whisper.cpp/examples/talk-llama/llama-kv-cache.cpp
2025-04-28 16:40:23 +03:00

1381 lines
44 KiB
C++

#include "llama-kv-cache.h"
#include "llama-impl.h"
#include "llama-batch.h"
#include "llama-cparams.h"
#include "llama-model.h"
#include <algorithm>
#include <cassert>
#include <limits>
#include <map>
#include <stdexcept>
llama_kv_cache_unified::llama_kv_cache_unified(const llama_hparams & hparams, callbacks cbs) : hparams(hparams), cbs(std::move(cbs)) {
}
bool llama_kv_cache_unified::init(
const llama_model & model,
const llama_cparams & cparams,
ggml_type type_k,
ggml_type type_v,
uint32_t kv_size,
bool offload) {
const int32_t n_layer = hparams.n_layer;
has_shift = false;
recurrent = llama_model_is_recurrent(&model);
v_trans = !recurrent && !cparams.flash_attn;
can_shift = !recurrent;
LLAMA_LOG_INFO("%s: kv_size = %d, offload = %d, type_k = '%s', type_v = '%s', n_layer = %d, can_shift = %d\n",
__func__, kv_size, offload, ggml_type_name(type_k), ggml_type_name(type_v), n_layer, can_shift);
head = 0;
size = kv_size;
used = 0;
this->type_k = type_k;
this->type_v = type_v;
cells.clear();
cells.resize(kv_size);
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
ggml_init_params params = {
/*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
if (!ctx) {
return nullptr;
}
ctx_map[buft] = ctx;
ctxs.emplace_back(ctx);
return ctx;
}
return it->second;
};
k_l.reserve(n_layer);
v_l.reserve(n_layer);
for (int i = 0; i < n_layer; i++) {
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
const char * dev_name = "CPU";
ggml_backend_buffer_type_t buft;
if (offload) {
auto * dev = model.dev_layer(i);
buft = ggml_backend_dev_buffer_type(dev);
dev_name = ggml_backend_dev_name(dev);
} else {
buft = ggml_backend_cpu_buffer_type();
}
LLAMA_LOG_DEBUG("%s: layer %3d: n_embd_k_gqa = %d, n_embd_v_gqa = %d, dev = %s\n", __func__,
i, n_embd_k_gqa, n_embd_v_gqa, dev_name);
ggml_context * ctx = ctx_for_buft(buft);
if (!ctx) {
LLAMA_LOG_ERROR("%s: failed to create ggml context for kv cache\n", __func__);
return false;
}
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
ggml_format_name(k, "cache_k_l%d", i);
ggml_format_name(v, "cache_v_l%d", i);
k_l.push_back(k);
v_l.push_back(v);
}
// allocate tensors and initialize the buffers to avoid NaNs in the padding
for (auto it : ctx_map) {
auto * buft = it.first;
auto * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
return false;
}
ggml_backend_buffer_clear(buf, 0);
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
bufs.emplace_back(buf);
}
return true;
}
int32_t llama_kv_cache_unified::get_n_tokens() const {
int32_t result = 0;
for (uint32_t i = 0; i < size; i++) {
result += cells[i].seq_id.size();
}
return result;
}
int32_t llama_kv_cache_unified::get_used_cells() const {
return used;
}
size_t llama_kv_cache_unified::total_size() const {
size_t size = 0;
for (const auto & buf : bufs) {
size += ggml_backend_buffer_get_size(buf.get());
}
return size;
}
llama_pos llama_kv_cache_unified::pos_max() const {
llama_pos pos_max = -1;
for (const auto & cell : cells) {
pos_max = std::max(pos_max, cell.pos);
}
return pos_max;
}
void llama_kv_cache_unified::clear() {
for (int32_t i = 0; i < (int32_t) size; ++i) {
cells[i].pos = -1;
cells[i].seq_id.clear();
cells[i].src = -1;
cells[i].tail = -1;
}
head = 0;
used = 0;
for (auto & buf : bufs) {
ggml_backend_buffer_clear(buf.get(), 0);
}
}
bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
uint32_t new_head = size;
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// models like Mamba or RWKV can't have a state partially erased
if (recurrent) {
if (seq_id >= (int64_t) size) {
// could be fatal
return false;
}
if (0 <= seq_id) {
int32_t & tail_id = cells[seq_id].tail;
if (tail_id >= 0) {
const llama_kv_cell & cell = cells[tail_id];
// partial intersection is invalid
if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
return false;
}
// invalidate tails which will be cleared
if (p0 <= cell.pos && cell.pos < p1) {
tail_id = -1;
}
}
} else {
// seq_id is negative, then the range should include everything or nothing
if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
return false;
}
}
return true;
}
for (uint32_t i = 0; i < size; ++i) {
if (cells[i].pos >= p0 && cells[i].pos < p1) {
if (seq_id < 0) {
cells[i].seq_id.clear();
} else if (cells[i].has_seq_id(seq_id)) {
cells[i].seq_id.erase(seq_id);
} else {
continue;
}
if (cells[i].is_empty()) {
// keep count of the number of used cells
if (cells[i].pos >= 0) {
used--;
}
cells[i].pos = -1;
cells[i].src = -1;
if (new_head == size) {
new_head = i;
}
}
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != size && new_head < head) {
head = new_head;
}
return true;
}
void llama_kv_cache_unified::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
if (seq_id_src == seq_id_dst) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
if (recurrent) {
if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) {
llama_kv_cell & tail_src = cells[seq_id_src];
llama_kv_cell & tail_dst = cells[seq_id_dst];
if (tail_dst.tail >= 0) {
// clear destination seq_id if it wasn't empty
llama_kv_cell & cell_dst = cells[tail_dst.tail];
cell_dst.seq_id.erase(seq_id_dst);
tail_dst.tail = -1;
if (cell_dst.seq_id.empty()) {
cell_dst.pos = -1;
cell_dst.delta = -1;
cell_dst.src = -1;
used -= 1;
}
}
if (tail_src.tail >= 0) {
llama_kv_cell & cell_src = cells[tail_src.tail];
cell_src.seq_id.insert(seq_id_dst);
tail_dst.tail = tail_src.tail;
}
}
return;
}
// otherwise, this is the KV of a Transformer-like model
head = 0;
for (uint32_t i = 0; i < size; ++i) {
if (cells[i].has_seq_id(seq_id_src) && cells[i].pos >= p0 && cells[i].pos < p1) {
cells[i].seq_id.insert(seq_id_dst);
}
}
}
void llama_kv_cache_unified::seq_keep(llama_seq_id seq_id) {
uint32_t new_head = size;
for (uint32_t i = 0; i < size; ++i) {
if (recurrent && (llama_seq_id) i != seq_id) {
cells[i].tail = -1;
}
if (!cells[i].has_seq_id(seq_id)) {
if (cells[i].pos >= 0) {
used--;
}
cells[i].pos = -1;
cells[i].src = -1;
cells[i].seq_id.clear();
if (new_head == size){
new_head = i;
}
} else {
cells[i].seq_id.clear();
cells[i].seq_id.insert(seq_id);
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != size && new_head < head) {
head = new_head;
}
}
void llama_kv_cache_unified::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
if (delta == 0) {
return;
}
uint32_t new_head = size;
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// If there is no range then return early to avoid looping over the
if (p0 == p1) {
return;
}
if (recurrent) {
// for Mamba-like or RWKV models, only the pos needs to be shifted
if (0 <= seq_id && seq_id < (int64_t) size) {
const int32_t tail_id = cells[seq_id].tail;
if (tail_id >= 0) {
llama_kv_cell & cell = cells[tail_id];
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
cell.pos += delta;
}
}
}
return;
}
for (uint32_t i = 0; i < size; ++i) {
if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) {
has_shift = true;
cells[i].pos += delta;
cells[i].delta += delta;
if (cells[i].pos < 0) {
if (!cells[i].is_empty()) {
used--;
}
cells[i].pos = -1;
cells[i].seq_id.clear();
if (new_head == size) {
new_head = i;
}
}
}
}
// If we freed up a slot, set head to it so searching can start there.
// Otherwise we just start the next search from the beginning.
head = new_head != size ? new_head : 0;
}
void llama_kv_cache_unified::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
if (d == 1) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// If there is no range then return early to avoid looping over the cache.
if (p0 == p1) {
return;
}
if (recurrent) {
// for Mamba-like or RWKV models, only the pos needs to be changed
if (0 <= seq_id && seq_id < (int64_t) size) {
const int32_t tail_id = cells[seq_id].tail;
if (tail_id >= 0) {
llama_kv_cell & cell = cells[tail_id];
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
cell.pos /= d;
}
}
}
return;
}
for (uint32_t i = 0; i < size; ++i) {
if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) {
has_shift = true;
{
llama_pos p_old = cells[i].pos;
cells[i].pos /= d;
cells[i].delta += cells[i].pos - p_old;
}
}
}
}
llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const {
llama_pos result = 0;
for (uint32_t i = 0; i < size; ++i) {
if (cells[i].has_seq_id(seq_id)) {
result = std::max(result, cells[i].pos);
}
}
return result;
}
void llama_kv_cache_unified::defrag() {
if (!recurrent) {
do_defrag = true;
}
}
void llama_kv_cache_unified::restore() {
if (pending.ranges.empty()) {
return;
}
// TODO: tmp - move to llama_kv_cache_recurrent
if (recurrent) {
seq_rm(-1, -1, -1);
return;
}
uint32_t new_head = size;
for (auto & range : pending.ranges) {
for (uint32_t i = range.c0; i < range.c1; ++i) {
cells[i].seq_id.clear();
// keep count of the number of used cells
if (cells[i].pos >= 0) {
used--;
}
cells[i].pos = -1;
cells[i].src = -1;
}
new_head = std::min(new_head, range.c0);
}
if (new_head != size && new_head < head) {
head = new_head;
}
}
void llama_kv_cache_unified::commit() {
// TODO: tmp - move to llama_kv_cache_recurrent
if (recurrent) {
return;
}
if (pending.ranges.empty()) {
LLAMA_LOG_WARN("%s: no pending KV cache updates to commit - might indicate a bug (ref: %s)\n",
__func__, "https://github.com/ggml-org/llama.cpp/pull/12695");
return;
}
pending.ranges.clear();
}
bool llama_kv_cache_unified::get_can_shift() const {
return can_shift;
}
bool llama_kv_cache_unified::find_slot(
const llama_ubatch & ubatch) {
const uint32_t n_tokens = ubatch.n_tokens;
const uint32_t n_seqs = ubatch.n_seqs;
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
// if we have enough unused cells before the current head ->
// better to start searching from the beginning of the cache, hoping to fill it
if (head > used + 2*ubatch.n_tokens) {
head = 0;
}
if (recurrent) {
// For recurrent state architectures (like Mamba or RWKV),
// each cache cell can store the state for a whole sequence.
// A slot should be always be contiguous.
// can only process batches with an equal number of new tokens in each sequence
GGML_ASSERT(ubatch.equal_seqs);
int32_t min = size - 1;
int32_t max = 0;
// everything should fit if all seq_ids are smaller than the max
for (uint32_t s = 0; s < n_seqs; ++s) {
const uint32_t n_seq_id = ubatch.n_seq_id[s];
for (uint32_t j = 0; j < n_seq_id; ++j) {
const llama_seq_id seq_id = ubatch.seq_id[s][j];
if (seq_id < 0 || (uint32_t) seq_id >= size) {
// too big seq_id
// TODO: would it be possible to resize the cache instead?
LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, size);
return false;
}
if (j > 0) {
llama_kv_cell & seq = cells[seq_id];
if (seq.tail >= 0) {
llama_kv_cell & cell = cells[seq.tail];
// clear cells from seq_ids that become shared
// (should not normally happen, but let's handle it anyway)
cell.seq_id.erase(seq_id);
seq.tail = -1;
if (cell.seq_id.empty()) {
cell.pos = -1;
cell.src = -1;
used -= 1;
}
}
}
}
}
#ifndef NDEBUG
{
std::vector<int32_t> tails_verif;
tails_verif.assign(size, -1);
for (uint32_t i = 0; i < size; ++i) {
llama_kv_cell & cell = cells[i];
for (llama_seq_id seq_id : cell.seq_id) {
if (tails_verif[seq_id] != -1) {
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
}
tails_verif[seq_id] = i;
}
}
for (uint32_t i = 0; i < size; ++i) {
if (tails_verif[i] != cells[i].tail) {
LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]);
}
}
}
#endif
// find next empty cell
uint32_t next_empty_cell = head;
for (uint32_t i = 0; i < size; ++i) {
if (next_empty_cell >= size) { next_empty_cell -= size; }
llama_kv_cell & cell = cells[next_empty_cell];
if (cell.is_empty()) { break; }
next_empty_cell += 1;
}
// find usable cell range
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
llama_kv_cell & seq_meta = cells[seq_id];
bool has_cell = false;
if (seq_meta.tail >= 0) {
llama_kv_cell & cell = cells[seq_meta.tail];
GGML_ASSERT(cell.has_seq_id(seq_id));
// does this seq_id "own" the cell?
if (cell.seq_id.size() == 1) { has_cell = true; }
}
if (!has_cell) {
llama_kv_cell & empty_cell = cells[next_empty_cell];
GGML_ASSERT(empty_cell.is_empty());
// copy old tail into the empty cell
if (seq_meta.tail >= 0) {
llama_kv_cell & orig_cell = cells[seq_meta.tail];
empty_cell.pos = orig_cell.pos;
empty_cell.src = orig_cell.src;
orig_cell.seq_id.erase(seq_id);
empty_cell.seq_id.insert(seq_id); // will be overwritten
}
seq_meta.tail = next_empty_cell;
// find next empty cell
if (s + 1 < n_seqs) {
next_empty_cell += 1;
for (uint32_t i = 0; i < size; ++i) {
if (next_empty_cell >= size) { next_empty_cell -= size; }
llama_kv_cell & cell = cells[next_empty_cell];
if (cell.is_empty()) { break; }
next_empty_cell += 1;
}
}
}
if (min > seq_meta.tail) { min = seq_meta.tail; }
if (max < seq_meta.tail) { max = seq_meta.tail; }
}
// gather and re-order
for (uint32_t s = 0; s < n_seqs; ++s) {
int32_t dst_id = s + min;
int32_t src_id = cells[ubatch.seq_id[s][0]].tail;
if (dst_id != src_id) {
llama_kv_cell & dst_cell = cells[dst_id];
llama_kv_cell & src_cell = cells[src_id];
std::swap(dst_cell.pos, src_cell.pos);
std::swap(dst_cell.src, src_cell.src);
std::swap(dst_cell.seq_id, src_cell.seq_id);
// swap tails (assuming they NEVER overlap)
for (const llama_seq_id seq_id : src_cell.seq_id) {
cells[seq_id].tail = src_id;
}
for (const llama_seq_id seq_id : dst_cell.seq_id) {
cells[seq_id].tail = dst_id;
}
}
}
// update the pos of the used seqs
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
int32_t cell_id = s + min;
llama_kv_cell & cell = cells[cell_id];
if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
// What should happen when the pos backtracks or skips a value?
// Clearing the state mid-batch would require special-casing which isn't done.
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
__func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
}
cell.pos = last_pos;
cell.seq_id.clear();
for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
const llama_seq_id seq_id = ubatch.seq_id[s][j];
cell.seq_id.insert(seq_id);
cells[seq_id].tail = cell_id;
}
}
// allow getting the range of used cells, from head to head + n
head = min;
n = max - min + 1;
used = std::count_if(cells.begin(), cells.end(),
[](const llama_kv_cell& cell){ return !cell.is_empty(); });
// sanity check
return n >= n_seqs;
}
// otherwise, one cell per token.
if (n_tokens > size) {
LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %d\n", __func__, n_tokens, size);
return false;
}
uint32_t n_tested = 0;
while (true) {
if (head + n_tokens > size) {
n_tested += size - head;
head = 0;
continue;
}
bool found = true;
for (uint32_t i = 0; i < n_tokens; i++) {
if (cells[head + i].pos >= 0) {
found = false;
head += i + 1;
n_tested += i + 1;
break;
}
}
if (found) {
break;
}
if (n_tested >= size) {
//LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
return false;
}
}
for (uint32_t s = 0; s < n_seqs; s++) {
for (uint32_t i = 0; i < n_seq_tokens; ++i) {
uint32_t k = s*n_seq_tokens + i;
cells[head + k].pos = ubatch.pos[k];
for (int32_t j = 0; j < ubatch.n_seq_id[s]; j++) {
cells[head + k].seq_id.insert(ubatch.seq_id[s][j]);
}
}
}
used += n_tokens;
pending.ranges.push_back({head, head + n_tokens});
return true;
}
uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) const {
// the FA kernels require padding to avoid extra runtime boundary checks
return cparams.flash_attn ? 256u : 32u;
}
uint32_t llama_kv_cache_unified::cell_max() const {
for (uint32_t i = size; i > 0; --i) {
const llama_kv_cell & cell = cells[i - 1];
if (cell.pos >= 0 && !cell.is_empty()) {
return i;
}
}
return 0;
}
size_t llama_kv_cache_unified::size_k_bytes() const {
size_t size_k_bytes = 0;
for (const auto & k : k_l) {
size_k_bytes += ggml_nbytes(k);
}
return size_k_bytes;
}
size_t llama_kv_cache_unified::size_v_bytes() const {
size_t size_v_bytes = 0;
for (const auto & v : v_l) {
size_v_bytes += ggml_nbytes(v);
}
return size_v_bytes;
}
bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
const uint32_t n_layer = hparams.n_layer;
const uint32_t n_kv = cell_max();
const uint32_t n_used = used;
assert(n_used <= n_kv);
//const int64_t t_start = ggml_time_us();
// number of cells moved
uint32_t n_moves = 0;
// each move requires 6*n_layer tensors (see graph_build_kv_self_defrag)
// - source view, destination view, copy operation
// - x2 for keys and values
//const uint32_t max_moves = max_nodes()/(6*n_layer);
// TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer);
// determine which KV cells to move where
//
// cell i moves to ids[i]
//
// if ids[i] == i || ids[i] == n_kv, then cell i is not moved
//
auto & ids = defrag_info.ids;
ids.clear();
ids.resize(n_kv, n_kv);
for (uint32_t i0 = 0; i0 < n_used; ++i0) {
const auto & cell0 = cells[i0];
if (!cell0.is_empty()) {
ids[i0] = i0;
continue;
}
// found a hole - fill it with data from the end of the cache
uint32_t nh = 1;
// determine the size of the hole
while (i0 + nh < n_used && cells[i0 + nh].is_empty()) {
nh++;
}
uint32_t nf = 0;
uint32_t is = n_kv - 1;
// starting from the end, find nh non-empty cells
for (; is > i0; --is) {
const auto & cell1 = cells[is];
if (cell1.is_empty() || ids[is] != n_kv) {
continue;
}
// non-empty cell which is not yet moved
nf++;
if (nf == nh) {
break;
}
}
// this can only happen if `n_used` is not accurate, which would be a bug
GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
nf = 0;
uint32_t i1 = is;
// are we moving a continuous block of memory?
bool cont = false;
// should we stop searching for the next move?
bool stop = false;
// go back and move the nf cells to the hole
for (; i1 < n_kv; ++i1) {
auto & cell1 = cells[i1];
if (cell1.is_empty() || ids[i1] != n_kv) {
if (n_moves == max_moves) {
stop = true;
break;
}
cont = false;
continue;
}
// this cell goes to (i0 + nf)
ids[i1] = i0 + nf;
// move the cell meta data
cells[i0 + nf] = cell1;
// clear the old cell and move the head there
cell1 = llama_kv_cell();
head = n_used;
if (!cont) {
n_moves++;
cont = true;
}
nf++;
if (nf == nh) {
break;
}
}
if (stop || n_moves == max_moves) {
break;
}
//LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
i0 += nh - 1;
}
if (n_moves == 0) {
return false;
}
LLAMA_LOG_DEBUG("(tmp log) KV defrag cell moves: %u\n", n_moves);
LLAMA_LOG_DEBUG("expected gf nodes: %u\n", 6*n_moves*n_layer);
return true;
}
void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
uint32_t cell_count = 0;
// Count the number of cells with the specified seq_id
// Find all the ranges of cells with this seq id (or all, when -1)
uint32_t cell_range_begin = size;
for (uint32_t i = 0; i < size; ++i) {
const auto & cell = cells[i];
if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) {
++cell_count;
if (cell_range_begin == size) {
cell_range_begin = i;
}
} else {
if (cell_range_begin != size) {
cell_ranges.emplace_back(cell_range_begin, i);
cell_range_begin = size;
}
}
}
if (cell_range_begin != size) {
cell_ranges.emplace_back(cell_range_begin, size);
}
// DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
uint32_t cell_count_check = 0;
for (const auto & range : cell_ranges) {
cell_count_check += range.second - range.first;
}
GGML_ASSERT(cell_count == cell_count_check);
io.write(&cell_count, sizeof(cell_count));
state_write_meta(io, cell_ranges, seq_id);
state_write_data(io, cell_ranges);
}
void llama_kv_cache_unified::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
uint32_t cell_count;
io.read_to(&cell_count, sizeof(cell_count));
bool res = true;
res = res && state_read_meta(io, cell_count, seq_id);
res = res && state_read_data(io, cell_count);
if (!res) {
if (seq_id == -1) {
clear();
} else {
seq_rm(seq_id, -1, -1);
}
throw std::runtime_error("failed to restore kv cache");
}
}
void llama_kv_cache_unified::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const {
for (const auto & range : cell_ranges) {
for (uint32_t i = range.first; i < range.second; ++i) {
const auto & cell = cells[i];
const llama_pos pos = cell.pos;
const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0;
io.write(&pos, sizeof(pos));
io.write(&n_seq_id, sizeof(n_seq_id));
if (n_seq_id) {
for (auto seq_id : cell.seq_id) {
io.write(&seq_id, sizeof(seq_id));
}
}
}
}
}
void llama_kv_cache_unified::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const {
const uint32_t v_trans = this->v_trans ? 1 : 0;
const uint32_t n_layer = hparams.n_layer;
io.write(&v_trans, sizeof(v_trans));
io.write(&n_layer, sizeof(n_layer));
std::vector<uint8_t> tmp_buf;
// Iterate and write all the keys first, each row is a cell
// Get whole range at a time
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
// Write key type
const int32_t k_type_i = (int32_t)k_l[il]->type;
io.write(&k_type_i, sizeof(k_type_i));
// Write row size of key
const uint64_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
io.write(&k_size_row, sizeof(k_size_row));
// Read each range of cells of k_size length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * k_size_row;
io.write_tensor(k_l[il], range.first * k_size_row, buf_size);
}
}
if (!v_trans) {
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Write value type
const int32_t v_type_i = (int32_t)v_l[il]->type;
io.write(&v_type_i, sizeof(v_type_i));
// Write row size of value
const uint64_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
io.write(&v_size_row, sizeof(v_size_row));
// Read each range of cells of v_size length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * v_size_row;
io.write_tensor(v_l[il], range.first * v_size_row, buf_size);
}
}
} else {
// When v is transposed, we also need the element size and get the element ranges from each row
const uint32_t kv_size = size;
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Write value type
const int32_t v_type_i = (int32_t)v_l[il]->type;
io.write(&v_type_i, sizeof(v_type_i));
// Write element size
const uint32_t v_size_el = ggml_type_size(v_l[il]->type);
io.write(&v_size_el, sizeof(v_size_el));
// Write GQA embedding size
io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
// For each row, we get the element values of each cell
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
// Read each range of cells of v_size_el length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t src_offset = (range.first + j * kv_size) * v_size_el;
const size_t buf_size = range_size * v_size_el;
io.write_tensor(v_l[il], src_offset, buf_size);
}
}
}
}
}
bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) {
if (dest_seq_id != -1) {
// single sequence
seq_rm(dest_seq_id, -1, -1);
llama_sbatch sbatch;
llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
batch.n_tokens = cell_count;
batch.n_seq_tokens = cell_count;
batch.n_seqs = 1;
for (uint32_t i = 0; i < cell_count; ++i) {
llama_pos pos;
uint32_t n_seq_id;
io.read_to(&pos, sizeof(pos));
io.read_to(&n_seq_id, sizeof(n_seq_id));
if (n_seq_id != 0) {
LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
return false;
}
batch.pos[i] = pos;
}
batch.n_seq_id[0] = 1;
batch.seq_id[0] = &dest_seq_id;
if (!find_slot(batch)) {
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
return false;
}
commit();
// DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
// Assume that this is one contiguous block of cells
GGML_ASSERT(head + cell_count <= size);
GGML_ASSERT(cells[head].pos == batch.pos[0]);
GGML_ASSERT(cells[head + cell_count - 1].pos == batch.pos[cell_count - 1]);
GGML_ASSERT(cells[head].has_seq_id(dest_seq_id));
GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id));
} else {
// whole KV cache restore
if (cell_count > size) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
return false;
}
clear();
for (uint32_t i = 0; i < cell_count; ++i) {
llama_kv_cell & cell = cells[i];
llama_pos pos;
uint32_t n_seq_id;
io.read_to(&pos, sizeof(pos));
io.read_to(&n_seq_id, sizeof(n_seq_id));
cell.pos = pos;
for (uint32_t j = 0; j < n_seq_id; ++j) {
llama_seq_id seq_id;
io.read_to(&seq_id, sizeof(seq_id));
// TODO: llama_kv_cache_unified should have a notion of max sequences
//if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) {
if (seq_id < 0) {
//LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx));
LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n", __func__, seq_id);
return false;
}
cell.seq_id.insert(seq_id);
if (recurrent) {
int32_t & tail = cells[seq_id].tail;
if (tail != -1) {
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
return false;
}
tail = i;
}
}
}
head = 0;
used = cell_count;
}
if (recurrent) {
for (uint32_t i = 0; i < cell_count; ++i) {
uint32_t cell_id = head + i;
// make sure the recurrent states will keep their restored state
cells[cell_id].src = cell_id;
}
}
return true;
}
bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
uint32_t v_trans;
uint32_t n_layer;
io.read_to(&v_trans, sizeof(v_trans));
io.read_to(&n_layer, sizeof(n_layer));
if (n_layer != hparams.n_layer) {
LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer);
return false;
}
if (cell_count > size) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size);
return false;
}
if (v_trans != (bool) v_trans) {
LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
return false;
}
// For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
// Read type of key
int32_t k_type_i_ref;
io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
const int32_t k_type_i = (int32_t) k_l[il]->type;
if (k_type_i != k_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
return false;
}
// Read row size of key
uint64_t k_size_row_ref;
io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
if (k_size_row != k_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the keys for the whole cell range
ggml_backend_tensor_set(k_l[il], io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
}
}
if (!v_trans) {
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Read type of value
int32_t v_type_i_ref;
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t)v_l[il]->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
// Read row size of value
uint64_t v_size_row_ref;
io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
const size_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
if (v_size_row != v_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the values for the whole cell range
ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
}
}
} else {
// For each layer, read the values for each cell (transposed)
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Read type of value
int32_t v_type_i_ref;
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t)v_l[il]->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
// Read element size of value
uint32_t v_size_el_ref;
io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
const size_t v_size_el = ggml_type_size(v_l[il]->type);
if (v_size_el != v_size_el_ref) {
LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
return false;
}
// Read GQA embedding size
uint32_t n_embd_v_gqa_ref;
io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
if (n_embd_v_gqa != n_embd_v_gqa_ref) {
LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
return false;
}
if (cell_count) {
// For each row in the transposed matrix, read the values for the whole cell range
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
const size_t dst_offset = (head + j * size) * v_size_el;
ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
}
}
}
}
return true;
}
//
// kv cache view
//
llama_kv_cache_view llama_kv_cache_view_init(const llama_kv_cache & kv, int32_t n_seq_max) {
llama_kv_cache_view result = {
/*.n_cells = */ 0,
/*.n_seq_max = */ n_seq_max,
/*.token_count = */ 0,
/*.used_cells = */ kv.get_used_cells(),
/*.max_contiguous = */ 0,
/*.max_contiguous_idx = */ -1,
/*.cells = */ nullptr,
/*.cells_sequences = */ nullptr,
};
return result;
}
void llama_kv_cache_view_free(llama_kv_cache_view * view) {
if (view->cells != nullptr) {
free(view->cells);
view->cells = nullptr;
}
if (view->cells_sequences != nullptr) {
free(view->cells_sequences);
view->cells_sequences = nullptr;
}
}
void llama_kv_cache_view_update(llama_kv_cache_view * view, const llama_kv_cache * kv) {
// TODO: rework this in the future, for now quick hack
const llama_kv_cache_unified * kvu = dynamic_cast<const llama_kv_cache_unified *>(kv);
if (kvu == nullptr) {
LLAMA_LOG_ERROR("%s: the kv_cache_view currently works only with llama_kv_cache_unified\n", __func__);
return;
}
if (uint32_t(view->n_cells) < kvu->size || view->cells == nullptr) {
view->n_cells = int32_t(kvu->size);
void * p = realloc(view->cells, sizeof(llama_kv_cache_view_cell) * view->n_cells);
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
view->cells = (llama_kv_cache_view_cell *)p;
p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
view->cells_sequences = (llama_seq_id *)p;
}
const std::vector<llama_kv_cell> & kv_cells = kvu->cells;
llama_kv_cache_view_cell * c_curr = view->cells;
llama_seq_id * cs_curr = view->cells_sequences;
int32_t used_cells = 0;
int32_t token_count = 0;
int32_t curr_contig_idx = -1;
uint32_t max_contig = 0;
int32_t max_contig_idx = -1;
for (int32_t i = 0; i < int32_t(kvu->size); i++, c_curr++, cs_curr += view->n_seq_max) {
const size_t curr_size = kv_cells[i].seq_id.size();
token_count += curr_size;
c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
if (curr_size > 0) {
if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
max_contig = i - curr_contig_idx;
max_contig_idx = curr_contig_idx;
}
curr_contig_idx = -1;
} else if (curr_contig_idx < 0) {
curr_contig_idx = i;
}
int seq_idx = 0;
for (const llama_seq_id it : kv_cells[i].seq_id) {
if (seq_idx >= view->n_seq_max) {
break;
}
cs_curr[seq_idx] = it;
seq_idx++;
}
if (seq_idx != 0) {
used_cells++;
}
for (; seq_idx < view->n_seq_max; seq_idx++) {
cs_curr[seq_idx] = -1;
}
}
if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
max_contig_idx = curr_contig_idx;
max_contig = kv_cells.size() - curr_contig_idx;
}
view->max_contiguous = max_contig;
view->max_contiguous_idx = max_contig_idx;
view->token_count = token_count;
view->used_cells = used_cells;
if (uint32_t(used_cells) != kvu->used) {
LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
__func__, kvu->used, used_cells);
}
}