mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-04-30 15:59:40 +00:00
341 lines
11 KiB
C++
341 lines
11 KiB
C++
#include "llama-impl.h"
|
|
|
|
#include "llama-chat.h"
|
|
#include "llama-mmap.h"
|
|
#include "llama-vocab.h"
|
|
#include "llama-model-loader.h"
|
|
#include "llama-model.h"
|
|
|
|
#include "ggml.h"
|
|
#include "ggml-backend.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <ctime>
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
//
|
|
// interface implementation
|
|
//
|
|
|
|
struct llama_sampler_chain_params llama_sampler_chain_default_params() {
|
|
struct llama_sampler_chain_params result = {
|
|
/*.no_perf =*/ true,
|
|
};
|
|
|
|
return result;
|
|
}
|
|
|
|
size_t llama_max_devices(void) {
|
|
return 16;
|
|
}
|
|
|
|
bool llama_supports_mmap(void) {
|
|
return llama_mmap::SUPPORTED;
|
|
}
|
|
|
|
bool llama_supports_mlock(void) {
|
|
return llama_mlock::SUPPORTED;
|
|
}
|
|
|
|
bool llama_supports_gpu_offload(void) {
|
|
return ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU) != nullptr ||
|
|
llama_supports_rpc();
|
|
}
|
|
|
|
bool llama_supports_rpc(void) {
|
|
return ggml_backend_reg_by_name("RPC") != nullptr;
|
|
}
|
|
|
|
void llama_backend_init(void) {
|
|
ggml_time_init();
|
|
|
|
// needed to initialize f16 tables
|
|
{
|
|
struct ggml_init_params params = { 0, NULL, false };
|
|
struct ggml_context * ctx = ggml_init(params);
|
|
ggml_free(ctx);
|
|
}
|
|
}
|
|
|
|
void llama_numa_init(enum ggml_numa_strategy numa) {
|
|
if (numa != GGML_NUMA_STRATEGY_DISABLED) {
|
|
auto * dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
|
GGML_ASSERT(dev && "CPU backend is not loaded");
|
|
auto * reg = ggml_backend_dev_backend_reg(dev);
|
|
auto * numa_init_fn = (decltype(ggml_numa_init) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_numa_init");
|
|
numa_init_fn(numa);
|
|
}
|
|
}
|
|
|
|
void llama_backend_free(void) {
|
|
ggml_quantize_free();
|
|
}
|
|
|
|
int64_t llama_time_us(void) {
|
|
return ggml_time_us();
|
|
}
|
|
|
|
// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
|
|
static int llama_model_load(const std::string & fname, std::vector<std::string> & splits, llama_model & model, llama_model_params & params) {
|
|
// loading time will be recalculated after the first eval, so
|
|
// we take page faults deferred by mmap() into consideration
|
|
model.t_load_us = 0;
|
|
time_meas tm(model.t_load_us);
|
|
|
|
model.t_start_us = tm.t_start_us;
|
|
|
|
try {
|
|
llama_model_loader ml(fname, splits, params.use_mmap, params.check_tensors, params.kv_overrides, params.tensor_buft_overrides);
|
|
|
|
ml.print_info();
|
|
|
|
model.hparams.vocab_only = params.vocab_only;
|
|
|
|
try {
|
|
model.load_arch(ml);
|
|
} catch(const std::exception & e) {
|
|
throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
|
|
}
|
|
try {
|
|
model.load_hparams(ml);
|
|
} catch(const std::exception & e) {
|
|
throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
|
|
}
|
|
try {
|
|
model.load_vocab(ml);
|
|
} catch(const std::exception & e) {
|
|
throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
|
|
}
|
|
|
|
model.load_stats(ml);
|
|
model.print_info();
|
|
|
|
if (params.vocab_only) {
|
|
LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
if (!model.load_tensors(ml)) {
|
|
return -2;
|
|
}
|
|
} catch (const std::exception & err) {
|
|
LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct llama_model * llama_model_load_from_file_impl(
|
|
const std::string & path_model,
|
|
std::vector<std::string> & splits,
|
|
struct llama_model_params params) {
|
|
ggml_time_init();
|
|
|
|
unsigned cur_percentage = 0;
|
|
if (params.progress_callback == NULL) {
|
|
params.progress_callback_user_data = &cur_percentage;
|
|
params.progress_callback = [](float progress, void * ctx) {
|
|
unsigned * cur_percentage_p = (unsigned *) ctx;
|
|
unsigned percentage = (unsigned) (100 * progress);
|
|
while (percentage > *cur_percentage_p) {
|
|
*cur_percentage_p = percentage;
|
|
LLAMA_LOG_CONT(".");
|
|
if (percentage >= 100) {
|
|
LLAMA_LOG_CONT("\n");
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
}
|
|
|
|
llama_model * model = new llama_model(params);
|
|
|
|
// create list of devices to use with this model
|
|
if (params.devices) {
|
|
for (ggml_backend_dev_t * dev = params.devices; *dev; ++dev) {
|
|
model->devices.push_back(*dev);
|
|
}
|
|
} else {
|
|
std::vector<ggml_backend_dev_t> rpc_servers;
|
|
// use all available devices
|
|
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
|
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
|
switch (ggml_backend_dev_type(dev)) {
|
|
case GGML_BACKEND_DEVICE_TYPE_CPU:
|
|
case GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
|
// skip CPU backends since they are handled separately
|
|
break;
|
|
|
|
case GGML_BACKEND_DEVICE_TYPE_GPU:
|
|
ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
|
|
if (ggml_backend_reg_name(reg) == std::string("RPC")) {
|
|
rpc_servers.push_back(dev);
|
|
} else {
|
|
model->devices.push_back(dev);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
// add RPC servers at the front of the list
|
|
if (!rpc_servers.empty()) {
|
|
model->devices.insert(model->devices.begin(), rpc_servers.begin(), rpc_servers.end());
|
|
}
|
|
}
|
|
|
|
// if using single GPU mode, remove all except the main GPU
|
|
if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
|
|
if (params.main_gpu < 0 || params.main_gpu >= (int)model->devices.size()) {
|
|
LLAMA_LOG_ERROR("%s: invalid value for main_gpu: %d (available devices: %d)\n", __func__, params.main_gpu, (int)model->devices.size());
|
|
llama_model_free(model);
|
|
return nullptr;
|
|
}
|
|
ggml_backend_dev_t main_gpu = model->devices[params.main_gpu];
|
|
model->devices.clear();
|
|
model->devices.push_back(main_gpu);
|
|
}
|
|
|
|
for (auto * dev : model->devices) {
|
|
size_t free, total; // NOLINT
|
|
ggml_backend_dev_memory(dev, &free, &total);
|
|
LLAMA_LOG_INFO("%s: using device %s (%s) - %zu MiB free\n", __func__, ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), free/1024/1024);
|
|
}
|
|
|
|
const int status = llama_model_load(path_model, splits, *model, params);
|
|
GGML_ASSERT(status <= 0);
|
|
if (status < 0) {
|
|
if (status == -1) {
|
|
LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
|
|
} else if (status == -2) {
|
|
LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
|
|
}
|
|
|
|
llama_model_free(model);
|
|
return nullptr;
|
|
}
|
|
|
|
return model;
|
|
}
|
|
|
|
// deprecated
|
|
struct llama_model * llama_load_model_from_file(
|
|
const char * path_model,
|
|
struct llama_model_params params) {
|
|
return llama_model_load_from_file(path_model, params);
|
|
}
|
|
|
|
struct llama_model * llama_model_load_from_file(
|
|
const char * path_model,
|
|
struct llama_model_params params) {
|
|
std::vector<std::string> splits = {};
|
|
return llama_model_load_from_file_impl(path_model, splits, params);
|
|
}
|
|
|
|
struct llama_model * llama_model_load_from_splits(
|
|
const char ** paths,
|
|
size_t n_paths,
|
|
struct llama_model_params params) {
|
|
std::vector<std::string> splits;
|
|
if (n_paths == 0) {
|
|
LLAMA_LOG_ERROR("%s: list of splits is empty\n", __func__);
|
|
return nullptr;
|
|
}
|
|
for (size_t i = 0; i < n_paths; ++i) {
|
|
splits.push_back(paths[i]);
|
|
}
|
|
return llama_model_load_from_file_impl(splits.front(), splits, params);
|
|
}
|
|
|
|
//
|
|
// chat templates
|
|
//
|
|
|
|
int32_t llama_chat_apply_template(
|
|
const char * tmpl,
|
|
const struct llama_chat_message * chat,
|
|
size_t n_msg,
|
|
bool add_ass,
|
|
char * buf,
|
|
int32_t length) {
|
|
const std::string curr_tmpl(tmpl == nullptr ? "chatml" : tmpl);
|
|
|
|
// format the chat to string
|
|
std::vector<const llama_chat_message *> chat_vec;
|
|
chat_vec.resize(n_msg);
|
|
for (size_t i = 0; i < n_msg; i++) {
|
|
chat_vec[i] = &chat[i];
|
|
}
|
|
|
|
std::string formatted_chat;
|
|
llm_chat_template detected_tmpl = llm_chat_detect_template(curr_tmpl);
|
|
if (detected_tmpl == LLM_CHAT_TEMPLATE_UNKNOWN) {
|
|
return -1;
|
|
}
|
|
int32_t res = llm_chat_apply_template(detected_tmpl, chat_vec, formatted_chat, add_ass);
|
|
if (res < 0) {
|
|
return res;
|
|
}
|
|
if (buf && length > 0) {
|
|
strncpy(buf, formatted_chat.c_str(), length);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//
|
|
// model split
|
|
//
|
|
|
|
int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
|
|
static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
|
|
if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
|
|
return strlen(split_path);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count) {
|
|
std::string str_split_path(split_path);
|
|
char postfix[32];
|
|
snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
|
|
std::string str_postfix(postfix);
|
|
|
|
// check if split_prefix ends with postfix
|
|
int size_prefix = str_split_path.size() - str_postfix.size();
|
|
if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
|
|
snprintf(split_prefix, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
|
|
return size_prefix;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
const char * llama_print_system_info(void) {
|
|
static std::string s;
|
|
s.clear(); // Clear the string, since it's static, otherwise it will accumulate data from previous calls.
|
|
|
|
for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
|
|
auto * reg = ggml_backend_reg_get(i);
|
|
auto * get_features_fn = (ggml_backend_get_features_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_get_features");
|
|
if (get_features_fn) {
|
|
ggml_backend_feature * features = get_features_fn(reg);
|
|
s += ggml_backend_reg_name(reg);
|
|
s += " : ";
|
|
for (; features->name; features++) {
|
|
s += features->name;
|
|
s += " = ";
|
|
s += features->value;
|
|
s += " | ";
|
|
}
|
|
}
|
|
}
|
|
|
|
return s.c_str();
|
|
}
|