mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-22 04:18:24 +00:00
7f78675008
This change updates the -pc flag, so that a new xterm256 color scheme is used. This color scheme is believed to be better for three reasons: 1. It should be friendlier to the colorblind. The scheme was designed by Paul Tol (see: https://personal.sron.nl/~pault/). TensorBoard uses it since 2017, so it's already popular in the machine learning community 2. It should appear to be the same colors as before to people who aren't i.e. it's still a red-green spectrum like before but lightly modified 3. It is readable in both white and black background terminals. The neon colors before were probably a bit too intense for white backgrounds.
344 lines
10 KiB
C++
344 lines
10 KiB
C++
// Various helper functions and utilities
|
|
|
|
#pragma once
|
|
|
|
#include <string>
|
|
#include <map>
|
|
#include <vector>
|
|
#include <random>
|
|
#include <thread>
|
|
#include <ctime>
|
|
#include <fstream>
|
|
#include <sstream>
|
|
|
|
#define COMMON_SAMPLE_RATE 16000
|
|
|
|
//
|
|
// GPT CLI argument parsing
|
|
//
|
|
|
|
struct gpt_params {
|
|
int32_t seed = -1; // RNG seed
|
|
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
|
int32_t n_predict = 200; // new tokens to predict
|
|
int32_t n_parallel = 1; // number of parallel streams
|
|
int32_t n_batch = 32; // batch size for prompt processing
|
|
int32_t n_ctx = 2048; // context size (this is the KV cache max size)
|
|
int32_t n_gpu_layers = 0; // number of layers to offlload to the GPU
|
|
|
|
bool ignore_eos = false; // ignore EOS token when generating text
|
|
|
|
// sampling parameters
|
|
int32_t top_k = 40;
|
|
float top_p = 0.9f;
|
|
float temp = 0.9f;
|
|
int32_t repeat_last_n = 64;
|
|
float repeat_penalty = 1.00f;
|
|
|
|
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
|
|
std::string prompt = "";
|
|
std::string token_test = "";
|
|
|
|
bool interactive = false;
|
|
int32_t interactive_port = -1;
|
|
};
|
|
|
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
|
|
|
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
|
|
|
std::string gpt_random_prompt(std::mt19937 & rng);
|
|
|
|
//
|
|
// Vocab utils
|
|
//
|
|
|
|
std::string trim(const std::string & s);
|
|
|
|
std::string replace(
|
|
const std::string & s,
|
|
const std::string & from,
|
|
const std::string & to);
|
|
|
|
struct gpt_vocab {
|
|
using id = int32_t;
|
|
using token = std::string;
|
|
|
|
std::map<token, id> token_to_id;
|
|
std::map<id, token> id_to_token;
|
|
std::vector<std::string> special_tokens;
|
|
|
|
void add_special_token(const std::string & token);
|
|
};
|
|
|
|
// poor-man's JSON parsing
|
|
std::map<std::string, int32_t> json_parse(const std::string & fname);
|
|
|
|
std::string convert_to_utf8(const std::wstring & input);
|
|
|
|
std::wstring convert_to_wstring(const std::string & input);
|
|
|
|
void gpt_split_words(std::string str, std::vector<std::string>& words);
|
|
|
|
// split text into tokens
|
|
//
|
|
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
|
|
//
|
|
// Regex (Python):
|
|
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
|
|
//
|
|
// Regex (C++):
|
|
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
|
|
//
|
|
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
|
|
|
|
// test outputs of gpt_tokenize
|
|
//
|
|
// - compare with tokens generated by the huggingface tokenizer
|
|
// - test cases are chosen based on the model's main language (under 'prompt' directory)
|
|
// - if all sentences are tokenized identically, print 'All tests passed.'
|
|
// - otherwise, print sentence, huggingface tokens, ggml tokens
|
|
//
|
|
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test);
|
|
|
|
// load the tokens from encoder.json
|
|
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
|
|
|
|
// sample next token given probabilities for each embedding
|
|
//
|
|
// - consider only the top K tokens
|
|
// - from them, consider only the top tokens with cumulative probability > P
|
|
//
|
|
// TODO: not sure if this implementation is correct
|
|
// TODO: temperature is not implemented
|
|
//
|
|
gpt_vocab::id gpt_sample_top_k_top_p(
|
|
const gpt_vocab & vocab,
|
|
const float * logits,
|
|
int top_k,
|
|
double top_p,
|
|
double temp,
|
|
std::mt19937 & rng);
|
|
|
|
gpt_vocab::id gpt_sample_top_k_top_p_repeat(
|
|
const gpt_vocab & vocab,
|
|
const float * logits,
|
|
const int32_t * last_n_tokens_data,
|
|
size_t last_n_tokens_data_size,
|
|
int top_k,
|
|
double top_p,
|
|
double temp,
|
|
int repeat_last_n,
|
|
float repeat_penalty,
|
|
std::mt19937 & rng);
|
|
|
|
//
|
|
// Audio utils
|
|
//
|
|
|
|
// Check if a buffer is a WAV audio file
|
|
bool is_wav_buffer(const std::string buf);
|
|
|
|
// Read WAV audio file and store the PCM data into pcmf32
|
|
// fname can be a buffer of WAV data instead of a filename
|
|
// The sample rate of the audio must be equal to COMMON_SAMPLE_RATE
|
|
// If stereo flag is set and the audio has 2 channels, the pcmf32s will contain 2 channel PCM
|
|
bool read_wav(
|
|
const std::string & fname,
|
|
std::vector<float> & pcmf32,
|
|
std::vector<std::vector<float>> & pcmf32s,
|
|
bool stereo);
|
|
|
|
// Write PCM data into WAV audio file
|
|
class wav_writer {
|
|
private:
|
|
std::ofstream file;
|
|
uint32_t dataSize = 0;
|
|
std::string wav_filename;
|
|
|
|
bool write_header(const uint32_t sample_rate,
|
|
const uint16_t bits_per_sample,
|
|
const uint16_t channels) {
|
|
|
|
file.write("RIFF", 4);
|
|
file.write("\0\0\0\0", 4); // Placeholder for file size
|
|
file.write("WAVE", 4);
|
|
file.write("fmt ", 4);
|
|
|
|
const uint32_t sub_chunk_size = 16;
|
|
const uint16_t audio_format = 1; // PCM format
|
|
const uint32_t byte_rate = sample_rate * channels * bits_per_sample / 8;
|
|
const uint16_t block_align = channels * bits_per_sample / 8;
|
|
|
|
file.write(reinterpret_cast<const char *>(&sub_chunk_size), 4);
|
|
file.write(reinterpret_cast<const char *>(&audio_format), 2);
|
|
file.write(reinterpret_cast<const char *>(&channels), 2);
|
|
file.write(reinterpret_cast<const char *>(&sample_rate), 4);
|
|
file.write(reinterpret_cast<const char *>(&byte_rate), 4);
|
|
file.write(reinterpret_cast<const char *>(&block_align), 2);
|
|
file.write(reinterpret_cast<const char *>(&bits_per_sample), 2);
|
|
file.write("data", 4);
|
|
file.write("\0\0\0\0", 4); // Placeholder for data size
|
|
|
|
return true;
|
|
}
|
|
|
|
// It is assumed that PCM data is normalized to a range from -1 to 1
|
|
bool write_audio(const float * data, size_t length) {
|
|
for (size_t i = 0; i < length; ++i) {
|
|
const int16_t intSample = int16_t(data[i] * 32767);
|
|
file.write(reinterpret_cast<const char *>(&intSample), sizeof(int16_t));
|
|
dataSize += sizeof(int16_t);
|
|
}
|
|
if (file.is_open()) {
|
|
file.seekp(4, std::ios::beg);
|
|
uint32_t fileSize = 36 + dataSize;
|
|
file.write(reinterpret_cast<char *>(&fileSize), 4);
|
|
file.seekp(40, std::ios::beg);
|
|
file.write(reinterpret_cast<char *>(&dataSize), 4);
|
|
file.seekp(0, std::ios::end);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool open_wav(const std::string & filename) {
|
|
if (filename != wav_filename) {
|
|
if (file.is_open()) {
|
|
file.close();
|
|
}
|
|
}
|
|
if (!file.is_open()) {
|
|
file.open(filename, std::ios::binary);
|
|
wav_filename = filename;
|
|
dataSize = 0;
|
|
}
|
|
return file.is_open();
|
|
}
|
|
|
|
public:
|
|
bool open(const std::string & filename,
|
|
const uint32_t sample_rate,
|
|
const uint16_t bits_per_sample,
|
|
const uint16_t channels) {
|
|
|
|
if (open_wav(filename)) {
|
|
write_header(sample_rate, bits_per_sample, channels);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool close() {
|
|
file.close();
|
|
return true;
|
|
}
|
|
|
|
bool write(const float * data, size_t length) {
|
|
return write_audio(data, length);
|
|
}
|
|
|
|
~wav_writer() {
|
|
if (file.is_open()) {
|
|
file.close();
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
// Apply a high-pass frequency filter to PCM audio
|
|
// Suppresses frequencies below cutoff Hz
|
|
void high_pass_filter(
|
|
std::vector<float> & data,
|
|
float cutoff,
|
|
float sample_rate);
|
|
|
|
// Basic voice activity detection (VAD) using audio energy adaptive threshold
|
|
bool vad_simple(
|
|
std::vector<float> & pcmf32,
|
|
int sample_rate,
|
|
int last_ms,
|
|
float vad_thold,
|
|
float freq_thold,
|
|
bool verbose);
|
|
|
|
// compute similarity between two strings using Levenshtein distance
|
|
float similarity(const std::string & s0, const std::string & s1);
|
|
|
|
//
|
|
// SAM argument parsing
|
|
//
|
|
|
|
struct sam_params {
|
|
int32_t seed = -1; // RNG seed
|
|
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
|
|
|
std::string model = "models/sam-vit-b/ggml-model-f16.bin"; // model path
|
|
std::string fname_inp = "img.jpg";
|
|
std::string fname_out = "img.out";
|
|
};
|
|
|
|
bool sam_params_parse(int argc, char ** argv, sam_params & params);
|
|
|
|
void sam_print_usage(int argc, char ** argv, const sam_params & params);
|
|
|
|
//
|
|
// Terminal utils
|
|
//
|
|
|
|
#define SQR(X) ((X) * (X))
|
|
#define UNCUBE(x) x < 48 ? 0 : x < 115 ? 1 : (x - 35) / 40
|
|
|
|
/**
|
|
* Quantizes 24-bit RGB to xterm256 code range [16,256).
|
|
*/
|
|
static int rgb2xterm256(int r, int g, int b) {
|
|
unsigned char cube[] = {0, 0137, 0207, 0257, 0327, 0377};
|
|
int av, ir, ig, ib, il, qr, qg, qb, ql;
|
|
av = r * .299 + g * .587 + b * .114 + .5;
|
|
ql = (il = av > 238 ? 23 : (av - 3) / 10) * 10 + 8;
|
|
qr = cube[(ir = UNCUBE(r))];
|
|
qg = cube[(ig = UNCUBE(g))];
|
|
qb = cube[(ib = UNCUBE(b))];
|
|
if (SQR(qr - r) + SQR(qg - g) + SQR(qb - b) <=
|
|
SQR(ql - r) + SQR(ql - g) + SQR(ql - b))
|
|
return ir * 36 + ig * 6 + ib + 020;
|
|
return il + 0350;
|
|
}
|
|
|
|
static std::string set_xterm256_foreground(int r, int g, int b) {
|
|
int x = rgb2xterm256(r, g, b);
|
|
std::ostringstream oss;
|
|
oss << "\033[38;5;" << x << "m";
|
|
return oss.str();
|
|
}
|
|
|
|
// Lowest is red, middle is yellow, highest is green. Color scheme from
|
|
// Paul Tol; it is colorblind friendly https://personal.sron.nl/~pault/
|
|
const std::vector<std::string> k_colors = {
|
|
set_xterm256_foreground(220, 5, 12),
|
|
set_xterm256_foreground(232, 96, 28),
|
|
set_xterm256_foreground(241, 147, 45),
|
|
set_xterm256_foreground(246, 193, 65),
|
|
set_xterm256_foreground(247, 240, 86),
|
|
set_xterm256_foreground(144, 201, 135),
|
|
set_xterm256_foreground( 78, 178, 101),
|
|
};
|
|
|
|
//
|
|
// Other utils
|
|
//
|
|
|
|
// convert timestamp to string, 6000 -> 01:00.000
|
|
std::string to_timestamp(int64_t t, bool comma = false);
|
|
|
|
// given a timestamp get the sample
|
|
int timestamp_to_sample(int64_t t, int n_samples, int whisper_sample_rate);
|
|
|
|
// check if file exists using ifstream
|
|
bool is_file_exist(const char *fileName);
|
|
|
|
// write text to file, and call system("command voice_id file")
|
|
bool speak_with_file(const std::string & command, const std::string & text, const std::string & path, int voice_id);
|