}
const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes));
uint32_t n_tensors;
memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors));
if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) {
return false;
}
const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors));
GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
static size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
struct ggml_init_params params = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
struct ggml_context * ctx = ggml_init(params);
struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false);
graph->n_nodes = n_nodes;
std::unordered_map<uint64_t, const rpc_tensor*> tensor_ptrs;
for (uint32_t i = 0; i < n_tensors; i++) {
tensor_ptrs[tensors[i].id] = &tensors[i];
}
std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
for (uint32_t i = 0; i < n_nodes; i++) {
graph->nodes[i] = create_node(nodes[i], ctx, tensor_ptrs, tensor_map);
}
ggml_status status = ggml_backend_graph_compute(backend, graph);
// output serialization format: | status (1 byte) |
output.resize(1, 0);
output[0] = status;
ggml_free(ctx);
return true;
}
rpc_server::~rpc_server() {
for (auto buffer : buffers) {
ggml_backend_buffer_free(buffer);
}
}
static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem) {
rpc_server server(backend);
while (true) {
uint8_t cmd;
if (!recv_data(sockfd, &cmd, 1)) {
break;
}
std::vector<uint8_t> input;
std::vector<uint8_t> output;
uint64_t input_size;
if (!recv_data(sockfd, &input_size, sizeof(input_size))) {
break;
}
input.resize(input_size);
if (!recv_data(sockfd, input.data(), input_size)) {
break;
}
bool ok = true;
switch (cmd) {
case ALLOC_BUFFER: {
ok = server.alloc_buffer(input, output);
break;
}
case GET_ALIGNMENT: {
server.get_alignment(output);
break;
}
case GET_MAX_SIZE: {
server.get_max_size(output);
break;
}
case BUFFER_GET_BASE: {
ok = server.buffer_get_base(input, output);
break;
}
case FREE_BUFFER: {
ok = server.free_buffer(input);
break;
}
case BUFFER_CLEAR: {
ok = server.buffer_clear(input);
break;
}
case SET_TENSOR: {
ok = server.set_tensor(input);
break;
}
case GET_TENSOR: {
ok = server.get_tensor(input, output);
break;
}
case COPY_TENSOR: {
ok = server.copy_tensor(input, output);
break;
}
case GRAPH_COMPUTE: {
ok = server.graph_compute(input, output);
break;
}
case GET_DEVICE_MEMORY: {
// output serialization format: | free (8 bytes) | total (8 bytes) |
output.resize(2*sizeof(uint64_t), 0);
memcpy(output.data(), &free_mem, sizeof(free_mem));
memcpy(output.data() + sizeof(uint64_t), &total_mem, sizeof(total_mem));
break;
}
default: {
fprintf(stderr, "Unknown command: %d\n", cmd);
ok = false;
}
}
if (!ok) {
break;
}
uint64_t output_size = output.size();
if (!send_data(sockfd, &output_size, sizeof(output_size))) {
break;
}
if (!send_data(sockfd, output.data(), output_size)) {
break;
}
}
}
void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem) {
std::string host;
int port;
if (!parse_endpoint(endpoint, host, port)) {
return;
}
#ifdef _WIN32
{
WSADATA wsaData;
int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
if (res != 0) {
fprintf(stderr, "WSAStartup failed: %d\n", res);
return;
}
}
#endif
auto server_socket = create_server_socket(host.c_str(), port);
if (server_socket == nullptr) {
fprintf(stderr, "Failed to create server socket\n");
return;
}
while (true) {
auto client_socket = socket_accept(server_socket->fd);
if (client_socket == nullptr) {
fprintf(stderr, "Failed to accept client connection\n");
return;
}
printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem);
rpc_serve_client(backend, client_socket->fd, free_mem, total_mem);
printf("Client connection closed\n");
}
#ifdef _WIN32
WSACleanup();
#endif
}