2025-04-28 16:40:23 +03:00

597 lines
18 KiB
C++

#pragma once
#include "llama-arch.h"
#include "llama-hparams.h"
#include "llama-adapter.h"
#include <cstdint>
#include <vector>
#include <memory>
#include <set>
#include <functional>
struct ggml_cgraph;
struct ggml_context;
struct ggml_tensor;
struct llama_ubatch;
struct llama_cparams;
class llama_memory_i;
class llama_kv_cache_unified;
// certain models (typically multi-modal) can produce different types of graphs
enum llm_graph_type {
LLM_GRAPH_TYPE_DEFAULT,
LLM_GRAPH_TYPE_ENCODER,
LLM_GRAPH_TYPE_DECODER,
};
enum llm_ffn_op_type {
LLM_FFN_SILU,
LLM_FFN_GELU,
LLM_FFN_RELU,
LLM_FFN_RELU_SQR,
LLM_FFN_SWIGLU,
};
enum llm_ffn_gate_type {
LLM_FFN_SEQ,
LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
};
enum llm_norm_type {
LLM_NORM,
LLM_NORM_RMS,
LLM_NORM_GROUP,
};
// TODO: tmp - need something better to pass the data from the encoder to the decoder
struct llama_cross {
// the output embeddings from the encoder as a ggml tensor
// TODO: this needs more work to be correct, for now copy the embeddings data to host memory
// ref: https://github.com/ggml-org/llama.cpp/pull/11213#discussion_r1969892524
//ggml_tensor * t_embd = nullptr;
int64_t n_embd = 0;
int64_t n_enc = 0;
// embeddings data copied to host memory (tmp)
std::vector<float> v_embd;
// needed to construct the cross-attention mask in the decoder
std::vector<std::set<llama_seq_id>> seq_ids_enc;
};
//
// llm_graph_input
//
class llm_graph_input_i {
public:
virtual ~llm_graph_input_i() = default;
virtual void set_input(const llama_ubatch * ubatch) = 0;
};
using llm_graph_input_ptr = std::unique_ptr<llm_graph_input_i>;
class llm_graph_input_embd : public llm_graph_input_i {
public:
llm_graph_input_embd() = default;
virtual ~llm_graph_input_embd() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * tokens = nullptr; // I32 [n_batch]
ggml_tensor * embd = nullptr; // F32 [n_embd, n_batch]
};
class llm_graph_input_pos : public llm_graph_input_i {
public:
llm_graph_input_pos(int64_t n_pos_per_token) : n_pos_per_token(n_pos_per_token) {}
virtual ~llm_graph_input_pos() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * pos = nullptr; // I32 [n_batch]
const int64_t n_pos_per_token = 1;
};
// temperature tuning, used by llama4
class llm_graph_input_attn_temp : public llm_graph_input_i {
public:
llm_graph_input_attn_temp(int64_t n_pos_per_token, uint32_t n_attn_temp_floor_scale, float f_attn_temp_scale)
: n_pos_per_token(n_pos_per_token), n_attn_temp_floor_scale(n_attn_temp_floor_scale), f_attn_temp_scale(f_attn_temp_scale) {}
virtual ~llm_graph_input_attn_temp() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * attn_scale = nullptr; // F32 [n_batch]
const int64_t n_pos_per_token = 1;
const uint32_t n_attn_temp_floor_scale;
const float f_attn_temp_scale;
};
class llm_graph_input_pos_bucket : public llm_graph_input_i {
public:
llm_graph_input_pos_bucket(const llama_hparams & hparams) : hparams(hparams) {}
virtual ~llm_graph_input_pos_bucket() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * pos_bucket = nullptr; // I32 [n_batch, n_batch]
const llama_hparams & hparams;
};
class llm_graph_input_pos_bucket_kv : public llm_graph_input_i {
public:
llm_graph_input_pos_bucket_kv(
const llama_hparams & hparams,
const llama_kv_cache_unified * kv_self) : hparams(hparams), kv_self(kv_self) {}
virtual ~llm_graph_input_pos_bucket_kv() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * pos_bucket = nullptr; // I32 [n_kv, n_batch]
const llama_hparams & hparams;
const llama_kv_cache_unified * kv_self;
};
class llm_graph_input_out_ids : public llm_graph_input_i {
public:
llm_graph_input_out_ids(
const llama_hparams & hparams,
const llama_cparams & cparams,
int32_t n_outputs) : hparams(hparams), cparams(cparams), n_outputs(n_outputs) {}
virtual ~llm_graph_input_out_ids() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * out_ids; // I32 [n_outputs]
const llama_hparams & hparams;
const llama_cparams & cparams;
const int32_t n_outputs;
};
class llm_graph_input_mean : public llm_graph_input_i {
public:
llm_graph_input_mean(const llama_cparams & cparams) : cparams(cparams) {}
virtual ~llm_graph_input_mean() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * mean; // F32 [n_batch, n_batch]
const llama_cparams & cparams;
};
class llm_graph_input_cls : public llm_graph_input_i {
public:
llm_graph_input_cls(const llama_cparams & cparams) : cparams(cparams) {}
virtual ~llm_graph_input_cls() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * cls; // I32 [n_batch]
const llama_cparams & cparams;
};
class llm_graph_input_s_copy : public llm_graph_input_i {
public:
llm_graph_input_s_copy(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_s_copy() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * s_copy; // I32 [kv_size]
const llama_kv_cache_unified * kv_self;
};
class llm_graph_input_s_mask : public llm_graph_input_i {
public:
llm_graph_input_s_mask(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_s_mask() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * s_mask; // F32 [1, n_kv]
const llama_kv_cache_unified * kv_self;
};
class llm_graph_input_cross_embd : public llm_graph_input_i {
public:
llm_graph_input_cross_embd(
const llama_cross * cross) : cross(cross) {}
virtual ~llm_graph_input_cross_embd() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * cross_embd; // F32 [n_embd, n_outputs_enc]
const llama_cross * cross;
};
class llm_graph_input_attn_no_cache : public llm_graph_input_i {
public:
llm_graph_input_attn_no_cache(const llama_hparams & hparams, const llama_cparams & cparams) :
hparams(hparams),
cparams(cparams) {
}
~llm_graph_input_attn_no_cache() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * get_kq_mask() const { return kq_mask_cnv; }
ggml_tensor * kq_mask = nullptr; // F32 [n_tokens, n_batch]
ggml_tensor * kq_mask_cnv = nullptr; // [n_tokens, n_batch]
const llama_hparams & hparams;
const llama_cparams & cparams;
};
class llm_graph_input_attn_kv_unified : public llm_graph_input_i {
public:
llm_graph_input_attn_kv_unified(
const llama_hparams & hparams,
const llama_cparams & cparams,
const llama_kv_cache_unified * kv_self) :
hparams(hparams),
cparams(cparams),
kv_self(kv_self) {
}
~llm_graph_input_attn_kv_unified() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
ggml_tensor * get_kq_mask_swa() const { return self_kq_mask_swa_cnv; }
ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch]
ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch]
ggml_tensor * self_kq_mask_swa = nullptr; // F32 [n_kv, n_batch]
ggml_tensor * self_kq_mask_swa_cnv = nullptr; // [n_kv, n_batch]
const llama_hparams & hparams;
const llama_cparams & cparams;
const llama_kv_cache_unified * kv_self;
};
class llm_graph_input_attn_cross : public llm_graph_input_i {
public:
llm_graph_input_attn_cross(const llama_cross * cross) : cross(cross) {}
~llm_graph_input_attn_cross() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * get_kq_mask_cross() const { return cross_kq_mask_cnv; }
ggml_tensor * cross_kq_mask = nullptr; // F32 [n_outputs_enc, n_batch]
ggml_tensor * cross_kq_mask_cnv = nullptr; // F32 [n_outputs_enc, n_batch]
const llama_cross * cross = nullptr;
};
//
// llm_graph_result
//
// these objects deliver the result from the graph build process back to the llama_context
// note that the input tensors created for the graph are referenced here - the goal is to be able to populate their
// specific data, by calling the set_inputs() method
// along with the input tensors, the object also provides commonly used outputs tensors, such as logits, embeddings, etc.
// these are used by the llama_context to extact the relevant data, based on the compute parameters
class llm_graph_result_i {
public:
virtual ~llm_graph_result_i() = default;
virtual ggml_tensor * get_logits() = 0;
virtual ggml_tensor * get_embd() = 0;
virtual ggml_tensor * get_embd_pooled() = 0;
virtual void set_inputs(const llama_ubatch * ubatch) = 0;
};
using llm_graph_result_ptr = std::unique_ptr<llm_graph_result_i>;
class llm_graph_result : public llm_graph_result_i {
public:
virtual ~llm_graph_result() = default;
ggml_tensor * get_logits() override { return t_logits; }
ggml_tensor * get_embd() override { return t_embd; }
ggml_tensor * get_embd_pooled() override { return t_embd_pooled; }
void set_inputs(const llama_ubatch * ubatch) override {
for (auto & input : inputs) {
input->set_input(ubatch);
}
}
llm_graph_input_i * add_input(llm_graph_input_ptr input) {
inputs.emplace_back(std::move(input));
return inputs.back().get();
}
// important graph nodes
ggml_tensor * t_logits = nullptr;
ggml_tensor * t_embd = nullptr;
ggml_tensor * t_embd_pooled = nullptr;
std::vector<llm_graph_input_ptr> inputs;
};
//
// llm_graph_context
//
// callback that allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
using llm_graph_cb = std::function<void(const llama_ubatch & ubatch, ggml_tensor * cur, const char * name, int il)>;
struct llm_graph_params {
ggml_context * ctx;
const llm_arch arch;
const llama_hparams & hparams;
const llama_cparams & cparams;
const llama_ubatch & ubatch;
ggml_backend_sched * sched;
ggml_backend * backend_cpu;
const llama_adapter_cvec * cvec;
const llama_adapter_loras * loras;
const llama_memory_i * memory;
const llama_cross * cross;
int32_t n_outputs;
const llm_graph_cb & cb;
};
struct llm_graph_context {
const llm_arch arch;
const llama_hparams & hparams;
const llama_cparams & cparams;
const llama_ubatch & ubatch;
const int64_t n_embd;
const int64_t n_layer;
const int64_t n_rot;
const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
const int64_t n_ctx_per_seq;
const int64_t n_head;
const int64_t n_head_kv;
const int64_t n_embd_head_k;
const int64_t n_embd_k_gqa;
const int64_t n_embd_head_v;
const int64_t n_embd_v_gqa;
const int64_t n_expert;
const int64_t n_expert_used;
const float freq_base;
const float freq_scale;
const float ext_factor;
const float attn_factor;
const float beta_fast;
const float beta_slow;
const float norm_eps;
const float norm_rms_eps;
const int32_t n_tokens;
const int32_t n_outputs;
const int32_t n_ctx_orig; // yarn
const enum llama_pooling_type pooling_type;
const enum llama_rope_type rope_type;
ggml_context * ctx0 = nullptr;
ggml_backend_sched * sched;
ggml_backend * backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
const llama_adapter_cvec * cvec;
const llama_adapter_loras * loras;
const llama_memory_i * memory;
const llama_cross * cross;
const llm_graph_cb & cb_func;
std::unique_ptr<llm_graph_result> res;
llm_graph_context(const llm_graph_params & params);
int64_t n_pos_per_token() const;
void cb(ggml_tensor * cur, const char * name, int il) const;
//
// common
//
ggml_tensor * build_cvec(
ggml_tensor * cur,
int il) const;
// do mat_mul, while optionally apply lora
ggml_tensor * build_lora_mm(
ggml_tensor * w,
ggml_tensor * cur) const;
// do mat_mul_id, while optionally apply lora
ggml_tensor * build_lora_mm_id(
ggml_tensor * w, // ggml_tensor * as
ggml_tensor * cur, // ggml_tensor * b
ggml_tensor * ids) const;
ggml_tensor * build_norm(
ggml_tensor * cur,
ggml_tensor * mw,
ggml_tensor * mb,
llm_norm_type type,
int il) const;
ggml_tensor * build_ffn(
ggml_tensor * cur,
ggml_tensor * up,
ggml_tensor * up_b,
ggml_tensor * up_s,
ggml_tensor * gate,
ggml_tensor * gate_b,
ggml_tensor * gate_s,
ggml_tensor * down,
ggml_tensor * down_b,
ggml_tensor * down_s,
ggml_tensor * act_scales,
llm_ffn_op_type type_op,
llm_ffn_gate_type type_gate,
int il) const;
ggml_tensor * build_moe_ffn(
ggml_tensor * cur,
ggml_tensor * gate_inp,
ggml_tensor * up_exps,
ggml_tensor * gate_exps,
ggml_tensor * down_exps,
ggml_tensor * exp_probs_b,
int64_t n_expert,
int64_t n_expert_used,
llm_ffn_op_type type_op,
bool norm_w,
bool scale_w,
float w_scale,
llama_expert_gating_func_type gating_op,
int il) const;
//
// inputs
//
ggml_tensor * build_inp_embd(ggml_tensor * tok_embd) const;
ggml_tensor * build_inp_pos() const;
ggml_tensor * build_inp_attn_scale() const;
ggml_tensor * build_inp_out_ids() const;
ggml_tensor * build_inp_mean() const;
ggml_tensor * build_inp_cls() const;
ggml_tensor * build_inp_s_copy() const;
ggml_tensor * build_inp_s_mask() const;
ggml_tensor * build_inp_cross_embd() const;
ggml_tensor * build_inp_pos_bucket_enc() const;
ggml_tensor * build_inp_pos_bucket_dec() const;
ggml_tensor * build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const;
//
// attention
//
ggml_tensor * build_attn_mha(
ggml_cgraph * gf,
ggml_tensor * q, // [n_embd_head_q, n_tokens, n_head_q]
ggml_tensor * k, // [n_embd_head_k, n_tokens, n_head_k]
ggml_tensor * v, // [n_embd_head_v, n_tokens, n_head_v] (v_trans == false)
ggml_tensor * kq_b,
ggml_tensor * kq_mask,
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
bool v_trans,
float kq_scale) const;
llm_graph_input_attn_no_cache * build_attn_inp_no_cache() const;
ggml_tensor * build_attn(
llm_graph_input_attn_no_cache * inp,
ggml_cgraph * gf,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
ggml_tensor * kq_b,
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
float kq_scale,
int il) const;
llm_graph_input_attn_kv_unified * build_attn_inp_kv_unified() const;
ggml_tensor * build_attn(
llm_graph_input_attn_kv_unified * inp,
ggml_cgraph * gf,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
ggml_tensor * kq_b,
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
float kq_scale,
int il) const;
llm_graph_input_attn_cross * build_attn_inp_cross() const;
ggml_tensor * build_attn(
llm_graph_input_attn_cross * inp,
ggml_cgraph * gf,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
ggml_tensor * kq_b,
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
float kq_scale,
int il) const;
//
// recurrent
//
ggml_tensor * build_copy_mask_state(
ggml_cgraph * gf,
ggml_tensor * s,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
int32_t n_state,
int32_t n_seqs) const;
ggml_tensor * build_rwkv_token_shift_load(
ggml_cgraph * gf,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const;
ggml_tensor * build_rwkv_token_shift_store(
ggml_tensor * token_shift,
const llama_ubatch & ubatch,
int il) const;
//
// pooling
//
void build_pooling(
ggml_cgraph * gf,
ggml_tensor * cls,
ggml_tensor * cls_b,
ggml_tensor * cls_out,
ggml_tensor * cls_out_b) const;
};